高性能轮胎专用胶—环氧化天然橡胶及其纳米增强材料的结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着国家节能减排战略的提出和汽车工业向高速、安全、节能、舒适化方向的发展,对轮胎高性能化的要求也逐年提高,这就要求轮胎胎面具有良好的抗湿滑性能,优异的耐磨性、低的滚动阻力特性。轮胎胎面要获得如此全面的特性,必须在橡胶的分子结构及增强结构上有新的突破。众所周知,橡胶分子间的内摩擦损耗和松弛特性是制约其低滚阻和高抗湿滑性能的主要因素,因此通过环氧改性对天然橡胶进行分子结构设计是本论文的研究重点之一,其次橡胶的增强结构高性能化也是轮胎工业者致力解决的难题。无机填料白炭黑以其高补强、低生热的优点而逐渐受到橡胶工业研究者的青睐,但是也具有易团聚、与基体结合差等缺点。因此通过分子结构设计和纳米填料增强的角度来提高白炭黑分散性及其与基体的界面相互作用力并实现节能降耗目标是本论文的另一个研究重点。
     论文的第一部分,从微观分子结构入手,研究环氧化反应对橡胶结构和性能的影响,在微观结构与宏观性能之间建立有机联系。分析环氧化反应机理及环氧基团的分布情况,探索环氧基团开环反应的机理。发现天然橡胶分子链上发生环氧化反应的同时,存在环氧基团的二次开环副反应,开环产物的结构取决于环氧化的程度,环氧基团在橡胶分子链上呈无规分布的。玻璃化转变温度(Tg),门尼粘度和P0值随着环氧化程度的升高而升高,相反PRI值随环氧化程度的升高而降低。
     论文的第二部分,采用Py-GC/MS动态跟踪环氧化天然橡胶裂解过程,结合TG/DTG,DTA等分析技术,探索ENR的降解机理。研究发现,与NR相比,ENR的TG曲线往低温方向移动,说明环氧化改性后ENR的热稳定性变差。NRf和ENR的第一步热氧降解机理相同,都为一维扩散;NR的第二步热氧降机理为二维扩散(Valensi方程1。然而,ENR降解机理为三维扩散(Jander方程),表明在NR分子链上引入环氧基团后,ENR的降解变得更复杂。NR的DTA曲线出现了两个放热峰,ENR的DTA曲线出现了三个放热峰,说明ENR的热氧降解过程变得更复杂。Py-GC/MS分析结果可以看出,ENR在低温(350℃)裂解的主要是碳碳单键发生p-断裂,在剧烈的温度条件(550℃)下,产物中有大量的短支链表明ENR的裂解不仅发生了链的p-断裂,还有“拉开链式反应”(unzipping reaction)的分子链解聚。
     论文的第三部分,我们提出了一种全新的设想:不使用任何偶联剂的条件下,通过环氧化天然橡胶(ENR)分子链上的环氧基团与纳米Si02表面的硅羟基产生强的相互作用力(氢键或是化学键),抑制纳米Si02粒子的团聚,使其均相分散在橡胶基体中,来有效的提高复合材料的性能。在混炼阶段,环氧基团和Si02粒子表面的硅羟基相互作用形成氢键,同时诱导SiO2粒子在橡胶基体中的均匀分散;NR/SiO2共混物在硫化的过程中,环氧基团发生开环反应;开环产物马上与SiO2粒子表面的硅羟基发应,形成稳定的Si-O-C键,并进一步预制了SiO2粒子团聚,促进其在橡胶基体中均匀分散。当SiO2用量低于30份时,ENR/SiO2胶料在0℃具有较高的tanδ值,同时在600C具有较低的tanδ值,滚动阻力和抗湿滑性之间达到较好的平衡;SiO2在橡胶基体中的分散越均匀,力学性能越好,生热性能越低,热氧稳定性越好。
     论文的第四部分,对ENR/SiO2共混体系进行动态流变学测定,探讨环氧化程度和炼胶温度对高填充体系中粒子的分散以及粒子-橡胶相互作用的影响。发现SiO2粒子在橡胶中的分散状态既与环氧基团的含量有关,又与混炼温度有关。随着环氧化程度的升高,出现payne效益的临界应变(yc)以及低频率(ω)区域1gG'-1gω曲线的斜率值均增大,反映出环氧化改性对SiO2与橡胶基体相互作用的促进以及粒子分散的改善。在低温下(60℃)混炼,环氧基团与SiO2粒子表面的硅羟基间以氢键的形式结合,诱导SiO2粒子在橡胶基体中均匀分散;在高温下(120℃)下混炼,部分环氧基团发生开环,开环产物立刻与SiO2粒子表面的硅羟基反应,形成稳定的化学键结合,SiO2粒子在橡胶基体中更均匀地分散。
     论文的第五部分,考察ENR作为新型SiO2分散剂对NR/SiO2复合材料微观结构和性能的影响,发现ENR改性NR/Silica复合材料的扭矩差值、结合胶含量和交联密度均随着ENR用量的增加而升高,SiO2粒子的分散变得均匀。ENR起到类似于“偶联剂”的作用,通过硫化网络与NR形成稳定的化学键结合和通过环氧基团与SiO2粒子表面的硅羟基反应,在填料和橡胶基体间建立强的相互作用。SiO2粒子均匀的分散在橡胶基体中,有效的提高了抗湿滑性能,降低了滚动阻力和生热性能。
Recently, with the demand of energy conservation and emission reduction in our country and the development of automotive industry in high-speed, security, energy-saving and comfort, there are increased requirements of high-performance tire with good wet-skid resistance, abrasion resistance, and low rolling resistance. It should have new breakthrough in molecular structure and reinforced structure of rubber. It is well known that, the internal friction losses among macromolecular chains and relaxation characteristics are the main factors. Therefore, the design of molecular structure of energy-saving rubber is the one of research focuses. On the other hand, the optimization of reinforced structure of rubber is the problem to be solved. Silica, a high reinforcement and low heat build-up filler, is gradually popular in rubber industry, but it still shows easy-aggregation and weak interaction with rubber matrix. In this paper, we try to improve the silica-sispersion and its interfacial interaction with matrix and achieve the energy-saving and emission reduction through the design of molecular structure and nanoscale filler reinforcement.
     In the first part, the microstructure and properties of epoxidized natural rubber (ENR) based on micro molecule during epoxidized process were supervised to build-up the relationship between microstructure and macro-properties, which not only verified the epoxidation mechanism and revealed the reason of ENR epoxy ring-open and crosslink of molecule. Two distinct types of ring-opened products were obtained depending principally on the level of epoxidation. The introduction of epoxy groups was found to occur randomly along the molecular chain while retaining NR's high stereoregularity. The Tg, Po and Mooney viscosity increase as the ENR loading increases. However, the PRI decrease as the ENR loading increases.
     In the second part, the pyrolysis products of ENR at different pyrolysis temperatures were analyzed by the combination of pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) technique. Thermal degradation kinetics was studied by TGA and DTA. The results showed that, compared to NR, the TG curve of ENR shifted towards low temperatures, indicate that the thermal stability of the ENR-50is worse than that of NR. The pyrolysis of ENR exhibits mainly three exotherms in the DTA curves, means the degradation process of ENR is more complex than that of NR. From the major products of Py-GC/MS, it is found that major reactions during the pyrolysis are affected seriously by the pyrolysis temperature. The chain scission mainly occurred at β position of carbon-carbon single bond. Under drastic conditions, the products of short chain hydrocarbon show that ENR not only undergo main chain-scission but also a chain depropagation reaction by unzipping.
     In the third part, we proposes a novel way to form an agglomerate-free ENR/SiO2nanocomposite at a low processing temperature by taking the advantages of the "bridge" structure of ENR, where the bone chains with high stereo regularity of ENR are further connected with NR, while its oxygenous functional groups will strongly interact with silanol groups on the SiO2surface via hydrogen bonds. The properties and dispersion mechanism of anocomposites are investigated. During the mixing process, the hydrogen bonds are formed between epoxy and silanol groups, resulting in better dispersion of SiO2nanoparticles. Furthermore, when the composites are vulcanized under a pressure of15MPa at145℃for the respective cure times (tgo) with curing agents, the epoxy groups of ENR chains may occur ring-opening reaction. The ring-opening products will react with the silanol groups on the surface of SiO2immediately to form stable chemical bonds to depress the self-aggregation of silica. The improvement of SiO2dispersion leads to the significant enhancement of thermal properties, tensile strength and wet grip, and reduction of rolling resistance and inner-thermogenesis, demonstrating the great potential in the applications of tyre industry.
     In the fourth part, rheological properties revealed significant differences phenomenon, depending on the types of matrix and the process temperature. When rubber/silica composite is mixed at60℃, The critical strains (yc) and the slope of plotting logarithm storage modulus (lgG) versus logarithm frequency (lgω) in low ωs range substantially increased, suggesting that the Payne effect becomes weaker and the miscibility between silica filler and natural rubber is greatly enhanced. When rubber/silica composite is mixed at120℃, its viscoelasticity presents a dramatic change, the strain dependence G' increases while the "Second Plateau" disappears, largely due to the crosslink between rubber-rubber molecules and chemical bonding between rubber and silica. Based on the SEM, and rheological properties analyze, the probable structure evolution mechanism of epoxidized natural rubber/silica composites is proposed.
     In the fifth part, epoxidized natural rubber as a disperse modifier for silica-filled natural rubber and its impacts on properties were studied. The results show that delta torques, bound rubber contents and crosslink density increase as the ENR loading increases, indicating that ENR not only interact with NR through sulfur crosslink but with silica through hydrogen bonds or covalent bonds. These interactions enable ENR compatible with NR matrix, and play a similar role as silane coupling agent by being grafted onto the surfaces of silica nanoparticles to depress the strong self-agglomerate nature of nano-silica. The improvement of SiO2dispersion and strong rubber-filler interaction leads to the significant enhancement of tensile strength, wet grip, and reduction of rolling resistance and inner-thermogenesis. Due to the formation of new chemical bonds between ENR and silica, the NR filled silica in the presence of ENR transfers much stress with less hysteresis.
引文
[1]S. Cook, Changing types:Why natural rubber can meet demands of the modern type, Materials world,17 (2009) 30.
    [2]姚文斌,美国轮胎特保案的影响与对策,轮胎工业,29(2009)2.
    [3]姚文斌,欧盟轮胎燃料效率标签法规对我国出口轮胎的影响与对策,轮胎工业,30(2010).
    [4]J. R. Luchinj, J. M. Peters, R.H. Arthur, Tire rolling loss Computation with the Finite Element Metheod, Tire Science and Technology,15 (1994) 206-222.
    [5]庄继德,现代汽车轮胎技术,北京理工大学出版社,北京,2001.
    [6]陈琛,滚动阻力及米其林绿色轮胎,汽车与配件,(2009)73.
    [7]M.J. Wang, Effect of polymer-filler and filler-filler interactions on dynamic properties of filled vulcanizates, Rubber Chemistry and Technology,71 (1998) 520-589.
    [8]M.J. Wang, The role of filler networking in dynamic properties of filled rubber, Rubber Chemistry and Technology,72 (1999) 430-448.
    [9]Kar K. K., Bhowmick, A. K., Hysteresis Loss in Filled Rubber Vulcanizates and its Relationship with Heat Generation, Journal ofApplied Polymer Science 64 (1997)1541-1555.
    [10]Park D. M., Hong W. H., Kim S. G., Kim H.J., Heat Generation of Filled Rubber Vulcanizates and its Relationship with Vulcanizate Network Structures, European Polymer Journal 36 (2000) 2429-2436.
    [11]毕莲英,按胎面胶动态试验确定充气轮胎的滚动阻力和抓着性能,世界橡胶工业,28(2001).
    [12]Roch P, Compouding for wet grip, Kautsch Gummi Kunsmt,48 (1995) 430-434.
    [13]Tsutsumi F, Sakakibrar M, Oshima N, Structure and dynamic properties of solution SBR coupled with till compounds, Rubber Chemistry and Technology,63 (1989)8-21.
    [14]Amino N, Uchiyama Y, Relationships Between the Friction and Viscoelastic Properties of Rubber, Tire Science andTechnology,28 (2000) 178-195.
    [15]宋武,王雅珍,高悦,,高分子材料抗静电技术的研究进展,化工时刊,19(2005)63-66.
    [16]Medalia A Effect of Carbon-Black on Dynamic Properties of Rubber Vulcanizates, Rubber Chemistry and Technology,51 (1978) 437-523.
    [17]Wang M. J., Effect of Polymer-Filler and Filler-Filler Interactions on Dynamic Properties of Filled Vulcanizates, Rubber Chemistry and Technology,71 (1998) 520-589.
    [18]Wang M. J., Kutsovsky Y, In Effect of Fillers on Wet Skid Resistance of Tires. Part I:Water Lubrication Vs. Filler-Elastomer Interactions,Annual Fall Meeting of the Rubber-Division-of-the-American-Chemical-Society, Cleveland, OH, Oct 16-18,2007; Amer Chemical Soc Inc:Cleveland, OH,,(2007)552-575.
    [19]Duperray B,; Leblanc J.L., The Time-Temperature Superposition Principle as Applied to Filled Elastomers, Kautsch Gummi Kunsmt,35 (1982) 298-307.
    [20]Bond R., Morton Q Krol L.H., A Tailor-Made Polymer for Tyre Applications, Polymer 25 (1984) 132-140.
    [21]Saito Y., New Polymer Development for Low Rolling Resistance Tires, Kautsch Gummi Kunsmt 39 (1986) 30-32.
    [22]李汉堂,绿色轮胎的开发及其发展前景(上),橡塑技术与装备,33(2007).
    [23]Prilezhaev N, Oxidation of unsaturated compounds by means of organic peroxides Org Lab, Polytechn Inst. Warswa Ber,42 (1909) 4811-4815.
    [24]Pummer R., Burkard P. A., Uber Kautschuk, Ber.55 (1922) 3458-3472.
    [25]Bac Ng V, Mihailov M, Terlemezyan L, On the stability of natural rubber latex acidified by acetic acid and subsequent epoxidation by peracetic acid, European Polymer Journal,27(6) (1991) 557.
    [26]Burfield D. R., Lim K. L., Law K.S, Ng S., Epoxidation of natrual rubber latices:methods of preparation and properties of modified rubber, Journal of Applied Polymer Science,29 (1984) 1661-1673.
    [27]Coomaramy A., Epoxidized NR. annual report, Rubber Research Istitute of Srilanke,(1981).
    [28]Gelling I.R., J.F. Smith Controlled viscosity by natural rubber modification. in: Proclnt. Rubb. Conf., Venice,1979.
    [29]Tutorskiil A., Conformational changes of the macromgecular coil during the epoxidation of polyisopene, Vyskomg Soedin,SerA, (1973) 2282.
    [30]Rowx C., Epoxidation of cisl,4-polyisoprene, Comp. Rend,258 (1984) 5442.
    [31]Dreyfuss P., Kennedy J. P., Graft copolymers by dxoniurnolymerization:Rubbere poxidation as sites fo raddition of polytetrahydrofurm graft., Journal of Polymer Science,60 (1977)47.
    [32]姚似玉,黄素绢,天然橡胶的环氧化改性与表征,高分子材料与工程,(5)(1994)66-70.
    [33]Ng S.C, L.H. Gan, Reaction of natural rubber latex with performic acid, European Polymer Journal,17(11) (1981) 1073-1077.
    [34]Bradbury J. H., Perera M C S, Epoxidation of natural rubber studied by NMR spectroscopy., Journal of Applied Polymer Science,30 (1985) 3347-3363.
    [35]陈鹰,环氧化天然橡胶的制备与性能,胶乳工业,(2)(1989)16.
    [36]Roy S, Gupta B R, R. Maiti B, Studies on the epoxidation of natural rubber, Journal of Elastomers and Plastics,33(4) (1990) 280-294.
    [37]Y. Heping, L. Sidong, P. Zheng, Preparation and study of epoxidized natural rubber, Journal of Thermal Analysis and Calorimetry,58 (1999) 293-299.
    [38]余和平,李思东,彭政,环氧化天然橡胶玻璃化转变温度与环氧化程度的关系,弹性体,9(3)(1999)21-23.
    [39]余和平,李思东,环氧化天然橡胶研究进展,橡胶工业,45(1998)246-252.
    [40]H.P. Yu, Z.Q. Zeng, G. Lu, Q.F. Wang, Processing characteristics and thermal stabilities of gel and sol of epoxidized natural rubber, European Polymer Journal,44 (2008)453-464.
    [41]Swern D., Billen G. N., Scanlan J. T., Hydroxylation and epoxidation of some 1-olefins with peracids J. Am. Chem. Soc.,,68(8) (1946) 1504-1507.
    [42]Swern D., Chemistry of epoxy compounds VIL.2 stereochchemical relationships between the 9,10-epoxy-,chlorohydroxy-and dihydroxystearic acids,70 (1948) 1235-1242.
    [43]Dean J. A., Lange's Handbook of Chemistry McGraw-Hill, New York,1979. [44] Gan L.H, Ng S.C, Kinetic studies of the performic acid epoxidationof natrural rubber latex stabilized by cationic surfactant., European Polymer Journal,22(7) (1986) 573-584.
    [45]Gelling I. R., Epoxidized natural rubber, J. Nat. Rubber Res.,6(3) (1991) 184-205.
    [46]Shapilov O.D., Kinetics and Catalysis,17 (1976) 687.
    [47]Davey J. E., Loadman M. J. R., A chemical demonstration of randomness of epoxidation of NR, British Polymer Journal.,16 (1984) 134.
    [48]Gelling I. R., Modification of natural rubber latex with peracetic acid, Rubber Chemistry and Technology,58(1) (1985) 86-97.
    [49]D.R. Burfield, K.L. Lim, K.S. Law, S. Ng, Analysis of epoxidized natural rubber. A comparative study of d.s.c, n.m.r., elemental analysis and direct titration methods, Polymer,25 (1984)995-998.
    [50]James Mark, Kia Ngai, William Graessley, Leo Mandelkern, Edward Samulski, Phsical Properties of Polymers, Third Edition ed., Cambridge University Landon U.K., 2003.
    [51]余和平,李思东,彭政,环氧化天然橡胶的制备与热降解研究,现代科学仪器,5(1998)31-33.
    [52]李思东,余和平,彭政,用FTIR研究环氧化天然橡胶的热老化,应用化学,(1999).
    [53]李思东,彭政,余和平,钟杰平,魏永才,用红外差谱表征橡胶的热老化,橡胶工业,45(1998)494-498
    [54]N.R. Kumar, S. Roy, B.R. Gupta, A.K. Bhowmick, Structural changes in rubber during milling, Journal of Applied Polymer Science,45 (1992) 937-945.
    [55]S. Roy, B.R. Gupta, T.K. Chaki, Studies on the aging behavior of gum epoxidized natural rubber, Kautschuk Gummi Kunststoffe,46 (1993) 293-296.
    [56]A.K. Manna, P.P. De, D.K. Tripathy, S.K. De, D.G. Peiffer, Bonding between precipitated silica and epoxidized natural rubber in the presence of silane coupling agent, Journal of Applied Polymer Science,74 (1999) 389-398.
    [57]A.K. Manna, A.K. Bhattacharyya, P.P. De, D.K. Tripathy, S.K. De, D.G. Peiffer, Effect of silane coupling agent on the chemorheological behaviour of epoxidised natural rubber filled with precipitated silica, Polymer,39 (1998)7113-7117.
    [58]A.S. Hashim, N. Kawabata, S. Kohjiya, Silica reinforcement of epoxidized natural rubber by the sol-gel method, Journal of Sol-Gel Science and Technology,5 (1995)211-218.
    [59]刘吉文,徐海燕,吴驰飞,环氧天然橡胶接枝高分散白炭黑增强天然橡胶复合材料的制备及表征,高分子学报,(2008)6.
    [60]H. Xu, J. Liu, L. Fang, C. Wu, In situ grafting onto silica surface with epoxidized natural rubber via solid state method, Journal of Macromolecular Science, Part B: Physics,46 B (2007) 693-703.
    [61]B.T. Poh, W.L. Tang, Concentraion effect of stearic acid on scorch behavior of epoxidized natural rubber, Journal of Applied Polymer Science,55 (1995) 537-542.
    [62]C.S.L. Baker, I.R. Gelling, R. Newell, Epoxidized natural rubber, Rubber Chemistry and Technology,58 (1985) 67-85.
    [63]Gelling I. R., N.J. Morrison, Sulfur vucanization and oxidative aging of epoxidized natural rubber Rubber Chemistry and Technology,58 (1985) 243-257.
    [64]B.T. Poh, E.K. Tan, Mooney scorch time and cure index of epoxidized natural rubber in presence of sodium carbonate, Journal of Applied Polymer Science,82 (2001)1352-1355.
    [65]B.T. Poh, M.F. Chen, B.S. Ding, Cure characteristics of unaccelerated sulfur vulcanization of epoxidized natural rubber, Journal of Applied Polymer Science,60 (1996)1569-1574.
    [66]B.T. Poh, H.K. Kwo, Peel, and shear strength of pressure-sensitive adhesives prepared from epoxidized natural rubber, Journal of Applied Polymer Science,105 (2007) 680-684.
    [67]B.T. Poh, P.G. Lee, S.C. Chuah, Adhesion property of epoxidized natural rubber (ENR)-based adhesives containing calcium carbonate, Express Polymer Letters,2 (2008)398-403.
    [68]B.T. Poh, B.K. Tan, Mooney scorch time of epoxidized natural rubber Journal of Applied Polymer Science,42 (1991) 1407-1416.
    [69]B.T. Poh, C.S. Te, Dependence of Mooney scorch time of SMR L, ENR 25, and ENR 50 on concentration and types of antioxidants, Journal of Applied Polymer Science,74 (1999) 2940-2946.
    [70]B.T. Poh, C.S. Te, Cure index and activation energy of vulcanization of natural rubber and epoxidized natural rubber vulcanized in the presence of antioxidants, Journal of Applied Polymer Science,77 (2000) 3234-3238.
    [71]B.T. Poh, A.T. Yong, Dependence of Peel Adhesion on Molecular Weight of Epoxidized Natural Rubber, Journal of Adhesion,85 (2009)435-446.
    [72]M. Pire, S. Norvez, I. Iliopoulos, B. Le Rossignol, L. Leibler, Imidazole-promoted acceleration of crosslinking in epoxidized natural rubber/dicarboxylic acid blends, Polymer,52 (2011) 5243-5249.
    [73]S. Mukhopadhyay, T.K. Chaki, S.K. De, Self-vulcanizable rubber blend system based on epoxidized natural rubber and hypalon, Journal of polymer science. Part C, Polymer letters,28 (1990) 25-30.
    [74]杨清芝,朱蕾,张殿容,ENR/CSM的自硫化研究,特种橡胶制品,15(1994,)1-5.
    [75]R. Alex, P.P. De, S.K. De, Self-vulcanizable ternary rubber blend based on epoxidized natural rubber, carboxylated nitrile rubber and polychloroprene rubber:1. Effect of blend ratio, moulding time and fillers on miscibility, Polymer,32 (1991) 2345-2350.
    [76]S. Mukhopadhyay, S.K. De, Miscibility of self-vulcanizable rubber blend based on epoxidized natural rubber and chlorosulphonated polyethylene:effect of blend composition, epoxy content of epoxidized natural rubber and reinforcing black filler, Polymer,32 (1991) 1223-1229.
    [77]T. Asukai, Y. Kameda, Rubber composition for tires, comprises (epoxidized) natural rubber, synthetic rubber, diene rubber, reinforcement property filler and vegetable wax, in, Yokohama Rubber Co Ltd,2010.
    [78]T. Azechi, Rubber composition for vibration-proof rubber used for rail vehicles, motor vehicles and industrial machines, contains rubber component containing epoxidized natural rubber and carbon black in specified amount, in, Toyo Rubber Ind Co Ltd,2009.
    [79]M. Hirayama, Rubber composition for inner liner of tire, contains preset amount of rubber components containing natural rubber and/or epoxidized natural rubber, and paper fiber, in, Sumitomo Rubber Ind Ltd,2007.
    [80]K. Hochi, Rubber composition for tread portion used for pneumatic tire, contains organosulfur compound, silica and rubber component containing epoxidized natural rubber, all in a specified range, in, Sumitomo Rubber Ind Ltd,2009.
    [81]Y. Imoto, N. Ichikawa, Rubber composition for tire comprises natural rubber or epoxidized natural rubber which is aggregated using coagulant, and chitosan which is modified by coagulant, in, Sumitomo Rubber Ind Ltd,2008.
    [82]Y. Imoto, K. Uesaka, K. Kamisaka, U. Kenichi, I. Yoji, Rubber composition for side walls of pneumatic tire in vehicle, contains rubber component containing natural rubber and epoxidized natural rubber, silica, and another rubber component containing liquid rubber, in, Sumitomo Rubber Ind Ltd,2009.
    [83]Y. Imoto, N. Ichikawa, Rubber composition for tire component such as tread, side wall, bead, chafer, breaker, carcass and clinch used in tire, contains rubber component including hydrogenated substance of epoxidized natural rubber, in a specified range, in, Sumitomo Rubber Ind Ltd,2009.
    [84]M. Huang, H. Yu, Z. Zeng, Preparing epoxidized natural rubber involves stabilizing concentrated natural rubber latex by using stabilizing agent, where methanoic acid, Novozym 435 and deionized water are added to stabilized rubber latex to obtain rubber mixture, in, Agric Prod Processing Res Inst Chinese Acad Tropical Agric S,2010.
    [85]W. Hsu, S. Futamura, K.A. Bates, A.F. Halasa, K. Hua, B.R. Harm, Preparation of rubber composition used for tires, involves pretreating silica aggregates in presence of dry natural rubber, adding organoalkoxysilane based polysulfide coupling agent, adding sulfur curative and curing, in, Hsu W; Futamura S; Bates K a; Halasa a F; Hua K; Hahn B R; Goodyear Tire & Rubber Co,2006.
    [86]H. Ismail, B.T. Poh, K.S. Tan, M. Moorthy, Effect of filler loading on cure time and swelling behaviour of SMR L/ENR 25 and SMR L/SBR blends, Polymer International,52 (2003) 685-691.
    [87]K. Pal, R. Rajasekar, D.J. Kang, Z.X. Zhang, J.K. Kim, C.K. Das, Effect of epoxidized natural rubber-organoclay nanocomposites on NR/high styrene rubber blends with fillers, Materials & Design,30 (2009) 4035-042.
    [88]H. Ismail, H.C. Leong, Curing characteristics and mechanical properties of natural rubber/chloroprene rubber and epoxidized natural rubber/chloroprene rubber blends, Polymer Testing,20 (2001) 509-516.
    [89]周明,宋义虎,孙晋,何力,谭红,郑强,硅烷偶联剂对SSBR/SiO2混炼 胶体系动态流变行为的影响,高分子学报,(2007).
    [90]颜和祥,白炭黑/天然橡胶之间相互作用及其对力学性能影响的研究,2004.上海交通大学博士论文
    [91]白炭黑填充溶液聚合丁苯橡胶的流变行为研究.2004.浙江大学博士论文
    [92]Y. Zhu, B. Wang, W. Gong, L. Kong, Q. Jia, Investigation of the hydrogen-bonding structure and miscibility for PU/EP IPN nanecomposites by PALS, Macromolecules,39 (2006) 9441-9445.
    [93]M. Zhou, Y. Song, J. Sun, L. He, H. Tan, Q. Zheng, Effect of silane coupling agents on dynamic rheological properties for unvulcanized SSBR/Silica compounds, Acta Polym Sin, (2007) 153-157.
    [94]J. Zhou, T. Yu, S. Wu, Z. Xie, Y. Yang, Inverse gas chromatography investigation of rubber reinforcement by modified pyrolytic carbon black from scrap tires, Industrial and Engineering Chemistry Research,49 (2010) 1691-1696.
    [95]J. Zhong, G.Lin, W.Y. Wen, A. A. Jones, S. Kelman, B.D. Freeman, Translation and rotation of penetrants in ultrapermeable nanocomposite membrane of poly(2,2-bis(trifluoromethyl)-4,5-difluoro-1,3-dioxole-co-tetrafluoroethylene) and fumed silica, Macromolecules,38 (2005) 3754-3764.
    [96]Q. Zheng, H.G Hu, X.L. Tao, Preliminary Study on the Dynamic Properties of PMVS Filled with Surface-treated Silica, Chinese Chemical Letters,15 (2004) 71-73.
    [97]M. Zhang, Y.G Zhang, XS. Mei, J.C. Zhang, S.M. Liu, T.T. Wang, Microstructure of antistatic nano-CB composites by positron annihilation, Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology,29 (2009) 137-139.
    [98]A.R.M. Yusoff, A.B. Ahmad, Thermally stimulated current measurements on epoxidized natural rubber (ENR50)-Organically modified montmorillonite composite, EPJ Applied Physics,29 (2005) 167-171.
    [99]W.Z. Yuan, M. Peng, Q.M. Yu, B.Z. Tang, Q. Zheng, Synthesis and characterization of polystyrene/nanosilica organic-inorganic hybrid, Chemical Research in Chinese Universities,22 (2006) 797-802.
    [100]X.Z. Yin, Y.Q. Tan, Y.H. Song, Q. Zheng, Dispersion stability and rheological behavior of suspensions of polystyrene coated fumed silica particles in polystyrene solutions, Chinese Journal of Polymer Science (English Edition),30 (2012) 26-35.
    [101]X. Ye, M. Tian, L.Q. Zhang, Some interesting phenomena in silica-filled HNBR with the addition of silane coupling agent, Journal of Applied Polymer Science,124 (2012)927-934.
    [102]K. Yao, Z. Wei, A. Dong, L. Hong, A novel polymer nanocomposite: Polystyrene-layered methylbenzamidephenylsilica, Macromolecules,42 (2009) 9190-9194.
    [103]H. Yan, K. Sun, Y. Zhang, Effect of nitrile rubber on properties of silica-filled natural rubber compounds, Polymer Testing,24 (2005) 32-38.
    [104]W. Xiaoping, J. Demin, C. Mei, Structure and properties of epoxidized nature rubber/organoclay nanocomposites,2008 2nd IEEE International Nanoelectronics Conference (NEC), (2008) 335-339.
    [105]P. Winberg, M. Eldrup, N.J. Pedersen, M.A. van Es, F.H.J. Maurer, Free volume sizes in intercalated polyamide 6/clay nanocomposites, Polymer,46 (2005) 8239-8249.
    [106]P. Winberg, K. DeSitter, C. Dotremont, S. Mullens, I.F.J. Vankelecom, F.H.J. Maurer, Free volume and interstitial mesopores in silica filled poly(1-trimethylsilyl-l-propyne) nanocomposites, Macromolecules,38 (2005) 3776-3782.
    [107]Z.F. Wang, B. Wang, N. Qi, H.F. Zhang, L.Q. Zhang, Influence of fillers on free volume and gas barrier properties in styrene-butadiene rubber studied by positrons, Polymer,46 (2005) 719-724.
    [108]K.H. Wang, I.J. Chung, M.C. Jang, J.K. Keum, H.H. Song, Deformation behavior of polyethylene/silicate nanocomposites as studied by real-time wide-angle X-ray scattering, Macromolecules,35 (2002) 5529-5535.
    [109]T. Wada, M. Uchida, T. Hirayama, Rubber composition for sidewalls of tire, contains preset amount of rubber component having natural rubber and epoxidized natural rubber, silica and plasticizer having double bond, in, Sumitomo Rubber Ind Ltd,2007.
    [110]T. Wada, M. Uchida, T. Hirayama, Rubber composition used for side walls of tire, contains specified amount of silica and rubber component which consist of natural rubber and epoxidized natural rubber, in, Sumitomo Rubber Ind Ltd,2006.
    [111]T. Wada, T. Matsuo, Rubber composition for manufacture of tire, comprises rubber component containing natural rubber and epoxidized natural rubber and/or butadiene rubber and styrene-butadiene rubber, and silica having preset silica content, in, Sumitomo Rubber Ind Ltd,2008.
    [112]A. Vidal, B. Haidar, Filled elastomers:Characteristics and properties of interfaces and interphases, and their role in reinforcement processes, Soft Materials,5 (2007)155-167.
    [113]S. Varghese, J. Karger-Kocsis, K.G Gatos, Melt compounded epoxidized natural rubber/layered silicate nanocomposites:structure-properties relationships, Polymer,44 (2003) 3977-3983.
    [114]A. Valles-Lluch, E. Costa,G. Gallego Ferrer, M. Monleon Pradas, M. Salmeron-Sanchez, Structure and biological response of polymer/silica nanocomposites prepared by sol-gel technique, Composites Science and Technology, 70(2010)1789-1795.
    [115]M.F. Tse, BIMS/filler interactions. I. Effects of filler structure, Journal of Applied Polymer Science,100 (2006)4943-4956.
    [116]J.W. Ten Brinke, V.M. Litvinov, J.E.GJ. Wijnhoven, J.W.M. Noordermeer, Interactions of stober silica with natural rubber under the influence of coupling agents, studied by 1H NMR T2 relaxation analysis, Macromolecules,35 (2002) 10026-10037.
    [117]P.L. Teh, Z.A.M. Ishak, A.S. Hashim, J. Karger-Kocsis, U.S. Ishiaku, Physical properties of natural rubber/organoclay nanocomposites compatibilized with epoxidized natural rubber, Journal of Applied Polymer Science,100 (2006) 1083-1092.
    [118]S. Sinha Ray, M. Okamoto, Polymer/layered silicate nanocomposites:A review from preparation to processing, Progress in Polymer Science (Oxford),28 (2003) 1539-1641.
    [119]S. Sinha Ray, M. Okamoto, Polymer/layered silicate nanocomposites:A review from preparation to processing, Progress in Polymer Science (Oxford),28 (2003) 1539-1641.
    [120]S. Sinha Ray, M. Okamoto, Polymer/layered silicate nanocomposites:a review from preparation to processing, Progress in Polymer Science,28 (2003) 1539-1641.
    [121]S. Sinha Ray, M. Okamoto, Polymer/layered silicate nanocomposites:a review from preparation to processing, Progress in Polymer Science,28 (2003) 1539-1641.
    [122]刘晓,节能型SSBR的分子结构及其纳米增强材料的设计、制备、结构与性能研究,2009.北京化工大学博士论文
    [123]何灿忠,彭政,钟杰平,罗勇悦,环氧化天然橡胶的研究进展,高分子通报,2(2012)84-92
    [124].何灿忠,彭政,钟杰平,罗勇悦,汪月琼,杨昌金,环氧化天然橡胶中环氧基团分布情况的研究,高分子通报,9(2011)77-82
    [1]P. Jiang, J. Kounavis, J. Alfonso, W. Sloan, E. Pohl, M. Stout, New silane coupling agents for NR/truck tire applications, Rubber World,240 (2009) 40-44.
    [2]P.L. Teh, Z.A.M. Ishak, A.S. Hashim, J. Karger-Kocsis, U.S. Ishiaku, Effects of epoxidized natural rubber as a compatibilizer in melt compounded natural rubber-organoclay nanocomposites, European Polymer Journal,40 (2004) 2513-2521.
    [3]P.L. Teh, Z.A.M. Ishak, A.S. Hashim, J. Karger-Kocsis, U.S. Ishiaku, Physical properties of natural rubber/organoclay nanocomposites compatibilized with epoxidized natural rubber, Journal of Applied Polymer Science,100 (2006) 1083-1092.
    [4]K. Pal, R. Rajasekar, D.J. Kang, Z.X. Zhang, S.K. Pal, C.K. Das, J.K. Kim, Influence of carbon blacks on butadiene rubber/high styrene rubber/natural rubber with nanosilica:Morphology and wear, Materials & Design,31 (2010) 1156-1164.
    [5]J.K. Mishra, Y.W. Chang, W. Kim, The effect of peroxide crosslinking on thermal, mechanical, and rheological properties of polycaprolactone/epoxidized natural rubber blends, Polymer Bulletin, (2010) 1-9.
    [6]J.K. Mishra, Y.-W. Chang, D.-K. Kim, Green thermoplastic elastomer based on polycaprolactone/epoxidized natural rubber blend as a heat shrinkable material, Materials Letters,61 (2007) 3551-3554.
    [7]D.K. Chattopadhyay, K.V.S.N. Raju, Structural engineering of polyurethane coatings for high performance applications, Progress in Polymer Science (Oxford),32 (2007)352-418.
    [8]陈鹰,环氧化天然橡胶的制备与性能,胶乳工业,(2)(1989)16.
    [9]杨科珂,孙红,吴大诚,天然橡胶的环氧化反应,四川大学学报(自然科学版),36(1)(1999)166-168.
    [10]杨科珂,李瑞霞,吴大诚,环氧化天然橡胶的合成与表征,四川大学学报(自然科学版),38(1)(2001)82-86.
    [11]姚似玉,黄素绢,天然橡胶的环氧化改性与表征,高分子材料与工程,(5)(1994)66-70.
    [12]李思东,余和平,彭政,陈鹰,黎沛森,用FTIR研究环氧化天然橡胶的热老化,应用化学,16(2)(1999)111-112.
    [13]李思东,彭政,余和平,钟杰平,魏永才,用红外差谱表征橡胶的热老化,橡胶工业,45(1998)494-498
    [14]余和平,李思东,许逵,环氧化天然橡胶凝胶溶胶的热老化性能,应用化学,21(1)(2004)76-77.
    [15]余和平,李思东,彭政,环氧化天然橡胶玻璃化转变温度与环氧化程度的关系,弹性体,9(3)(1999)21-23.
    [16]余和平,李思东,彭政,环氧化天然橡胶制备反应动力学,橡胶工业,(7)(1999)395-398.
    [17]余和平,李思东,彭政,环氧化天然橡胶的制备与热降解研究,现代科学仪器,5(1998)31-33.
    [18]余和平,李思东,环氧化天然橡胶研究进展,橡胶工业,45(1998)246-252.
    [19]余和平,陈鹰,李思东,彭政,环氧化天然橡胶凝胶与溶胶的热降解,热带作物学报,21(1)(2000)21-22.
    [20]D.R. Burfield, K.L. Lim, K.S. Law, S. Ng, Analysis of epoxidized natural rubber. A comparative study of d.s.c, n.m.r., elemental analysis and direct titration methods, Polymer,25 (1984) 995-998.
    [21]Parker R. E., Isaacs N. S., Mechanism of epoxide reactions Chem. Rev,59 (1959)737-799.
    [22]Bradbury J. H., Perera M C S, Epoxidation of natural rubber studied by NMR spectroscopy., Journal of Applied Polymer Science,30 (1985) 3347-3363.
    [23]Gan L.H, Ng S.C, Kinetic studies of the performic acid epoxidationof natrural rubber latex stabilized by cationic surfactant., European Polymer Journal,22(7) (1986) 573-584.
    [24]何映平,谭海生,袁子成,天然橡胶加工学,海南出版社,海南,2007.
    [1]H.P. Yu, Z.Q. Zeng, G Lu, Q.F. Wang, Processing characteristics and thermal stabilities of gel and sol of epoxidized natural rubber, European Polymer Journal,44 (2008)453-464.
    [2]A. W. Coats, J.P. Redfern, Kinetic parameters from thermogravimetric data, Nature, 201 (1964) 68-69.
    [3]E. Tomaszewicz, M. Kotfica, Mechanism and kinetics of thermal decomposition of nickel(Ⅱ) sulfate(Ⅵ) hexahydrate, Journal of Thermal Analysis and Calorimetry, 77(2004)25-31.
    [4]T. Hatakeyama, F.X. Quinn, Thermal Analysis:Fundamentals and Applications to Polymer Science, (1994).
    [5]A.B. Phadnis, V.V. Deshpande, Determination of the kinetics and mechanism of a solid state reaction. A simple approach, Thermochimica Acta,62 (1983) 361-367.
    [6]X. Meng, Y. Huang, H. Yu, Z. Lv, Thermal degradation kinetics of polyimide containing 2,6-benzobisoxazole units, Polymer Degradation and Stability,92 (2007) 962-967.
    [7]L. Nunez, F. Fraga, M.R. Nunez, M. Villanueva, Thermogravimetric study of the decomposition process of the system BADGE (n=0)/1,2 DCH, Polymer,41 (2000) 4635-4641.
    [8]Y. Chen, Q. Wang, Thermal oxidative degradation kinetics of flame-retarded polypropylene with intumescent flame-retardant master batches in situ prepared in twin-screw extruder, Polymer Degradation and Stability,92 (2007) 280-291.
    [9]M.A. Gabal, Kinetics of the thermal decomposition of CuC2O4-ZnC2O4 mixture in air, Thermochimica Acta,402 (2003) 199-208.
    [10]J. Straszko, M. Olszak-Humienik, J. Mozejko, Study of the mechanism and kinetic parameters of the thermal decomposition of cobalt sulphate hexahydrate, Journal of Thermal Analysis and Calorimetry,59 (2000) 935-942.
    [11]A.G.S. Prado, J.D. Torres, P.C. Martins, J. Pertusatti, L.B. Bolzon, E.A. Faria, Studies on copper(Ⅱ)-and zinc(Ⅱ)-mixed ligand complexes of humic acid, Journal of Hazardous Materials,136 (2006) 585-588.
    [12]J. Militky, J. Sestak, Building and statistical interpretation of non-isothermal kinetic mode, Thermochimica Acta,203 (1992) 31-42.
    [13]S.C. Ng, L.H. Gan, Reaction of natural rubber latex with performic acid, European Polymer Journal,17 (1981) 1073-1077.
    [14]S. Roy, B.R. Gupta, B.R. Maiti, Studies on the epoxidation of natural rubber, Journal of Elastomers and Plastics,22 (1990) 280-294.
    [15]F. Chen, J. Qian, Studies on the thermal degradation of cis-1,4-polyisoprene, Fuel, 81(2002)2071-2077.
    [16]S. Tamura, K. Murakami, H. Kuwazoe, Isothermal degradation of cis-1,4-polyisoorene vulcaniztes, Journal of Applied Polymer Science,28 (1983) 3467-3484.
    [17]A.K. Bhowmick, S. Rampalli, K. Gallagher, R. Seeger, D. Mclntyre, Degradation of guayule rubber and the effect of resin components on degradation au high temperature Journal of Applied Polymer Science,33 (1987) 1125-1139.
    [18]J.C.W. Chien, J.K.Y. Kiang, Polymer reactions-X thermal pyrolysis of poly(isoprene), European Polymer Journal,15 (1979) 1059-1065.
    [19]S.A. Groves, R.S. Lehrle, M. Blazso, T. Szekely, Natural rubber pyrolysis:Study of temperature-and thickness-dependence indicates dimer formation mechanism, Journal of Analytical and Applied Pyrolysis,19 (1991) 301-309.
    [20]J.H. Bradbury, M.C.S. Perera, Epoxidation of natural rubber studied by NMR spectroscopy, Journal of Applied Polymer Science,30 (1985) 3347-3364.
    [1]S. Cook, Changing types:Why natural rubber can meet demands of the modern type, Materials world,17 (2009) 30.
    [2]G. Heinrich, T.A. Vilgis, Contribution of entanglements to the mechanical properties of carbon black filled polymer networks, Macromolecules,26 (1993) 1109-1119.
    [3]J.L. Leblanc, Rubber-filler interactions and rheological properties in filled compounds, Progress in Polymer Science,27 (2002) 627-687.
    [4]T. Saito, W. Klinklai, Y. Yamamoto, S. Kawahara, Y. Isono, Y. Ohtake, Quantitative Analysis for Reaction Between Epoxidized Natural Rubber and Poly (L-Lactide) Through H-1-NMR Spectroscopy, Journal of Applied Polymer Science, 115(2010)3598-3604.
    [5]T. Saito, W. Klinklai, S. Kawahara, Characterization of epoxidized natural rubber by 2D NMR spectroscopy, Polymer,48 (2007) 750-757.
    [6]S. Varghese, J. Karger-Kocsis, K.G Gatos, Melt compounded epoxidized natural rubber/layered silicate nanocomposites:structure-properties relationships, Polymer, 44(2003)3977-3983.
    [7]S. Varghese, R. Alex, B. Kuriakose, Natural rubber-isotactic polypropylene thermoplastic blends, Journal of Applied Polymer Science,92 (2004) 2063-2068.
    [8]W.B. Liau, Dynamic mechanical relaxation of lightly cross-linked epoxidized natural rubber, Polymer,40 (1999) 599-605.
    [9]H. Xu, J. Liu, L. Fang, C. Wu, In situ grafting onto silica surface with epoxidized natural rubber via solid state method, Journal of Macromolecular Science, Part B: Physics,46 B (2007) 693-703.
    [10]刘吉文,徐海燕,吴驰飞,环氧天然橡胶接枝高分散白炭黑增强天然橡胶复合材料的制备及表征,高分子学报,(2008)6.
    [11]A.K. Manna, A.K. Bhattacharyya, P.P. De, D.K. Tripathy, S.K. De, D.G. Peiffer, Effect of silane coupling agent on the chemorheological behaviour of epoxidised natural rubber filled with precipitated silica, Polymer,39 (1998) 7113-7117.
    [12]A.K. Manna, P.P. De, D.K. Tripathy, Dynamic mechanical properties and hysteresis loss of epoxidized natural rubber chemically bonded to the silica surface, J Appl Polym Sci,84 (2002) 2171-2177.
    [13]Y.Y. Luo, Y.Q. Wang, J.P. Zhong, C.Z. He, Y.Z. Li, Z. Peng, Interaction Between Fumed-Silica and Epoxidized Natural Rubber, Journal of Inorganic and Organometallic Polymers and Materials, (2011) 1-7.
    [14]Bond R., Morton Q Krol L.H., A Tailor-Made Polymer for Tyre Applications, Polymer,25 (1984) 132-140.
    [15]Saito Y., New Polymer Development for Low Rolling Resistance Tires, Kautsch Gummi Kunsmt,39 (1986) 30-32.
    [16]Z. Peng, L.X. Kong, A thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites, Polymer Degradation and Stability,92 (2007) 1061-1071.
    [17]Z. Peng, L.X. Kong, S.D. Li, Y. Chen, M.F. Huang, Self-assembled natural rubber/silica nanocomposites:Its preparation and characterization, Composites Science and Technology,67 (2007)3130-3139.
    [1]S. Sinha Ray, M. Okamoto, Polymer/layered silicate nanocomposites:a review from preparation to processing, Progress in Polymer Science,28 (2003) 1539-1641.
    [2]Q.H. Zeng, A.B. Yu, G.Q. Lu, Multiscale modeling and simulation of polymer nanocomposites, Progress in Polymer Science,33 (2008) 191-269.
    [3]J.L. Leblanc, Rubber-filler interactions and rheological properties in filled compounds, Progress in Polymer Science (Oxford),27 (2002) 627-687.
    [4]S. Onogi, T. Masuda, K. Kitagawa, Rheological properties of anionic polystyrenes. I. Dynamic viscoelasticity of narrow-distribution polystyrenes, Macromolecules,3 (1970)109-116.
    [5]I. Mora-Barrantes, A. Rodriguez, L. Ibarra, L. Gonzalez, J.L. Valentin, Overcoming the disadvantages of fumed silica as filler in elastomer composites, Journal of Materials Chemistry,21 (2011) 7381-7392.
    [6]A.R. Payne, R.E. Whittaker, Low strain dynamic properties of filled rubbers, Rubber Chemistry and Technology,44 (1971) 440-478.
    [7]C.G. Robertson, C.M. Roland, J.E. Puskas, Nonlinear rheology of hyperbranched polyisobutylene, Journal of Rheology,46 (2002) 307-320.
    [8]G. Heinrich, M. Kluppel, Recent advances in the theory of filler networking in elastomers Advances in Polymer Science 160 (2002) 1-44.
    [9]M. Du, J. Gong, Q. Zheng, Dynamic rheological behavior and morphology near phase-separated region for a LCST-type of binary polymer blends, Polymer,45 (2004) 6725-6730.
    [10]J.H. Han, C. Choi-Feng, D.-J. Li, C.D. Han, Effect of flow geometry on the rheology of dispersed two-phase blends of polystyrene and poly(methyl methacrylate), Polymer,36 (1995)2451-2462.
    [11]M. Kapnistos, A. Hinrichs, D. Vlassopoulos, S.H. Anastasiadis, A. Stammer, B.A. Wolf, Rheology of a lower critical solution temperature binary polymer blend in the homogeneous, phase-separated, and transitional regimes, Macromolecules,29 (1996)7155-7163.
    [12]J.D. Ferry, Viscoelastic Properties of Polymers,3rd ed.,, Wiley, New York 1980.
    [13]Q. Zheng, M. Du, B. Yang, G. Wu, Relationship between dynamic rheological behavior and phase separation of poly(methyl methacrylate)/poly(styrene-co-acrylonitrile) blends, Polymer,42 (2001) 5743-5747.
    [14]J.H. Han, C. Choi-Feng, D.J. Li, C.D. Han, Effect of flow geometry on the rheology of dispersed two-phase blends of polystyrene and poly(methyl methacrylate), Polymer,36 (1995)2451-2462.
    [1]P. Jiang, J. Kounavis, J. Alfonso, W. Sloan, E. Pohl, M. Stout, New silane coupling agents for NR/truck tire applications, Rubber World,240 (2009) 40-44.
    [2]L. Wang, S. Zhao, A. Li, X. Zhang, Study on the structure and properties of SSBR with large-volume functional groups at the end of chains, Polymer,51 (2010) 2084-2090.
    [3]J.E. Puskas, E. Gautriaud, A. Deffieux, J.P. Kennedy, Natural rubber biosynthesis--A living carbocationic polymerization?, Progress in Polymer Science, 31 (2006)533-548.
    [4]P.J. Flory, J. Rehner Jr, Statistical mechanics of cross-linked polymer networks II. Swelling, The Journal of Chemical Physics,11 (1943) 521-526.
    [5]P.J. Flory, J. Rehner Jr, Statistical mechanics of cross-linked polymer networks I. Rubberlike elasticity, The Journal of Chemical Physics,11 (1943) 512-520.
    [6]S.C. George, K.N. Ninan, G. Groeninckx, S. Thomas, Styrene-butadiene rubber/natural rubber blends:Morphology, transport behavior, and dynamic mechanical and mechanical properties, Journal of Applied Polymer Science,78 (2000) 1280-1303.
    [7]Q. Zheng, M. Du, B. Yang, G Wu, Relationship between dynamic rheological behavior and phase separation of poly(methyl methacrylate)/poly(styrene-co-acrylonitrile) blends, Polymer,42 (2001) 5743-5747.
    [8]J. Gao, C. Huang, N. Wang, W. Yu, C. Zhou, Phase separation of poly (methyl methacrylate) / poly (styrene-co-acrylonitrile) blends in the presence of silica nanoparticles, Polymer,53 (2012) 1772-1782.
    [9]K.S. Cole, R.H. Cole, Dispersion and absorption in dielectrics I. Alternating current characteristics, The Journal of Chemical Physics,9 (1941) 341-351.
    [10]M.A. Kader, W.D. Kim, S. Kaang, C. Nah, Morphology and dynamic mechanical properties of natural rubber/nitrile rubber blends containing trans-polyoctylene rubber as a compatibilizer, Polymer International,54 (2005) 120-129.
    [11]M.J. Wang, Effect of polymer-filler and filler-filler interactions on dynamic properties of filled vulcanizates, Rubber Chemistry and Technology,71 (1998) 520-589.
    [12]G. Mathew, M.Y. Huh, J.M. Rhee, M.H. Lee, C. Nah, Improvement of properties of silica-filled styrene-butadiene rubber composites through plasma surface modification of silica, Polymers for Advanced Technologies,15 (2004)400-408.
    [13]N.D. Alberola, K. Benzarti, C. Bas, Y. Bomal, Interface effects in elastomers reinforced by modified precipitated silica, Polymer Composites,22 (2001) 312-325.
    [14]Q.X. Jia, Y.P. Wu, Y.L. Xu, H.H. Mao, L.Q. Zhang, Combining in-situ organic modification of montmorillonite and the latex compounding method to prepare high-performance rubber-montrnorillonite nanocomposites, Macromolecular Materials and Engineering,291 (2006) 218-226.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700