用户名: 密码: 验证码:
肾安提取液对糖尿病肾病小鼠肾脏保护作用及TGF-β1表达与信号转导的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题以成功建立糖尿病肾病(DN)小鼠为动物模型,从血、尿生化学、肾脏病理组织学、分子生物学等方面对肾安提取液进行研究,旨在探讨肾安提取液防治DN的作用及可能机制。
     实验一,目的:建立DN小鼠动物模型。方法:以C57BL/6小鼠为研究对象,予以腹腔注射链脲佐菌素(STZ,150mg·kg-1),观察小鼠一般情况、血糖、尿蛋白、肾质量/体质量(KW/BW)、血尿素氮(BUN)、血肌酐(Scr)及肾组织光镜、透射电镜下的病理变化。结果:与正常对照组比较,模型组小鼠体重明显下降(P<0.01),第3天即开始血糖持续性升高(P<0.01),1周后出现蛋白尿,4周后BUN、Scr升高(P<0.01).KW/BW明显升高(P<0.01),光镜下显示,肾小球肥大,系膜区增宽,基质增多,肾小球硬化指数增加(P<0.05,P<0.01);电镜下显示,足突增宽、扁平、融合,足细胞减少,肾小球基底膜(GBM)裸露,GBM明显增厚(P<0.05,P<0.01)。结论:提示腹腔注射STZ(150mg·kg-1)能成功诱导C57BL/6小鼠DN模型。
     实验二,目的:探讨肾安提取液对DN小鼠生化指标的影响。方法:将C57BL/6小鼠随机分为正常对照组、模型组、厄贝沙坦组、肾安低、中、高剂量组(各9只),各药物干预组分别给予厄贝沙坦10mg/kg.肾安提取液(由黄芪甲苷、淫羊藿苷和1,8二羟基蒽醌组成)2.272mg/kg. 4.544mg/kg.9.088mg/kg灌胃,定期检测血糖、尿蛋白、BUN、Scr。结果:与正常对照组比较,其余各组小鼠血糖均明显升高(P<0.01),随着时间延长,各药物干预组血糖无降低,与模型组无差异(P>0.05);与模型组比较,各药物干预组尿蛋白定量明显减少(P<0.01),肾安高剂量组与厄贝沙坦组无显著性差异(P>0.05);第4周未,与模型组比较,各药物干预组BUN明显降低(P<0.05,P<0.01),肾安高剂量组及厄贝沙坦组Scr显著降低(P<0.05,P<0.01),肾安高剂量组BUN显著低于厄贝沙坦组(P<0.05),Scr两组间无显著性差异(P>0.05)。结论:肾安提取液能减少DN小鼠尿蛋白排出,降低BUN、Scr,对DN肾功能具有良好的保护作用,但无降血糖作用。
     实验三,目的:探讨肾安提取液对DN小鼠肾脏组织形态学影响。方法:分组及给药方法同实验二;采用KW/BW、肾小球硬化指数、纤粘连蛋白(FN)半定量积分、GBM厚度等为观察指标。结果:肾安各剂量组KW/BW明显改善(P<0.05,P<0.01),肾安中、高剂量组与厄贝沙坦组无显著差异(P>0.05);光镜下肾安各剂组肾组织病理变化较模型组明显减轻,肾小球硬化指数明显改善(P<0.05,P<0.01),肾安中、高剂量组肾小球硬化指数与厄贝沙坦组比较无显著差异(P>0.05);肾安各剂量组FN表达呈不同程度减弱(P<0.05,P<0.01),肾安高剂量组与厄贝沙坦组无显著性差异(P>0.05);电镜下肾安各剂量组超微结构明显改善,各组GBM增厚明显减轻(P<0.05,P<0.01),肾安中、高剂量组GBM厚度与厄贝沙坦组无显著差异(P>0.05)。结论:肾安提取液能抑制DN小鼠肾组织FN蛋白表达,改善肾小球肥大,减少ECM积聚,抑制GBM增厚,减轻足细胞损伤,延缓肾小球硬化。
     实验四,目的:探讨肾安提取液对DN小鼠肾脏转录活化蛋白-1(AP-1)及TGF-β1mRNA及蛋白表达的影响。方法:肾组织标本取材于生化学研究部分,分组方法相同;采用免疫印迹法检测AP-1蛋白含量、实时荧光定量PCR检测TGF-β1mRNA表达及免疫组化检测TGF-β1蛋白含量。结果:肾安提取液各组AP-1(c-Jun亚基)蛋白显著低于模型组(P<0.01),肾安高剂量组与厄贝沙坦组AP-1(c-Jun亚基)蛋白表达无显著性差异(P>0.05);肾安各剂量组TGF-β1mRNA表达及蛋白含量显著低于模型组(P<0.01),肾安高剂量组与厄贝沙坦组TGF-β1mRNA表达及蛋白含量无显著性差异(P>0.05)。结论:肾安提取液能明显抑制DN小鼠肾组织AP-1蛋白和TGF-β1表达。
     实验五:目的:探讨肾安提取液对DN小鼠肾皮质p38丝裂原活化的蛋白激酶(MAPK)mRNA及磷酸化p38MAPK(p-p38MAPK)和Smad7蛋白表达的影响。方法:肾组织标本取材于生化学研究部分,分组方法相同;采用实时荧光定量PCR检测p38MAPK mRNA表达,免疫组化法半定量检测p-p38MAPK和Smad7蛋白含量。结果:肾安提取液各组肾皮质p38MAPK mRNA表达显著低于模型组(P<0.01,P<0.05),肾安高剂量组与厄贝沙坦组无显著性差异(P>0.05);肾安提取液各组肾皮质p-p38MAPK蛋白相对含量显著低于模型组(P<0.01,P<0.05);肾安高剂量组与厄贝沙坦组无显著性差异(P>0.05);肾安提取液各组肾皮质Smad7蛋白相对含量显著低于模型组(P<0.01);肾安高剂量组与厄贝沙坦组无显著性差异(P>0.05)。结论:肾安提取液能抑制DN小鼠肾组织p38MAPK mRNA、p-p38MAPK及Smad7蛋白表达。
     综上所述,肾安提取液能减少DN小鼠尿蛋白排出,改善DN肾功能,减轻DN小鼠肾组织病理变化,延缓肾小球硬化,对DN肾损害具有良好的保护作用。其作用机制可能与降低肾组织AP-1蛋白表达,抑制TGF-β1表达与信号转导,从而减少ECM积聚,抑制足细胞的凋亡等有关。
In this study, we have successfully established a mice model of diabetic nephropathy(DN). In order to explore the effects and possible mechanisms of Shenvan Extraction on DN, blood, urine biochemistry, renal histopathology and cytokines in transforming growth factor-β1 pathway are detected.
     DN model was induced by intraperitoneal injection of streptozotoc(STZ) (150mg/kg) in C57BL/6 mice. The change of the general situation, blood glucose, urine protein, kidney weight/body weight (KW/BW), blood urea nitrogen (BUN), serum creatinine (Scr) and pathomorphology in kidney by light microscopy and transmission electron microscopy in mice were observed. The results showed that compared with the normal control group, model group body weight of mice decreased significantly (P<0.01), from the third day blood glucose continued to rise(P<0.01), after 1 week proteinuria appeared and after 4 weeks BUN, Scr increased (P< 0.01). In the model group KW/BW was significantly higher(P<0.01), by light microscope glomerular hypertrophy, widened Essential area and matrix increase were observed, as well as glomerular sclerosis index was increased (P<0.05, P<0.01); by electron microscopy foot process broadening, flat, integration, reduction of foot cells and exposed glomerular basement membrane (GBM) were showed, and the GBM was significantly thicker (P<0.05, P<0.01).
     To explore the effects of Shen'an Extraction on DN mice blood sugar, urine protein, BUN and Scr. The C57BL/6 mice were randomly divided into normal control group, model group, irbesartan group, Shen'an low, middle and high-dose group. The intervention groups were respectively given the drug irbesartan 10mg/kg, mixture of Astragaloside, Icariin and 1,8-Dihydroxy anthraquinone(Shen'an Extraction) 2.272mg/kg,4.544mg/kg and 9.088mg/kg for 4 weeks by gavage. The results showed that the blood glucose in the other groups with persistent hyperglycemia, with no difference between them(P>0.05), is significantly higher than the normal control group(P<0.01). The urine protein in the drug intervention groups was significantly lower than the model group(P<0.01), and was no difference between Shen'an high-dose and irbesartan group (P>0.05). After 4 weeks, compared with the model group, the BUN in all drug intervention groups and Scr in Shen'an high-dose group and irbesartan group were significantly lower (P<0.05, P<0.01). The BUN in Shen'an high-dose group was lower than irbesartan group(P <0.05); Scr was no difference between them(P>0.05).
     In the histological study of kidney, tissue samples are based on the biochemistry research components, grouped with the same way. The results showed that in each dose group with Shen'an Extraction KW/BW, glomerular sclerosis index, FN expression and GBM thickness were all significantly improved(P<0.05, P<0.01). FN expression was no difference between Shen'an high-dose group and irbesartan group (P>0.05), and the other indexes were no difference between Shen'an middle/high-dose group and irbesartan group (P>0.05), too. As the dose increased Shen'an Extraction, renal pathological was thus gradually alleviated.
     In this study, DN mice kidney transcription activator protein-1(AP-1) (western blot), TGF-β1 mRNA(RT-PCR) and protein (Immunohistochemistry) was detected. The results showed that protein expression of AP-1 (c-Jun subunit) of kidney in each dose group with Shen'an Extraction was significantly lower than model group(P<0.01), and no difference between Shen'an high-dose group and irbesartan group(P>0.05); mRNA and protein expression of TGF-β1 of kidney in each dose group with Shen'an Extraction were significantly lower than model group(P<0.01), and no difference between Shen'an high-dose group and irbesartan group(P>0.05).
     In the last part DN mice kidney p38 mitogen activated protein kinase(MAPK) mRNA (RT-PCR), phosphor-p38MAPK(p-p38MAPK) and Smad7 (Immunohistochemistry) expression was detected. The results showed that mRNA expression of p38MAPK of kidney in each dose group with Shen'an Extraction was significantly lower than model group(P< 0.01), and no difference between Shen'an high-dose group and irbesartan group(P>0.05); protein expression of p-p38MAPK and Smad7 of kidney in each dose group with Shen'an Extraction were significantly lower than model group(P<0.01), and no difference between Shen'an high-dose group and irbesartan group (P>0.05).
     In conclusion, Shen'an Extraction can reduce urinary protein, improve renal function, ameliorate renal pathological changes, delay the onset of glomerular sclerosis, and renal damage is protected in DN mice. The mechanism may be related to reduce the accumulation of ECM and inhibit foot cell apoptosis by reducing renal AP-1 protein expression, thereby inhibiting TGF-β1 expression and signal transduction.
引文
[1]叶任高主编.中西医结合肾脏病学.北京:人民出版社,2003,300-307.
    [2]Thallas-Bonke V, Thorpe SR, Coughlan MT, et al. Inhibition of NADPH oxidase prevents advanced glycation end product-mediated damage in diabetic nephropathy through a protein kinase C-alpha-dependent pathway. Diabetes,2008; 57 (2):460-469.
    [3]Kosugi T, Nakayama T, Heinig M, et al. Effect of lowering uric acid on renal disease in the type 2 diabetic db/db mice. Am J Physiol Renal Physiol,2009; 297 (2):F481-F488.
    [4]Chow F, Ozols E, Nikolic-Paterson DJ, et al. Macrophages in mouse type 2 diabetic nephropathy:correlation with diabetic state and progressive renal injury. Kidney Int,2004; 65(1):116-128.
    [5]Gao Q, Qin WS, Jia ZH, et al. Rhein improves renal lesion and ameliorates dyslipidemia in db/db mice with diabetic nephropathy. Planta Med,2010; 76(1):27-33.
    [6]Allen TJ, Cooper ME, Lan HY. Use of Genetic Mouse Models in the Study of Diabetic Nephropathy. Curr Diab Rep,2004; 4(6): 435-440.
    [7]Chua SC Jr, Chung WK, Wu-Peng XS, et al. Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science,1996; 271(5251):994-996.
    [8]Roestenberg P, van Nieuwenhoven FA, Joles JA, et al. Temporal expression profile and distribution pattern indicate a role of connective tissue growth factor (CTGF/CCN-2) in diabetic nephropathy in mice. Am J Physiol Renal Physiol,2006; 290 (6):F1344-F1354.
    [9]Matsumoto M, Tanimoto M, Gohda T, et al. Effect of pitavastatin on type 2 diabetes mellitus nephropathy in KK-Ay/Ta mice. Metabolism,2008; 57(5):691-697.
    [10]Yamazaki T, Tanimoto M, Gohda T, et al. Combination effects of enalapril and losartan on lipid peroxidation in the kidneys of KK-Ay/Ta mice. Nephron Exp Nephrol,2009; 113(2):e66-e76.
    [11]Ito T, Tanimoto M, Yamada K, et al. Glomerular changes in the KK-Ay/Ta mouse:a possible model for human type 2 diabetic nephropathy. Nephrology (Carlton),2006; 1(1):29-35.
    [12]Gurley SB, Mach CL, Stegbauer J. Influence of genetic background on albuminuria and kidney injury in Ins2 (+/C96Y) (Akita) mice. Am J Physiol Renal Physiol,2010; 298 (3):F788-F795.
    [13]Nasrallah R, Robertson SJ, Hebert RL. Chronic COX inhibition reduces diabetes-induced hyperfiltration, proteinuria, and renal pathological markers in 36-week B6-Ins2(Akita) mice. Am J Nephrol,2009; 30 (4):346-353.
    [14]Melez KA, Harrison LC, Gilliam JN, et al. Diabetes is associated with autoimmunity in the New Zealand obese (NZO) mouse. Diabetes,1980; 29(10):835-840.
    [15]Watanabe M, Nakashima H, Mochizuki S, et al. Amelioration of diabetic nephropathy in OLETF rats by prostaglandin Ⅰ(2) analog, beraprost sodium. Am J Nephrol,2009; 30(1):1-11.
    [16]Fredersdorf S, Weil J, Ulucan C, et al. Vasopeptidase inhibition attenuates proteinuria and podocyte injury in Zucker diabetic fatty rats. Naunyn Schmiedebergs Arch Pharmacol,2007; 375 (2):95-103.
    [17]Yokozawa T, Nakagawa T, Wakaki K, Koizumi F.. Animal model of diabetic nephropathy [J]. Exp Toxicol Pathol,2001; 53 (5): 359-363.
    [18]van den Hoven MJ, Rops AL, Bakker MA, et al. Increased expression of heparanase in overt diabetic nephropathy. Kidney Int,2006; 70 (12):2100-2108.
    [19]Kang MJ, Ingram A, Ly H, et al. Effects of diabetes and hypertension on glomerular transforming growth factor-beta receptor expression. Kidney Int,2000; 58 (4):1677-1685.
    [20]邢淑丽,郑君芙,黄文政.单侧肾切除STZ诱导糖尿病肾病大鼠动物模型研究.中国中医急症,2006;15(6):643-644.
    [21]高苹,贾汝汉.2型糖尿病肾病大鼠模型的建立.中国中西医结合肾病杂志,2007;8(6):316-317.
    [22]金勇,朱勇,吴南翔,等.实验性链脲佐菌素诱导的大、小鼠糖尿病动物模型研究进展.中国比较医学杂志,2009;19(3):80-82.
    [23]董哲毅,梅长林.自发性糖尿病肾病小鼠动物模型鉴定的研究进展.中华肾脏病杂志,2008;24(5):368-371.
    [24]Hamada Y, Fukagawa M. A possible role of thioredoxin interacting protein in the pathogenesis of streptozotocin-induced diabetic nephropathy. Kobe J Med Sci,2007; 53(1-2):53-61.
    [25]洪小平,张欣洲,贺晓蕾,等.福辛普利对糖尿病肾病小鼠基因表达的影响.中国老年学杂志,2008;28(8):1460-1462.
    [26]王全胜,张晓丽,王玉梅,等.血清和糖皮质激素诱导的蛋白激酶在糖尿病肾病小鼠中的表达及意义.中华肾脏病杂志,2004;20(6):442-445.
    [27]洪小平,张欣洲,贺晓蕾,等.黄芪对糖尿病小鼠肾脏基因表达谱的影响.中国中药杂志,2008;33(6):676-680.
    [28]祝胜郎,陈结慧,蒋莹,等.糖尿病肾组织TGF-β/Smads信号通路的活化和α-SMA上调表达.中国医药导报,2009;6(13):16-19
    [1]刘罡,伍金林,段俊国,等.尿白蛋白排泄率与糖尿病中医症状关系的临床研究,四川中医,2007;25(6):28-29.
    [2]赵晓山,罗仁,吕建勇,等.肾虚型糖尿病肾病患者尿白蛋白排泄变化规律的研究.中华实用中西医杂志,2004;4(4):567-568.
    [3]吴朝妍,张莹雯.黄芪多糖对肾阳虚型糖尿病大鼠肾组织NF-κB、TGF-β1的影响.武汉大学学报(医学版),2006;27(3)381-388.
    [4]张琪,吴长富,缪胜尧.消渴益肾汤治疗糖尿病肾病疗效观察.河北中医,1994;16(5):8-9.
    [5]丁英钧,肖永华,傅强,等.糖尿病肾病“微型癥瘕”病理假说解析.中华中医药杂志,2009;24(1):27-30.
    [6]吴以岭,魏聪,贾振华,等.从络病学说探讨糖尿病肾病的病机.中国中医基础医学杂志,2007;13(9):659-660.
    [7]王小琴,邵朝弟,谭大琦,等.肾安颗粒治疗慢性肾衰竭的临床研究.中国中西医结合肾病杂志,2003;4(7):393-395.
    [8]王小琴,邵朝娣,章如虹,等.肾康冲剂治疗慢性肾功能衰竭的临床观察.湖北中医杂志,2000;22(1)17-18.
    [9]刘仪红,田浩明.黄芪治疗糖尿病肾病的系统评价.中国循证医学杂志,2007;7(10):715-727.
    [10]祁忠华,林善锬,黄宇峰.黄芪改善糖尿病早期肾血流动力学异常的研究.中国糖尿病学,1999;7(3):147-149.
    [11]梁翠微,郑有顺.淫羊藿的药理作用.中药药理与临床,1997;13(3):47-49.
    [12]王慧芳,马骏,陈国庆,等.大黄对早期糖尿病肾病患者肾脏血流动力学的影响.铁道医学,2001:29(5):320-321.
    [13]李东辉,范丽波.大黄及其提取物治疗糖尿病肾病的实验研究进展.中国中西医结合肾病杂志,2006:7(12):741-742.
    [14]艾智华,蔡红卫,张忠辉.大黄酸治疗大鼠糖尿病肾病的实验研究.第三军医大学学报,2004;26(4):304-306.
    [15]郭业新,吕冬梅.糖尿病肾病药物治疗进展.中国中西医结合肾病杂志,2009;10(3):281-282.
    [16]胡晓丽,潘锐.缬沙坦治疗糖尿病早期肾病疗效观察.中国实用医药,2007;2(31):129.
    [1]程庆文,黄宇闻,周同,等.肾小球系膜细胞、胞外基质及细胞因子与肾小球疾病.国外医学,泌尿系统分册,1995;15(2):49-51.
    [2]魏聪,吴以岭,冯书文.系膜细胞外基质与糖尿病肾病.辽宁中医药大学学报,2008;10(1):8-10.
    [3]Tufescu A, Kanazawa M, Ishida A, et al. Combination of exercise and losartan enhances renoprotective and peripheral effects in spontaneously type 2 diabetes mellitus rats with nephropathy. J Hypertens,2008; 26(2):312-321.
    [4]刘剑勇,王述湘,杨芳.从络脉论治糖尿病微血管并发症初探.湖南中医杂志,2003;19(6):19-20.
    [5]吴以岭.“脉络—血管系统”相关性探讨.中医杂志,2007;48(1):5-8.
    [6]吴以岭,魏聪,贾振华,等.从络病学说论治糖尿病肾病.疑难病杂志,2007;6(6):350-352.
    [7]吴以岭,魏聪,贾振华,等.从络病学说探讨糖尿病肾病的病机.中国中医基础医学杂志,2007;13(9):659-660.
    [8]程晖,贾汝汉,刘红燕.黄芪对糖尿病大鼠肾脏的保护作用.中国医师杂志,2006;8(10):1349-1351.
    [9]陈建国,桂定坤,牟利军,等.黄芪甲苷对高糖刺激下的足细胞黏附功能的保护作用及机制.中华肾脏病杂志,2009;25(3):227-232.
    [10]朱加明,刘志红,黄燕飞,等.大黄酸对db/db小鼠糖尿病肾病疗效的观察.肾脏病与透析肾移植杂志,2002;11(1):3-10.
    [1] Weigert C, Sauer U, Brodbeck K, et al. AP-1 proteins mediate hyperglycemia-induced activation of the human TGF-betal promoter in mesangialcells. J Am Soc Nephrol, 2000; 11 (11): 2007-2016.
    [2] Pantsulaia T. Role of TGF-beta in pathogenesis of diabetic nephropathy. Georgian Med News, 2006; (131): 13-18.
    [3] Wrana JL, AttisanoL, Wieser R, et al. Mechanism of activation of the TGF-beta receptor. Nature, 1994; 370(6488): 341-347.
    [4] Wolf G, Schanze A, Stahl RA, et al. p27 (Kipl) Knockout mice are protected from diabetic nephropathy: evidence for p27(Kipl) haplotype insufficiency. Kidney Int, 2005; 68(4): 1583-1589.
    [5] 向少伟,王小琴.转化生长因子-β_1介导的足细细胞损伤.国际泌尿系统杂志, 2008; 28 (4): 559-563.
    [6] Kanwar YS, Wada J, Sun L, et al. Diabetic nephropathy: mechanisms of renal disease progression. Exp Biol Med, 2008; 233(1): 4-11.
    [7] Del Prete D, Gambaro G, Lupo A, et al. Precocious activation of genes of the renin-angiotensin system and the fibrogenic cascade in IgA glomerulonephritis. Kidney Int, 2003; 64 (1):149-159.
    [8] Mezzano SA, Aros CA, Droguett A, et al. Renal angiotensin II up-regulation and myofibroblast activation in human membranous nephropathy. Kidney Int Suppl, 2003; (86): S39-S45.
    [9] Wolf G. Renal injury due to renin-angiotensin-aldosterone system activation of the transforming growth factor-beta pathway. Kidney Int, 2006; 70(11): 1914-1919.
    [10] Woo V, Ni LS, Hak D, et al. Effects of losartan on urinarysecretion of extracellular matrix and their modulators in type 2 diabetes mellitus patients with microalbuminuria. Clin Invest Med, 2006; 29(6): 365-372.
    [11] Langham RG, Kelly DJ, Gow RM, et al. Transforming growth factor-beta in human diabetic nephropathy: effects of ACE inhibition. Diabetes Care, 2006; 29(12): 2670-2675.
    [12] Mohamed RH, Abdel-Aziz HR, Abd El Motteleb DM, et al. Effect of RAS inhibition on TGF-beta, renal function and structure in experimentally induced diabetic hypertensive nephropathy rats. Biomed Pharmacother, 2009; 24. [Epub ahead of print].
    [13] 张莹,宋光华.蛋白激酶C激活与糖尿病肾病. 国外医学内分泌学分册, 2002; 22 (6): 386-388.
    [14] Ahn JD, Morishita R, Kaneda Y, et al. Transcription factor decoy for AP-1 reduces mesangial cell proliferation and extracellular matrix production in vitro and in vivo. Gene Ther, 2004; 11 (11): 916-923.
    [15] Ruiz-Torres MP, Perez-Rivero G, Diez-Marques ML, et al. Role of activator protein-1 on the effect of arginine- glycine-aspartic acid containing peptides on transforming growth factor-betal promoter activity. Int J Biochem Cell Biol, 2007;39 (1): 133-145.
    [16] Weigert C , Sauer U , Brodbeck K hyperglycemia-induced activation of the human TGF-betal promoter in mesangial cell. J Am Soc Nephrol, 2000; 11 (11): 2007-2016.
    [17] Terzi F, Burtin M, Hekmati M, et al. Sodium restriction decreaseAP-1 activation after nephron reduction in the rat: rule in theprogression of renal lesions. Exp Nephrol, 2000; 8(2): 104-114.
    [1]Schnaper HW, Hayashida T, Poncelet AC.It's axmad world: regulation of TGF-beta signaling in the kidney. J Am Soc Nephrol,2002; 13 (4):1126-1128.
    [2]向少伟,王小琴.转化生长因子-β1介导的足细胞损伤.国际泌尿系统杂志,2008;28(4):559-563.
    [3]尤燕舞,林栩,王洁.辛伐他汀通过抑制Smad7表达的肾保护作用机制探讨.中国实用医药,2008;3(25):10-12.
    [4]Ge B, Gram H, Di Padova F, et al. MAPKK-independent activation of p38alpha mediated by TAB1-dependent autophosphorylation of p38alpha. Science,2002; 295(5558):1291-1294.
    [5]汪建云,印晓星.糖尿病肾病中转化生长因子-β1信号转导与肾纤维化.中国临床药理学与治疗学,2005;10(4):371-376.
    [6]Adhikary L, Chow F, Nikolic-Paterson DJ, et al. Abnormal p38 mitogen-activated protein kinase signalling in human and experimental diabetic nephropathy. Diabetologia,2004; 47(7): 1210-1222.
    [7]牟娇,贾德福,袁发焕.p38丝裂原活化蛋白激酶介导抵抗素调节高糖刺激下人肾小球系膜细胞增殖的作用.中华肾脏病杂志,2008;24(11):832-837.
    [8]谭正怀,沈映君,赵军宁,等.大黄酸对人肾小球系膜细胞功能的影响.药学学报,2004;39(11):881-886.
    [9]Wi lmer WA, Dixon CL, Hebert C. Chronic exposure of human mesangial cells to high glucose environments activates the p38 MAPK pathway. Kidney Int,2001; 60(3):858-871.
    [10]王丽晖,段惠军,史永红,等.缬沙坦对高糖培养的肾小球系膜细胞p38MAPK传导通路的影响.中国药理学通报,2009;25(4): 501-505.
    [11]Singh LP, Andy J, Anyamale V, et al. Hexosamine-induced fibronectin protein synthesis in mesangial cells is associated with increases in cAMP responsive element binding (CREB) phosphorylation and nuclear CREB:the involvement of protein kinases A and C. Diabetes,2001; 50(10):2355-2362.
    [12]Wahab NA, Parker S, Seaer JD, et al. The decorin high glucose response element and mechanism of its activation in human mesangial cells. J Am Soc Nephrol,2000; 11(9):1607-1619.
    [13]Suzuki H, Uchida K, Nitta K, et al. Role of mitogen-activated protein kinase in the regulation of transforming growth factor-beta-induced fibronectin accumulation in cultured renal interstitial fibroblasts. Clin Exp Nephrol,2004; 8 (3):188-195
    [14]Lee SJ, Kang JG, Ryu OH, et al. Effects of alpha-lipoic acid on transforming growth factor betal-p38 mitogen-activated protein kinase-fibronectin pathway in diabetic nephropathy. Metabolism,2009; 58(5):616-623.
    [15]Eskes R, Desagher S, Antonsson B, et al. Bid induces the oligomerization and insertion of Bax into the outermitochondrial membrane. Mol Cell Biol,2000; 20 (3): 929-935.
    [16]Cain K, Bratton SB, Langlais C, et al. Apaf-1 oligomerizes into biologically active approximately 700-kDa and inactive approximately 1.4-MDa apoptosome complexes. J Biol Chem,2000; 275 (9):6067-6070.
    [17]Schiffer M, Bitzer M, Roberts IS, et al. Apoptosis in podocytes induced by TGF-β and Smad7. J Clin Invest,2001; 108(6):807 816.
    [18]王丽晖,段惠军,史永红,等.氯沙坦对糖尿病大鼠肾脏结构、功能及肾组织p38 MAPK的影响.中国药理学通报,2004;20(12):1393-1398.
    [19]陈丽,刘晓城.高糖刺激下大鼠肾脏系膜细胞Smad7的表达及姜黄素对其表达的影响.中国中西医结合肾病杂志,2007;8(11):634-636.
    [20]胡志娟,李英,何伟,等.苯那普利对糖尿病大鼠肾组织中TGF-β1和Smad7表达的影响.中国中西医结合肾病杂志,2005;6(10):569-572.
    [21]Schiffer M, Bitzer M, Roberts IS, et al. Apoptosis in podocytes induced by TGF-β and Smad7. J Clin Invest,2001; 108 (6): 807-816.
    [22]杨红霞,朱敏怡.黄芪对糖尿病大鼠肾组织的保护作用.实用医学杂志,2005;21(17):1964-1965.
    [1]吕仁和,赵进喜,王越,等.DN临床研究述评.北京中医药大学学报,1994,19(2):2-6.
    [2]赵进喜,邓德强,李靖.DN相关中医病名考辨,南京中医药大学学报,2005,21(5):288-289.
    [3]田风胜,苏秀海,王元松.DN中医病名规范化研究,中华中医药杂志,2009,24(11):1424-1426.
    [4]张琪,吴长富,缪胜尧.消渴益肾汤治疗DN疗效观察.河北中医,1994(5):8-9.
    [5]杨霓芝,黄春林.泌尿科专病中医临床诊治.北京:人民卫生出版社,2000,130-157.
    [6]倪斌,DN的本虚证研究,江苏中医药,2005,26(6):13-14.
    [7]成玉斌,罗仁,胡志飞,等.DN中医辨证分型荟萃分析[J].中国中医基础医学杂志,2000,6(5):49-52.
    [8]李琪,高阳,刘启庭.糖肾康治疗2型DN的临床研究.辽宁中医杂志,1998,(3):114-116.
    [9]倪青,庞国明.DN的中医药研究思路与方法.中国医药学报,1998,(4):60.
    [10]Chowdhury TA, Dyer PH, Kumar S, et al. Genetic determinants of diabetic nephropathy.Clin Sci(Lond),1999,96(3):221-230.
    [11]Krolewski AS. Genetics of diabetic nephropathy:evidence for major and minor gene effects. Kidney Int,1999,55 (4): 1582-1596.
    [12]董砚虎,曲世平,吕文山,等.染色体7q35区基因多态性与DN的易感性.中华内分泌代谢杂志,2005,21(1):47-50.
    [13]杨斯韬,刘华,王玉明.糖基化终产物受体基因G1704T多态性与DN相关性的研究.中国糖尿病杂志,2008,16(1):21-22.
    [14]薛菲,刘惠兰.DN基因多态性的研究进展.国外医学泌尿系统分册,2005,25(3):390-395.
    [15]曾纪斌,杨越,甘斌.DN的中医病机探讨,江西中医药,2006,37(6):13-14.
    [16]郑国静,常瑜,程益春.DN的中医治疗思路和方法.湖北中医杂志,2004,26(1):23-24.张再康,杨霓芝,王立新,等.
    [17]张再康,王立新,包昆,等.杨霓芝应用益气活血法治疗DN的学术思想探讨.中国中医基础医学杂志,2009,15(8):603-604.
    [18]万毅刚,孙伟,王猜,等.早期慢性肾脏病尿蛋白与中医证候相关性研究,中国中西医结合杂志,2008,28(9):801-805.
    [19]刘罡,伍金林,段俊国,等.尿白蛋白排泄率与糖尿病中医症状关系的临床研究,四川中医,2007,25(6):28-29.
    [20]赵晓山,罗仁,吕建勇,等.肾虚型DN患者尿白蛋白排泄变化规律的研究.中华实用中西医杂志,2004,4(4):567-568.
    [21]周硕果.温肾健脾法治疗早期DN的临床观察.四川中医,2009,27(1):74-75.
    [22]郑国静,常瑜,程益春.DN的中医治疗思路和方法.湖北中医杂志,2004,26(1):23-24.
    [23]詹锐文,李敬.DN中医分型辨治浅析[J].实用中医内科杂志,2004,18(6):510-511.
    [24]高彦彬.络病与糖尿病慢性并发症.北京中医药大学学报(中医临床版),2008,15(3):17-18.
    [25]陈慧萍,牟新.益气温阳法治疗临床期DN疗效观察.中华中医药学刊,2008,26(12):2732-2734.
    [26]罗若茵,吴友忠.试析2型糖尿病证型分布.浙江中医学院学报,2003,27(3):15-16.
    [27]丁英钧,肖永华,傅强,等.DN“微型癥瘕”病理假说解析.中华中医药杂志,2009,24(1):27-30.
    [28]吴以岭,魏聪,贾振华,等.从络病学说探讨DN的病机.中国中医基础医学杂志,2007,13(9):659-660.
    [29]王月华,郭登洲,王彦凯,等.活血化瘀消癥通络中药对DN的干预作用.中国中西医结合肾病杂志,2009,10(4):345-347.
    [30]杨步流,麻金木.DN应用活血化瘀法的理论及临床研究概述.甘肃中医,2008,21(1):96-97.
    [31]王辉,张冰,苗明三.DN发病机制及活血化瘀中药的干预作用.河南中医,2007,27(8):10-11.
    [32]陈潮.益气温阳为主治疗DN水肿60例疗效观察.新中医,2008,40(5):21-22.
    [33]周硕果.温肾健脾法治疗早期DN的临床观察.四川中医,2009,27(1):74-75.
    [34]陈慧萍,牟新.益气温阳法治疗临床期DN疗效观察.中华中医药学刊,2008,26(12):2732-2734.
    [1]Verrecchia F, Mauviel A. Transforming growth factor-β and fibrosis. World J Gastroenterols,2007; 13 (22):3056-3062.
    [2]Yue J, Mulder KM. Transforming growth factor-b signal transduction in epithelial cells. Pharmacol Ther,2001,91: 1-34.
    [3]Brown NJ. Aldosterone and vascular inflammation. Hypertension, 2008; 51 (2):161-167.
    [4]乐伟波,刘志红.肾素-血管紧张素系统与糖尿病肾.肾脏病与透析肾移植杂志,2008;17(4):369-373.
    [5]Wolf G. Renal injury due to renin-angiotensin-aldosterone system activation of the transforming growth factor-beta pathway. Kidney Int,2006; 70(11):1914-1919.
    [6]张莹,宋光华.蛋白激酶C激活与糖尿病肾病.国外医学内分泌学分册,2002,22(6):386-388.
    [7]Weigert C, Sauer U, Brodbeck K, et al. AP-1 proteins mediate hyperglycemia-induced activation of the human TGF-betal promoter in mesangial cells. J Am Soc Nephrol,2000; 11 (12): 2007-2016.
    [8]Weigert C, Brodbeck K, Klopfer K, et al. Angiotensin Ⅱ induces human TGF-betal promoter activation:similarity to hyperglycemia. Diabetologia,2002; 45 (6):890-898.
    [9]Tsiani E, LekasP, Fantus IG, et al. high glucose enhanced activation ofmesangial cell P38MAPK by ET-1, ANG-2 and platelet-derived growth factor. A J Physiol Endocrinol Metab, 2002,282 (1):E161-E169.
    [10]Willian WA, Dixon CL, HebertC, et al. Chronic exposure of human mesangial cells to high glucose environments activates the P38MAPK pathway. Kidney Int,2001; 60 (3):858-871.
    [11]史永红,段惠军,王丽晖,等.JA K/STAT信号介导高糖诱导系膜细胞转化生长因子β1及其基质蛋白的分泌.河北医科大学学报,2006;27(1):1-5.
    [12]黄文林,朱孝峰.信号转导.第一版,北京:人民卫生出版社.2005;7:192-194.
    [13]李艳浓,范秋灵,王力宁,等.高糖环境中血管紧张素Ⅱ影响肾小球系膜细胞促纤维化因子的表达及机制.肾脏病与透析肾移植杂志,2009;18(1):44-48.
    [14]Okazaki Y, Yamasaki Y, Uchida HA, et al. Enhanced TGF-beta/Smad signaling in the early stage of diabetic nephropathy is independent of the ATla receptor. Clin Exp Nephrol,2007; 11 (1):77-87.
    [15]Kim YS, Kim BC, Song CY, et al. A dvanced glycosylation end products stimulate cllagenmRNA synthesis in mesangial cells ediated by protein kinase C and transform ing g row th factor-beta, J Lab Clin Med,2001; 138(1):59-68.
    [16]Amiri F, Shaw S, Wang X, et al. Angiotensin Ⅱ activation of the JAK/STA T pat hway in mesangial cell s is altered by high glucose. Kidney Int,2002; 61 (5):1605-1616.
    [17]Banes AK, Shaw S, Jenkins J, et al. Angiotensin Ⅱ blockade prevents hyperglycemia-induced activation of JAK and STAT proteins in diabetic rat kidney glomeruli. Am J Physiol Renal Physiol,2004; 286(4):F6532-F6539.
    [18]李艳浓,范秋灵,王力宁,等.高糖状态下JAK2-STAT3通路的活化对系膜细胞转化生长因子β1、纤连蛋白表达的影响.中华肾脏病杂志,2008;24(7):508-509.
    [19]Zhang A, Ding G, Huang S, et al. c-Jun NH2-terminal kinase mediation of angiotensin Ⅱ-induced proliferation of human mesangial cells. Am J Physiol Renal Physiol,2005; 288 (6): F1118-24.
    [20]黄松明,张爱华,丁桂霞,等.血管紧张素Ⅱ通过ROS-EGFR-JNK-AP-信号通路诱导肾小球系膜细胞增殖.中华肾脏病杂志,2008;24(9):642-645.
    [21]Weigert C, Brodbeck K, Klopfer K, et al. Angiotensin Ⅱ induces human TGF-beta 1 promoter activation:similarity to hyperglycaemia. Diabetologia,2002; 45 (6):890-898.
    [22]汪建云,印晓星.糖尿病肾病中转化生长因子-β1信号转导与肾纤维化.中国临床药理学与治疗学,2005,10(4):371-376.
    [23]Derynck R, Zhang Y E. Smad-dependent and Smad-independent pathways in TGF-beta family signaling. Nature,2003; 425(6958): 577-584.
    [24]Massague J, Wotton D. Transcriptional control by TGF-β/Smad signaling. EMBO J,2000; 19 (8):1745-1754.
    [25]钱明,甘卫华,陈荣华.肾纤维化进程中的结缔组织生长因子信号.国际儿科学杂志,2006,33(4):275-277.
    [26]Li J, Kang SW, Kim JL, et al. Isoliquiritigenin entails blockade of TGF-betal-SMAD signaling for retarding high glucose-induced mesangial matrix accumulation. J Agric Food Chem.2010; 58 (5):3205-3212.
    [27]Umezono T, Toyoda M, Kato M, et al. Glomerular expression of CTGF, TGF-betal and type IV collagen in diabetic nephropathy. J Nephrol,2006; 19 (6):751-757.
    [28]Chen Y, Abraham DJ, Xu Shi-wen, et al. CCN2 (Connective Tissue Growth Factor)Promotes Fibroblast Adhesion to Fibronectin. Mol Biol Cell,2004; 15 (12):5635-5646.
    [29]Weston BS, Wahab NA, Mason RM. CTGF mediates TGF-beta-induced fibronectin matrix deposition by upregulating active alpha5betal integrin in human mesangial cells. J Am SocNephrol, 2003; 14 (3):601-610.
    [30]Schnaper HW, Hayashida T, Hubchak SC, et al. TGF-beta signal transduction and mesangial cell fibrogenesis. Am J Physiol Renal Physiol.2003; 284(2):F243-252.
    [31]Teddy MA, Adler SG, Kim YS, et al. Interaction of MAPK and 12-lipoxygenase pathways in growth and matrix protrin expressionmesangial cells. Am J Physio,2002,283(2):F985-F994.
    [32]文军,徐明.p38 MAPK激酶抑制剂增强二烯丙基二硫化物诱导CNE2细胞凋亡.中国药理学通报,2003;19(4):418-423.
    [33]王丽晖,段惠军,史永红,等.缬沙坦对高糖培养的肾小球系膜细胞P38MAPK传导通路的影响.中国药理学通报,2009;25(4):501-505.
    [34]Singh LP, Andy J, Anyamale V, et al. Hexosamine-induced fibronectin protein synthesis in mesangial cells is associated with increases in cAMP responsive element binding (CREB) phosphorylation and nuclear CREB:the involvement of protein kinases A and C. Diabetes,2001; 50 (10):2355-2362.
    [35]Wahab NA, Parker S, Seaer JD, et al. The decorin high glucose response element and mechanism of its activation in human mesangial cells. J Am Soc Nephrol,2000; 11 (9):1607-1619.
    [36]Chin B Y, Mohsenin A, Li S X, et al. Stimulation of pro-α1 (I) collagen by TGF-β1 in mesangial cells:roleof the p38 MAPK pathway. Am J Physiol Renal Physiol,2001; 280:F495-504.
    [37]王岚,李英.P38MAPK与糖尿病肾病.国际泌尿系统杂志,2006; 26 (5):705-709.
    [38]Inoki K, Haneda M, Ishida T, et al. Role of mitogen-activated protein kinases as downstream effectors of transforming growth factor-beta in mesangial cells. Kidney Int, Suppl, 2000; 77:S76-80.
    [39]Schnabl B, Bradham CA, Bennett BL, et al. TAK1/JNK and p38 have opposite effects on rat hepatic stellate cells. Hepatology,2001; 34(5):953-963.
    [40]刘霞.ERK和P38MAPK在转化生长因子-β1诱导肾系膜细胞合成纤维连接蛋白中的作用.南通大学学报(医学版),2006;26(6):411-413.
    [1]Meyer TN, Schwesinger C, Wahlefeld J, et al. A new mouse model of immune-mediated podocyte injury. Kidney Int,2007; 72(7): 841-852.
    [2]Wharram BL, Goyal M, Wiggins JE, et al. Podocyte depletion causes glomerulosclerosis:diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. J Am Soc Nephrol,2005; 16 (10):2941-2952.
    [3]Matsusaka T, Xin J, Niwa S, et al. Genetic engineering of glomerular sclerosis in the mouse via control of onset and severity of podocyte-specif ic injury. J Am Soc Nephrol,2005; 16 (4):1013-1023.
    [4]Macconi D, Bonomelli M, Benigni A, et al. Pathophysiologic Implications of Reduced Podocyte Number in a Rat Model of Progressive Glomerular Injury. Am J Pathol,2006; 168 (1): 42-54.
    [5]Michel LH, Cornelia K, Valerie E, et al. Podocyte bridge between the Tuft and Bowman's capsule:An early event in experimental crescentic glomerulonephritis. J Am Soc Nephrol,2001; 12(10): 2060-2071.
    [6]Ma J, Rossini M, Yang HC, et al. Effects of podocyte injury on glomerular development. Pediatr Res,2007; 62 (4):417-421.
    [7]Peters I, Tossidou I, Achenbach J, et al. IGF-binding protein-3 modulates TGF-beta/BMP-signaling in glomerular podocytes. J Am Soc Nephrol,2006,17 (6):1644-1656.
    [8]Schiffer M, Bitzer M, Roberts IS, et al. Apoptosis in podocytes induced by TGF-β and Smad7. J Clin Invest,2001; 108 (6): 807-816.
    [9]Schiffer M, Schiffer LE, Gupta A, et al. Inhibitory smads and tgf-Beta signaling in glomerular cells. J Am Soc Nephrol,2002; 13 (11):2657-2666.
    [10]Kim GM, Xu J, Xu J, et al. Tumor necrosis factor receptor deletion reduces nuclear factor-kappaB activation, cellular inhibitor of apoptosis protein 2 expression, and functional recovery after traumatic spinal cord injury. J Neurosci,2001; 21(17): 6617-6625.
    [11]Hong S, Lee C, Kim SJ. Smad7 sensitizes tumor necrosis factor induced apoptosis through the inhibition of antiapoptotic gene expression by suppressing activation of the nuclear factor-kappaB pathway. Cancer Res,2007; 67(19):9577-9583.
    [12]Dieguez-Acuna FJ, Polk WW, Ellis ME, et al. Nuclear factor kappaB activity determines the sensitivity of kidney epithelial cells to apoptosis:implications for mercury-induced renal failure. Toxicol Sci,2004; 82(1):114-123.
    [13]Dai C, Yang J, Liu Y. Transforming growth factor-betal potentiates renal tubular epithelial cell death by a mechanism independent of Smad signaling. J Biol Chem,2003; 278 (14): 12537-12545.
    [14]Eskes R, Desagher S, Antonsson B, et al. Bid induces the oligomerization and insertion of Bax into the outermitochondrial membrane. Mol Cell Biol,2000; 20 (3): 929-935.
    [15]Cain K, Bratton SB, Langlais C, et al. Apaf-1 oligomerizes into biologically active approximately 700-kDa and inactive approximately 1.4-MDaapoptosome complexes. J Biol Chem,2000; 275 (9):6067-6070.
    [16]Schif fer M, Mundel P, Shaw AS, et al. A novel role for the adaptor molecule CD2-associated protein in transforming growth factor-beta-induced apoptosis. J Biol Chem,2004; 279(35): 37004-37012.
    [17]Wada T, Pippin JW, Terada Y, et al. The cyclin-dependent kinase inhibitor p21 is required for TGF-betal-induced podocyte apoptosis. Kidney Int,2005; 68(4):1618-1629.
    [18]Asanuma K, Campbell KN, Kim K, et al. Nuclear relocation of the nephrin and CD2AP-binding protein dendrin promotes apoptosis of podocytes. Proc Natl Acad Sci USA,2007; 104 (24):10134-10139.
    [19]Petermann AT, Krofft R, Blonski M, et al. Podocytes that detach in experimental membranous nephropathy are viable. Kidney Int, 2003; 64 (4):1222-1231
    [20]Petermann AT, Pippin J, Krofft R, et al. Viable podocytes detach in experimental diabetic nephropathy:potential mechanism underlying glomerulosclerosis. Nephron Exp Nephrol,2004; 98 (4):e114-e123
    [21]Vogelmann SU, Nelson WJ, Myers BD, et al. Urinary excretion of viable podocytes in health and renal disease. Am J Physiol Renal Physiol,2003; 285 (1):F40-F48.
    [22]Asanuma K, Shirato I, Ishidoh K, et al. Selective modulation of the secretion of proteinases and their inhibitors by growth factors in cultured differentiated podocytes. Kidney Int, 2002; 62 (3):822-831
    [23]Huang HC, Liu SY, Liang Y, et al. Transforming growth factor-betal stimulates matrix metalloproteinase-9 production through ERK activation pathway and upregulation of Ets-1 protein. Zhonghua Yi Xue Za Zhi,2005; 85(5):328-331.
    [24]Chen S, Kasama Y, Lee JS, et al. Podocyte-derived vascular endothelial growth factor mediates the stimulation of alpha3 (Ⅳ) collagen production by transforming growth factor-betal in mouse podocytes. Diabetes,2004; 53(11):2939-2949.
    [25]Iglesias-de la Cruz MC, Ziyadeh FN, Isono M, et al. Effects of high glucose and TGF-betal on the expression of collagen IV and vascular endothelial growth factor in mouse podocytes. Kidney Int,2002; 62(3):901-913.
    [26]Chen S, Lee JS, Iglesias-de la Cruz MC, et al. Angiotensin Ⅱ stimulates alpha3(Ⅳ) collagen production in mouse podocytes via TGF-beta and VEGF signalling:implications for diabetic glomerulopathy. Nephrol Dial Transplant,2005; 20 (7): 1320-1328.
    [27]Okado T, Terada Y, Tanaka H, et al. Smad7 mediates transforming growth factor-beta-induced apoptosis in mesangial cells. Kidney Int,2002; 62 (4):1178-1186.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700