巴丹吉林沙漠东南部沙山与湖泊形成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
巴丹吉林沙漠除具有世界上高差最大的沙山外,还拥有沙山与湖泊呈交替排列分布的特殊景观,所以巴丹吉林沙漠地貌一直都是沙漠地理学者高度关注的对象。该区沙山与湖泊密切相关,把两者联系在一起进行研究有助于深刻认识它们的形成和内在关系。沙山风沙物质组成、地貌分带、湖水及地下水化学特性、沙层水分含量和水分运移等对沙山和湖泊的形成具有重要的作用,但因自然环境条件恶劣、深入沙漠腹地困难等原因,对巴丹吉林沙漠的物质组成、地貌分带、沙山发育模式、沙层水分与沙山形成及湖泊形成的关系等研究总体较少。过去对巴丹吉林沙漠地貌的研究,大多集中在较大尺度范围的沙丘地貌与沙漠地表物质组成的分布特征方面,目前还没有见到单个沙山的物质组成与地貌分带相结合的系统、定量研究成果的发表,也没有见到将深部沙层含水量与沙山形成及湖泊形成相联系的研究成果发表。本文研究了该区沙山与湖泊形成的主要环节,为最终解决沙山与湖泊的形成提供了依据。
     巴丹吉林沙漠区沙山、湖泊地貌与沙层水分的研究,对揭示沙山与湖泊形成机制及动力变化、沙层水分对湖水的补给和对沙山形成的作用有重要科学意义,对维护当地生态环境平衡、保护生物多样性、控制沙漠化和科学开发利用沙漠水资源等具有重要实际意义。
     为了查明巴丹吉林沙漠东南部沙山与湖泊的形成、沙漠湖水的补给来源,揭示极端干旱的荒漠沙山区沙层水分对沙山形成的作用,选择巴丹吉林沙漠东南部沙山与湖泊密集分布的中心地区,通过野外观测、粒度分析、元素测定、水化学分析、扫描电镜鉴定与能谱分析等方法,获得了沙山迎风坡地貌分带、沙山不同部位沉积物的粒度组成和各粒级含量的变化、沙山不同部位沉积物中常量元素和微量元素的含量、沙漠湖泊及地下水化学成分、沙层水分含量、沙层中次生盐类晶体形态和化学成分等数据。根据野外观察资料和实验分析数据,研究了巴丹吉林沙漠东南部沙山迎风坡的地貌分带特征、沙山不同部位沉积物的粒度组成和含量变化与沙山形成风动力条件之间的关系、沙山常量元素和微量元素的含量变化对地貌分带的指示作用、水化学成分空间变化规律对湖泊及地下水补给来源的指示作用、高含量薄膜水与次生石膏对沙山水分运移及对湖水和地下水补给的重要指示作用,获得了以下主要结论:
     (1)根据沙山迎风坡次级地貌类型的分布和变化的观测数据,将沙山迎风坡地貌从下向上划分为四个地貌带。第l地貌带是风蚀粗化的低平沙地洼地带,第2地貌带是中下部的稀疏简单的新月形沙丘或沙丘链带,第3带是密集叠置的新月形沙丘和沙丘链带,第4带是陡峭的沙山主峰带。
     (2)提出了全球高差最大沙山形成的模式,即组成该区沙山的风沙物质不是一次搬运到达沙山中上部的,而是经过了多次的风力搬运阶段才达到沙山上部。首先是沙山下部的中细沙物质由风力搬运达到沙山的中部,并形成沙山中部新月形沙丘和新月形沙丘链。然后沙山中部新月形沙丘和新月形沙丘链在风力作用下不断向沙山上部移动,相对靠下部的新月形沙丘为靠上部的新月形沙丘提供风沙物质,经多次搬运,最后达到沙山上部并形成沙山主峰。
     (3)在呼和吉林湖东沙山等沙山斜坡上首次发现了对大气降水通过入渗进入沙山深处和水循环有重要指示作用的次生石膏的存在,并发现次生石膏与沙层中缓慢渗出的重力水相伴出现,指示大气降水通过沙层入渗已经到达了沙山的深部,并在沙山斜坡出露于地表,表明大气降水能够通过入渗补给湖水和地下水。水分进入沙层增加了沙层湿度和沙粒间的粘结,对沙山的形成起到了促进作用。
     (4)根据4m深度钻孔剖面含水量测定,首次确定了巴丹吉林沙漠地表之下1~2m深度的沙层中存在高含量薄膜水,表明大气降水在经过蒸发、植物蒸腾之后,仍有一些剩余的水分通过沙层向下运移,至少可成为湖水和地下水的补给来源,这与沙山区植被的带状分布、沙山次生石膏的形成和斜坡水分的渗出指示的湖水和地下水补给来源一致。同时充分证明该区沙层水分具有正常循环和沙层水分具有正平衡的特点。该区沙层水分的正平衡对沙山形成也起到了重要作用。
     (5)巴丹吉林沙漠沙山风沙物质具有双层结构,表层10cm粒度较10cm之下明显粗,表层风沙物质的粗化指示沙山仍然存在一定的活动性。不同部位沉积物粒度组成存在明显的差异性,从沙山坡脚到坡顶粒度组成呈现由粗变细的趋势,这是它们的形成过程和受到的动力作用存在差异造成的。迎风坡坡脚粒度成分较粗,这是在风力侵蚀作用下细小砂粒被风力搬运带走、剩下了较粗粒的成分决定的。迎风坡中上部粒度成分较细是由中上部坡度和高度较大,对风力搬运产生阻碍作用,导致风力搬运能力降低并产生沉积的结果。
     (6)巴丹吉林沙漠沙山表层中Si元素含量从迎风坡下部到顶部呈逐渐减少的趋势,这是稳定性强含Si的石英矿物在粗颗粒中的含量较高的结果。Al、K、Nb、 Rb、Ni等元素的含量从迎风坡下部到顶部呈增加趋势,这是这些元素含量在细颗粒沉积物中含量较高造成的。Si、Al、K、Nb、Rb、Ni等元素的含量变化对沙山地貌分带具有重要的指示作用。
     (7)巴丹吉林沙漠湖泊水化学特征空间差异明显,由南到北沙漠湖泊的化学类型逐渐由指示盐度较低的Na-(Mg)-(Ca)-Cl-(SO4)-(HCO3)型微咸湖泊过渡为指示盐度较高的Na-(K)-Cl-(SO4)型盐水湖泊。沙漠南部湖泊靠近山地接受来自山区降水入渗的补给要多于北部湖泊,这是南部湖泊中的离子浓度低于北部湖泊的原因。南部湖泊水面高度普遍高于北部湖泊,北部湖泊在接受南部湖泊水分补给的同时会带入南部湖泊中的可溶盐离子,导致北部湖水的盐度变大。在一般情况下,离子浓度低的方向代表补给水的来源方向,离子浓度高的方向代表水流前进和汇聚方向,因此该区的湖水由南向北流动。
     (8)沙漠湖泊水化学特征和湖面水位分布高度的调查资料表明,湖泊主要来自当地降水补给及沙漠东南缘雅布赖山和南缘的黑山头地区的降水入渗迁移补给。此外,巴丹吉林沙漠湖泊及大气降水离子聚类特征也指示巴丹吉林沙漠东南部的湖水与大气降水具有同源性。巴丹吉林沙漠东南部湖水位高于其南部河西走廊的地下水位,表明该区众多沙漠湖泊的湖水不可能来自南部的祁连山区。
The landform of Badain Jaran Desert is always a focus to geographers, because it not only has the world's largest height difference of megadune, but also has a desert and lakes were arranged alternately distribution of special landscape.The megadune and lake are closely related. It helps to deeply understand their formation and internal relationship to research them by putting together. Many factors play an important role in the formations of megadune and lake, such as the material composition, megadunes, physiognomy zonations, chemical characters of lake water and groundwater, moisture content and migration of sand layer. However, due to the natural environment condition and the difficulty of entering in desert hinterland etc., study on the problems of material composition, physiognomy zonations, development mode of megadunes, the relations between the moisture content of sand layer and the formation of megadune was less. Previously, study on the landform of Badain Jaran Desert mainly concentrated on the larger scale and wide range of dune geomorphology and characteristics of surface material composition and distribution. At present, any result of single megadune about the systematic and quantitative, the material composition and physiognomy zonations hasn't yet published. Also did not see the published result on the relations between moisture contant of sand layer and formations of megadune and lake. The paper analysed the main-formation process of the formations of megadune and lake, and provides important grounds for settlement the formations of megadune and lake.
     The study on the landform of megadune and water, moisture content of sand layer has great science meaning for revealing formation mechanism and dynamic variation of megadune and lake, and also has practical significance for maintaining local ecological balance, protecting biodiversity, controlling desertification and scientifically utilizing desert water resources.
     In order to find out the formation of megadune, supply source of lake and the moisture effect of sand layer on the formation of megadune, densely distributed central area of megadune and lake in the southeastern Badain Jaran Desert was chosen as study area. Methods of field observation, particle size analysis, determination of chemical element, water chemical analysis, Environmental scanning electron microscopy (ESEM) and energy spectrum analysis were used to obtain the data of physiognomy zonations at the windward slope, sediment size composition, major element and trace element contents at the different parts of megadune, chemical constituents of lake water and groundwater, moisture content of sand layer, the crystal habit and chemical constituents of secondary salts. According to these data, the landform zoning characteristics of megadune windward slope, the relationship between sediment size composition and wind dynamic conditions at different parts of megadune, indicative function of content variation of major elements and trace elements on landform, space variation regular pattern of water chemical composition and its indication role on the supply source of lake and groundwater, high content of film moisture and secondary gypsum s indicating effect on the water migration and supply sources of lake water and groundwater were researched. Some results were drawn as follows:
     (1) According to the observational data of secondary physiognomy, the windward slope of megadune was divided into four geomorphological zones from the bottom up. The first was low-lying sandy depression zones which was undergoing wind erosion and coarsening. The second was sparse simple barchans or barchanoid chains zoning at the down of the middle part of megadune. The third was dense barchans and barchanoid chains zoning at the up of the middle part of megadune. The fourth was steep main peak zoning of megadune.
     (2) The paper proposed the formation patterns of megadunes. That aeolian sand material was not carried to the middle and upper part of megadune one time, but carried to the upper part of megadune by numerousness wind-force transport. Firstly, medium sand and fine sand in the lower of megadune was carried to the middle part, and shaped barchan and barchanoid chains. After repeatedly transport, finally the peak of megadune was shaped.
     (3) The research first discovered the secondary gypsum which has important indication function to water cycle and atmospheric precipitation seeping into megadune internal in the slopes of Huhejilin-E megadune etc. The emerging of secondary gypsum and gravity water in sand layer, imply that the precipitation has infiltrated into the deep position and exposed to the surface. These indicates that atmospheric precipitation can supply the lake water and groundwater via sand layer. Moisture entrance sand layer increase the humidity of sand layer and bond between sand particles, which was beneficial to the formation of megadunes.
     (4) According to the data of moisture content in the depth of4m, it is first determined that there were high content of film moisture at1-2m depth of sand layer in Badain Jaran Desert, which shows that precipitation after evaporation and transpiration there were still some residual water downward migration, and at least can become one of the supply sources of lake water and groundwater. These identify the supply source of lake water and groundwater indicated by the vegetation zonal distribution, secondary gypsum and water exudation at the slope of megadune. Meanwhile, fully proves that the sand layer moisture in the region has normal cycle and positive balance characteristics. The positive balance of moisture in the sand layer played an important role in the formation of megadunes.
     (5) The aeolian sand material has a double-layer structure in Badain Jaran Desert. The particle size of surface is coarser than the below10cm, indicated that the aeolian sand material was undergoing wind erosion and coarsening, and directed megadunes still exist certain activity. The particle composition of sediment has obvious difference at different parts. From the bottom to top of megadune, particle composition present taper off trend, this was caused by the differences of their formation process and the dynamic effect. The coarse particle size composition at the bottom of windward slope was determined by that the fine sand was carried away by the wind erosion and only coarse component was left. The fine particle size composition in the upper part of the windward slope was the result that the slope and height was large, which hindered the wind moving up, lead to wind transport ability decrease and generate deposition.
     (6) In the windward slope surface of megadune, the content of Si from bottom to top decreased gradually, which was the result of the strong stability of quartz mineral and its high purity in coarse particles. The content of Al、K、Nb、Rb、Ni increased from bottom to top, this was caused by the high content of these elements in fine sediments. The content variations of Si、Al、K、Nb、Rb、Ni play an important role in indicating the landform zoning of megadune.
     (7) In the Badain Jaran Desert, the chemical characteristics and spatial difference of lake water were very evident. From south to north, the chemical type of lake water gradually transit from Na-(Mg)-(Ca)-Cl-(SO4)-(HCO3) type to Na-(K)-Cl-(SO4) type. The southern lakes close to the Yabulai Mountains, receive the supply of precipitation infiltration of the Yabulai Mountains more than northern lakes, which was the reason that the ions concentration of southern lakes were lower than the northern lakes. The lake surface altitude of southern lakes were generally higher than the northern lakes, so the ions of soluble salt move with the lake water from southeast to northwest, and accumulate in the north lakes, leading to a higher salinity in the northern lakes. In general, the directions of low ion concentrations represent the source direction of recharge water, and the directions of high ion concentrations mean the advance and convergence direction of flow.
     (8) The data of chemistry characteristics of lake water and lake surface altitude indicates that the main supply source come from local precipitation and precipitation infiltration migration of the Yabulai Mountains and Heishantou Mountains. In addition, the hierarchical cluster analysis of lake water and precipitation also indicate the lake water of southeastern and precipitation has homology. In the southeastern lakes of Badain Jaran Desert, the elevations of lake surface were higher than the groundwater level in the Hexi Corridor, which indicates that the formation of desert lakes was not necessarily associated with the water supplies from the Qilian Mountains.
引文
[1]徐婷,徐美丽.阿拉伯国家环境治理与可持续发展的制度因素[J].阿拉伯世界研究,2010,5:41-48.
    [2]Iwasaka Y, Minoura H, Nagaya K. The transport and special scale of Asian dust-storm clouds:a case study of the dust-storm event of April 1979[J]. Tellus, 1983,35:189-196.
    [3]叶笃正,丑纪范,刘纪远,等.关于我国华北沙尘天气的成因与治理对策[J].地理学报,2000,55(5):513-521.
    [4]杨东贞,王超.1990年春季两次沙尘暴天气特征分析[J].应用气象学报,1995,6(1):18-26.
    [5]McKee E D. Structures of dunes at White Sands National Monument, New Mexieo (and a comparison with structures of dunes from other selected areas) [J]. Sedimentology,1966,7(1):1-69.
    [6]Mckee E D. A Study of Global sand seas [M]. Washington:U.S. Government Printing Office,1979.
    [7]Lancaster N. Controls on aeolian activity:some new Perspectives from the Kelso Dunes, Mojave Desert, California [J]. Journal of Arid Environments,1992,27(2): 113-125.
    [8]Baas AC W. Complex systems in aeolian geomorphology [J]. Geomorphology,2007, 91(3-4):311-331.
    [9]赵景波,邵天杰,侯雨乐,等.巴丹吉林沙漠高沙山区沙层含水量与水分来源探讨[J].自然资源学报,2011,26(4):694-703.
    [10]Norin E. Sven Hedin central Asia atlas, Memoir on maps [M]. Vol.111. Stockholm, 1980,94-110.
    [11]于守忠,李博,蔡蔚祺.内蒙西部戈壁及巴丹吉林沙漠考察[J].治沙研究,1962,(3):96-107.
    [12]楼桐茂.甘肃民勤至巴丹吉林庙间沙漠成因及其改造利用[J].治沙研究,1962,(3):90-95.
    [13]谭见安.内蒙古阿拉善荒漠的地方类型[J].地理集刊,1964,(8):1-31
    [14]孙培善,孙德钦.内蒙高原西部水文地质初步研究[J].治沙研究,1964,6:345-357.
    [15]朱震达,吴正,刘恕,等.中国沙漠概论[M].北京:科学出版社,1980,68-76
    [16]谭见安.内蒙古阿拉善荒漠的地方类型.见:中国科学院地理研究所地理集刊(第8号)[C].北京:科学出版社,1964.
    [17]吴正.风沙地貌学[M].北京:科学出版社,1987,98-153,174-176.
    [18]董光荣,高全洲,邹学勇,等.晚更新世以来巴丹吉林沙漠南缘气候变化[J].科学通报,1995,40(13):423-427.
    [19]陆锦华,Jkael D.巴丹吉林沙漠及其毗邻地区地貌图(1:50万)[M].兰州:兰州大学出版社,1998.
    [20]朱震达.中国沙漠、沙漠化、荒漠化及其治理的对策[M].北京:中国环境出版社,1999,137-142.
    [21]杨萍,邹学勇,哈斯,等.巴丹吉林沙漠北部风沙地貌形态类型的分区研究[J].中国沙漠,1999,19(3):210-214.
    [22]李北罡,张丽明,郭博书.巴丹吉林沙漠沙样中磷形态的分析研究[J].农业环境科学学报,2008,27(2):643-647.
    [23]Steffen Mischke.内蒙古巴丹吉林沙漠成因的粒度分析和热发光测年新证据[J].古地理学报,2005,7(1):79-98.
    [24]Jakel D. The Badain Jaran Desert:Its origin and development [J]. Geowissenschaften,1996, (7-8):272-274.
    [25]Jurgen Hofmann. The lakes in the SE part of Badain Jaran Shamo, their Limnology and Geochemistry. Geowissenschaften,1996, (7-8):275-278.
    [26]王涛.巴丹吉林沙漠形成演变的若干问题[J].中国沙漠,1990,10(1):29-40.
    [27]钱广强,董治宝,罗万银,等.巴丹吉林沙漠地表沉积物粒度特征及区域差异[J].中国沙漠,2011,31(6):1357-1365.
    [28]陈芳,刘勇.巴丹吉林沙漠典型地域沙丘多年变化的遥感动态分析[J].遥感技术与应用,2011,26(4):501-508.
    [29]李恩菊,董治宝,赵景波.巴丹吉林沙漠典型高沙山迎风坡粒度特征[J].干旱区地理,2011,34(3):471-479.
    [30]刘羽,王秀红,张雪芹,等.巴丹吉林—腾格里沙漠间沙丘活化带发展过程及其驱动力分析[J].干旱区研究,2011,28(6):957-967.
    [31]张虎才,明庆忠.中国西北极端干旱区水文与湖泊演化及其巴丹吉林沙漠大型沙丘的形成[J].地球科学进展2006,21(5):532-539.
    [32]邵天杰,赵景波,董治宝.巴丹吉林沙漠湖泊及地下水化学特征[J].地理学报,2011,66(5):662-673.
    [33]马金珠,周向阳,王云权,等.巴丹吉林沙漠南部高大沙丘包气带水分空间分布特征研究[J].中国沙漠,2011,31(6):1365-1373.
    [34]杨小平.巴丹吉林沙漠及其毗邻地区的景观类型及其形成机制初探[J].中国沙漠,2000,20(2):166-171.
    [35]刘陶,杨小平,董巨峰,等.巴丹吉林沙漠沙丘形态与风动力关系的初步研究[J].中国沙漠,2010,30(6):1285-1293.
    [36]邵天杰,赵景波,李恩菊,等.巴丹吉林典型高沙山粒度分布规律研究[J].地理科学,2010,30(5):790-796.
    [37]杨小平.巴丹吉林沙漠地区钙质胶结层的发现及其古气候意义[J].第四纪研究,2000,20(3):1-3.
    [38]杨小平.近3万年来巴丹吉林沙漠的景观发育与雨量变化[J].科学通报,2000,45(4):428-435.
    [39]Yang Xiaoping, Liu Tungsheng, Xiao Honglang. Evolution of megadunes and lakes in the Badain Jaran Desert, Inner Mongolia, China during the last 31,000 years [J]. Quaternary International,2003,104:99-112.
    [40]高全洲,董光荣,李保生,等.晚更新世以来巴丹吉林南缘地区沙漠演化[J].中国沙漠,1995,15(4):345-352.
    [41]高全洲,董光荣,李保生.查格勒布鲁—晚更新世以来东亚季风进退的地层记录[J].中国沙漠,1996,2:112-119.
    [42]高全洲,陶贞,董光荣.微量元素记录的化学风化和气候变化[J].中国沙漠,2001,(4):374-379.
    [43]李云卓.巴丹吉林东南查格勒布剖面150ka B.P.以来的沉积序列常量元素及其反映的季风环境演变[D].广州:华南师范大学,2005.
    [44]马金珠,李丁,李相虎,等.巴丹吉林沙漠包气带C1-示踪与气候记录研究[J].中国沙漠,2004,24(6):674-680.
    [45]Ma Jinzhu, Edmunds W M, He Jianhua. A 2000 year geochemical record of palaeoclimate and hydrology derived from dune sand moisture [J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2009, (276) 38-46.
    [46]马宁,王乃昂,李卓仑,等.1960-2009年巴丹吉林沙漠南北缘气候变化分析[J].干旱区研究,2011,28(2):242-251.
    [47]张伟民,王涛.巴丹吉林沙漠高沙山形成演化初步探讨田[J].中国沙漠,2005,25(2):281-286.
    [48]阎满存,王光谦,李保生,等.巴丹吉林沙漠高沙山的形成发育研究[J].地理 学报,2001,56(1):83-91.
    [49]阎满存,王光谦,董光荣,等.巴丹吉林沙漠沙山发育与环境演变研究[J].中国沙漠,2001,21(4):361-366.
    [50]阎满存,王光谦,李保生,等.巴丹吉林沙漠更新世古风向变化及环境意义[J].清华大学学报(自然科学版),2001,41(11):118-122.
    [51]Goudie A S, Livingstone I, Stokes S. Aeolian Environments, Sediments and Landforms [M]. Chichester:John Wiley & Sons,1999,1-14.
    [52]朱震达,陈治平,吴正,等.塔克拉玛干风沙地貌研究[M].北京:科学出版社,1981,110.
    [53]Bagnold R A. The Physics of Blown Sand and Desert Dunes [M]. New York: William Morrow & Company,1941,264.
    [54]Howard A D, Morton J B, Gad-El-Hak M, et al. Sand transport model of barchan dune equilibrium [J].Sedimentlogy,1978,25:307-338.
    [55]Jackson P S, Hunt J C R. Turbulent wind flow over a low hill [J]. Quarterly Journal of the Royal Meteorological Society,1975,101:929-955.
    [56]Werner B T. Eolian Dunes:Computer simulations and attractor interpretation [J]. Geology,1995,23(1):1107-1110.
    [57]Anderson R S, Sorensen M, Willetts B B. A review of recent progress in our understanding of aeolian sediment transport [J]. Acta Mechanica,1991, (Suppl 1):1-19.
    [58]Edgell H S. Arabian Deserts [M]. The Netherlands:Springer,2006.
    [59]Lancaster N. The Namib Sand Sea:Dune Forms, Processes and Sediments [M]. Netherland:Balkema,1989.
    [60]Rotterdam:Balkema. Lancaster N. Palaeoclimatic evidence from sand seas [J]. Paleogragr, Paleoclimatol, Paleocol,1990,76:279-290.
    [61]Petory M P. The Odros, Alanshan and Peishan:The deserts of Central Asia [M]. U.S. Joint Publications, Research Service,1966,(1):241-260.
    [62]Lancaster N. The dynamics of star dunes:an example from the Gran Desierto, Mexico [J].Sedimentary,1989,36:273-289.
    [63]Nielson J, Kocurek G. Surface processes, deposits, and development of star dunes: Dumont dune filed [J].Geological Society of America Bulletin,1987,99:177-186.
    [64]Nielson J, Kocurek G. Surface processes, deposits, and development of star dunes: Dumont dune filed [J].Geological Society of America Bulletin,1987,99:177-186.
    [65]Zhang Weimin, Qu Jianjun, Dong Zhibao, et al. The airflow field and dynamic processes of pyramid dunes [J]. Journal of Arid Environments,2000,45:357-368.
    [66]Wilson I G. Aeolian bedforms-their development and origins [J].Sedimentology, 1973,19:173-210.
    [67]Lancaster N. Dune Morphology and Dynamics [C]. In:Abrahams and Parsons, 1994,475-505.
    [68]Warren A. Morphology and sediments of the Nebraska Sand Hills in relation to Pleistocene winds and the development of Aeolian bed forms [J].Journal of Geology,1976,84:685-700.
    [69]Fryberger S G. Dune forms and wind regime[C]. In:Mckee E D. A Study of Global Sand Seas, United States Geological Survey, Professional Paper. Washington:US Government Printing Office,1979,1052:305-397.
    [70]Cooke W S, Warren A. Geomorphology in Deserts [M]. London:Batsford,1973. 349-367.
    [71]Gong W, Ibbetsen A. Wind Tunnel study of turbulent over model hills [J]. Boundary-layer Metorol,1989,49:113-148.
    [72]Jackson P S, Hunt J C R. Turbulent wind flow over a low hill [J]. Meteorol. Soc, 1975,101:929-950.
    [73]Sven Hedin N E. Central Asia atlas, Memoir on maps [Z]. Stockholm,1980, 94-100.
    [74]Horner N G. Geomorphic processes in continental basins of central Asia [C].16th International Geology Congress, Washington D C,1933.721-735.
    [75]Pachur H J, Wuennemann B, Zhang H. Lake evolution in the Tengger Desert, Northwestern China, during the last 40000 years [J].Quaternary Research,1995,44: 171-180.
    [76]Wuennemann B, Pachur H J, Zhang H. Climatic and environmental changes in the deserts of Inner Mongolia, China since the Late Pleistocene[A]. Alsharhan A S,etal. Quaternary Deserts and Climatic Change[C]. Balkema,1998.381-394.
    [77]Gates J B, Edmunds W M, Darling W G, et al. Conceptual model of recharge to southeastern Badain Jaran Desert groundwater and lakes from environmental tracers [J]. Applied Geochemistry,2008,23:3519-3534.
    [78]吴正.塔克拉玛干沙漠成因的探讨[J].地理学报,1981,36(3):280-291.
    [79]Livingstone I, Warren M F. Glaciers and the Changing Earth System:a 2004 snapshot [J]. University of Colorado at Boulder Press,1996,1-117.
    [80]高全洲,陶贞,董光荣,等.巴丹吉林沙漠查格勒布鲁剖面的沉积地球化学特征[J].地埋学报,1998,53(Suppl.):44-51.
    [81]宁夏地质局综合地质研究队.巴丹吉林地区的寒武和奥陶纪地层[J].西北地质,1979,16(4):38-58
    [82]蔡厚维.巴丹吉林地区第四纪地层划分的探讨[J].甘肃地质,1985,3(2):142-154.
    [83]周良仁,蔡厚维.中国西北地区的燕山运动[J].西北地质科学,1990,11(4):66-76.
    [84]Dong Zhibao, Wang Tao, Wang Xunming.2004. Geomorphology of the megadunes in the Badain Jaran Desert. Geomorphology,60(1-2):191-5203.
    [85]Dong Zhibao, Qian Guangqiang, Luo Wanyin et al.. Geomorphological hierarchy for complex megadunes and their implications for megadune in the Badain Jaran desert. Geomorphology,2009,106:180-185
    [86]Petroy M P. The ordos, alanshan and peishan, the deserts of Central Asia [J]. Research Service,1966, (1):241-260.
    [87]陆锦华,郭迎胜.巴丹吉林高沙山典型区景观图[J].中国沙漠,1995,15(4):388-389.
    [88]成都地质学院陕北队.沉积物粒度分析及其应用[M].北京:地质出版社,1978.
    [89]Cornillault J. Particle size analyzer [J]. Applied Optics,1972,11:265-268.
    [90]Weiss E L, Frock H. N. Rapid analysis of Particle-size distributions by Laser light scattering [J]. Powder Technology,1976,14:287-293.
    [91]Weiner B.B. Particle and spray sizing using laser diffraction [J].Society Photo-Optical Instrumentation Engineers,1979,170:53-56.
    [92]Me Cave I N, Bryant R S, Cook H F, et al. Evaluation of a laser-diffraction-size analyzer for use with natural sediments [J]. Journal of Sedimentary Petrology,1986, 56:561-564.
    [93]Loizeau J L, Arbouille D, Santiago S, et al. Evaluation of a wide range laser diffraction grain size analyzer for use with sediments [J]. Sedimentlogy,1994, 41:353-361.
    [94]Konert M, Vandenderghe J. Comparison of laser grain size analysis with pipette and sieve analysis:a solution for the underestimation of the clay fraction [J]. Sedimentlogy,1997,44:523-535.
    [95]Singer J K, Anderson J B, Ledbetter M T, et al. An assessment of analytical techniques for the size analysis of fineg-rained sediments [J]. Journal of Sedimentary Petrology,1988,58:534-543.
    [96]Prins M A, Postma G, Weltje G. Controls on the terrigenous sediment supply to the Arabian Sea during the late Quaternary:The Markran continental slope [J]. Marine Geology,2000,169:351-371.
    [97]Prins M A, Vandenberghe J, Weltje G J. Palaeoclimate signals in loess size distributions [J]. Workshop HWK Delmenhorst from Particle Size to Sediment Dynamics,2004,123-125.
    [98]李恩菊.巴丹吉林沙漠与腾格里沙漠沉积物特征的对比研究[D].西安:陕西师范大学,2011:29-31.
    [99]鹿化煜,安芷生.黄土高原黄土粒度组成的古气候意义[J].中国科学(D辑),1998,28(3):278-28.
    [100]张宇红,李宝生,金鹤龄,等.萨拉乌苏河流域150Ka BP以来的粒度旋回[J].地理学报,2001,56(3):332-344.
    [101]殷志强,秦小光,吴金水,等.湖泊沉积物粒度多组分特征及其成因机制研究[J].第四纪研究,2008,28(2):345-353.
    [102]Pettijohn F J, Potter P E, Siever R. Sand and Sandstone. (Second edication) Springer-Verlag [M]. New York:Berlin Heidelberg, London Paris Tokyo,1987: 69-95.
    [103]刘宝珺.沉积岩石学[M].北京:地质出版社,1980:126.
    [104]Folk R L. A review of grain-size parameters [J]. Sedimentology,1966,6:73-93.
    [105]Krumbein W C. Size frequency distributions of sediments [J]. Journal of sedimentary petrology,1934,4:65-77.
    [106]Krumbein W C. Application of logarithmic moments to size frequency distribution of sediments[J]. Journal of sedimentary petrology,1936,6:35-47.
    [107]Krumbein W C. Size frequency distributions of sediments and the normal phi curve [J]. Journal of sedimentary petrology,1938,8:84-90.
    [108]Friedman G M, Sanders J E. Principles of Sedimentology [M]. New York:Wiley. 1978,792
    [109]Cahill R A. Geochemistry of recent Lake Michigan sediments [J]. Illinois State Geological Survey Circular,1981,517:94.
    [110]Folk R L, Ward W C. Brazos River bar:a study in the significance of grain size parameters [J]. Journal of Sedimentary Petrology,1957,27,3-26.
    [111]沈吉,薛滨,吴敬禄,等.湖泊沉积与环境演化[M].北京:科学出版社,2010:68-69.
    [112]Tomas R L, Kemp A L W, Lewis C F M. Distribution, composition and characteristics of the surficial sediments of Lake Ontario[J]. Journal of Sedimentary Petrology,1972,42:66-84.
    [113]Damiani V, Tomas R L. The surficial sediments of the Big Bay Section of the Bay of Quinte, Lake Ontario [J]. Canadian Journal of Earth Sciences,1974,11: 1562-1576.
    [114]Sly P G. Sedimentary environments in the Great Lakes. In:Golterman H L. Interactions between Sediments and Freshwater. Hague:Junk[C].1977,76-82.
    [115]Sly P G. Sedimentary processes in lakes. In Lerman A. Lakes:Chemistry, Geology, Physics [M]. Berlin:Springer.1978,65-89.
    [116]Briggs D. Sources and Methods in Geography sediments [M]. London: Butterworths.1977,192-207.
    [117]朱震达,吴正,刘恕,等.中国沙漠概论[M].北京:科学出版社,1980.
    [118]Pye K. Negatively skewed Aeolian sands from humid tropical coastal dune field, Northern Australia [J]. Sedimentary Geology,1982,31:249-266.
    [119]Watson A. Variations in wind velocity and sand transport rates on the windward flanks of desert sand dunes:comments [J]. Sedimentology,1987,34:511-516.
    [120]陈建生,赵霞,盛雪芬,等.2005.同位素地球化学方法研究巴丹吉林沙漠高沙山与湖泊水补给源[J].地质学报,79(4):576-579.
    [121]温小浩,李保生,李森,等.2005.2.5 ka B P以来额济纳绿洲沙丘的粒度特征及其反映的沉积过程[J].地质学报,79(5):710-718.
    [122]陈渭南.塔克拉玛干沙漠84°E沿线沙物质的粒度特征[J].地理学报,1993,48(1):33-47.
    [123]陈广庭.塔里木盆地沙漠石油公路沿线风沙环境的形成与演变[M].北京:中国环境科学出版社,1997,158-160.
    [124]哈斯,王贵勇.沙坡头地区新月形沙丘粒度特征[J].中国沙漠,21(3):2001,271-275.
    [125]董光荣.中国沙漠形成演化气候变化与沙漠化研究[M].北京:海洋出版社,2002.381-387.
    [126]哈斯,庄燕美,王蕾,等.毛乌素沙地南缘横向沙丘粒度分布及其对风向变 化的响应[J].地理科学进展,2006,25(6):42-51.
    [127]刘英俊,王鹤年,曹励明,等.元素地球化学[M].北京:科学出版社,1984.
    [128]任明达,王乃梁.现代沉积环境概论[M].北京:科学出版社,1981:8-25.
    [129]Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites [J]. Nature,1982,299(21):715-717.
    [130]于英鹏,汪海斌,刘现彬.末次间冰期以来沙漠边缘黄土沉积的地球化学特征初探[J].沉积学报,62(2):1-8.
    [131]吴正,刘恕.风沙地貌与治沙工程学[M].北京:科学出版社,2003:236-286.
    [132]钱亦兵,吴兆宁,石井武政,等.塔克拉玛干沙漠沙物质成分特征及其来源[J].中国沙漠,1993,13(4):32-38.
    [133]Weltje G J, von Eynatten H. Quantitative Provenance analysis of sediments: review and outlook [J]. Sedimentary Geology,2004,171 (1-4):1-11.
    [134]Garzanti E, Vezzoli G. Quantifying sand Provenance and erosion (Marsyandi River, NePal Himalaya) [J]. Earth and Planetary Science Letters,2007, 258(3-4):500-515.
    [135]Nesbitt H, Young G. Petro-genesis of sediments in the absence of chemical weathering:Effects of abrasion and sorting on bulk composition and mineralogy [J]. Sedimentology,1996,43(2):341-358.
    [136]Ding Z L, Sun J M, Yang S L et al. Geochemistry of the Pliocene red clay formation in the Chinese Loess Plateau and implications for its origin, source Provenance and Paleoclimate change [J]. Geochimicaet Cosmochimica Acta,2001, 65(6):901-913.
    [137]Ujvari G, Varga A. Origin weathering and geochemical composition of loess in Southwestern Hungary [J]. Quaternary Research,2008,69(3):421-437.
    [138]Yang X P, Zhang F, Fu X D, et al. Oxygen isotopic compositions of quartz in the sand seas and sandy lands of northern China and their implications for understanding the Provenances of aeolian sands [J]. Geomorphology,2008, 102:278-285.
    [139]张小曳,张光宇,朱光华,等.中国源区粉尘的元素示踪[J].中国科学(D辑),1996,26(5):423-430.
    [140]孙业乐,庄国顺,袁蕙,等.2002年北京特大沙尘暴的理化特性及其组分来源分析[J].科学通报,2004,49(4):340-46.
    [141]孙继敏.中国黄土的物质来源及其粉尘的产生机制与搬运过程[J].第四纪研 究,2004,24(2):175-183.
    [142]谢远云,何葵,周嘉,等.哈尔滨沙尘暴的化学特征及其物质源探讨[J].地理研究,2006,25(2):255-261.
    [143]陈骏,季峻峰,仇纲,等.陕西洛川黄土化学风化程度的地球化学研究[J].中国科学(D辑:),1997,27(6):531-536.
    [144]顾磊,王立强,李明治.中国西北干旱半干旱区阿拉善沙漠和黄土高原的物源分析[J].干旱区资源与环境,2011,25(4):45-49.
    [145]靳虎甲,王继和,李毅,等.腾格里沙漠南缘沙漠化逆转过程中的土壤化学性质变化特征[J].水土保持学报,2008,22(5)1]9-125.
    [146]韩清.乌兰布和沙漠的土壤地球化学特征[J].中国沙漠,1982,2(3):24-32.
    [147]徐志伟,鹿化煜,赵存法,等.库姆塔格沙漠地表物质组成、来源和风化过程[J].地理学报,2010,65(1):53-64.
    [148]Honda M, Shimizu H. Geochemical, mineralogical and sedimentological studies on the Taklimakan Desert sands[J]. Sedimentology,1998,45:1125-1143.
    [149]董治宝,苏志珠,钱光强,等.库姆塔格沙漠风沙地貌[M].北京:科学出版社,2011.
    [150]Yang X B, Zhu B Q, White P D. provenance of aeolian sediment in the Taklamakan Desert of western China, inferred from REE and major-elemental data [J]. Quaternary International,2007,175(1):71-85.
    [151]陈骏,安芷生,刘连文,等.最近2.5Ma以来黄土高原风尘化学组成的变化与亚洲内陆的化学风化[J].中国科学(D辑),2001,31(2):136-1 44.
    [152]Taylor S R, McLennan S M. The Continental Crust:Its Composition and Evolution [M]. London:Blackwell,1985:277.
    [153]陆莹,王乃昂,李贵鹏,等.巴丹吉林沙漠湖泊水化学空间分布特征[J].湖泊科学,2010,22(5):774-782.
    [154]Yang Xiaoping. Chemistry and late Quaternary evolution of ground and surface waters in the area of Yabulai Mountains, western Inner Mongolia, China [J]. Catena,2006,66:135-144.
    [155]Yang Xiaoping, Williams A J. The ion chemistry of lakes and late Holocene desiccation in the Badain Jaran Desert, Inner Mongolia, China [J]. Catena,2003, 51:45-60.
    [156]马妮娜,杨小平.巴丹吉林沙漠及其东南边缘地区水化学和环境同位素特征及其水文学意义[J].第四纪研究,2008,8(4):702-712.
    [157]赵霞,陈建生.相似优先比法研究巴丹吉林沙漠及周边地区地下水补给[J].湖泊科学,2006,184:407-413.
    [158]王新建,陈建生,许宝田.水化学成分聚类法分析巴丹吉林沙漠及邻区地下水补给源[J].工程勘察,2005,5:25-30.
    [159]陈建生,凡哲超,汪集旸,等.巴丹吉林沙漠湖泊及其下游地下水同位素分析[J].地球学报,2003,24(6):497-504.
    [160]马金珠,黄天明,丁贞玉,等.同位素指示的巴丹吉林沙漠南缘地下水补给来源[J].地球科学进展,2007,22(9):922-931.
    [161]马金珠,陈发虎,赵华.1000年以来巴丹吉林沙漠地下水补给与气候变化的包气带地球化学记录[J].科学通报,2004,49(1):22-27.
    [162]Ma J Z, Wang X S, Edmunds W M. The characteristics of ground-water resources and their changes under the impacts of human activity in the arid Northwest China-a case study of the Shiyang River Basin [J]. Journal of Arid Environments, 2005,61:277-295.
    [163]Gates J B, Edmunds W M, George W D, et al. Conceptual model of recharge to southeastern Badain Jaran Desert groundwater and lakes from environmental tracers [J]. Applied Geochemistry,2008,23:3519-3534.
    [164]黄天明.应用环境同位素研究巴丹吉林沙漠地下水补给来源[D].兰州:兰州大学,2007.
    [165]黄天明,庞忠和.应用环境示踪剂探讨巴丹吉林沙漠及古日乃绿洲地下水补给[J].现代地质,2007,21(4):625-633.
    [166]张华安,王乃昂,李卓仑,等.巴丹吉林沙漠东南部湖泊和地下水的氢氧同位素特征[J].中国沙漠,2011,31(6):1623-1630.
    [167]丁宏伟,王贵玲.巴丹吉林沙漠湖泊形成的机理分析[J].干旱区研究,2007,24(1):1-7.
    [168]Chen J S, Li L, Wang J Y, et al. Groundwater maintains dune landscape:A remote water source helps giant sand dunes to stand their ground in a windy desert[J]. Nature,2004,432:459-460.
    [169]Yang Xiaoping, Ma Nina, Dong Jufeng, et al. Recharge to the inter-dune lakes and Holocene climatic changes in the Badain Jaran Desert, western China [J]. Quaternary Research,2010,73:10-19.
    [170]杨小平.巴丹吉林沙漠腹地湖泊的水化学特征及其全新世以来的演变[J].第四纪研究,2002,22(2):97-104.
    [171]庞西磊,尹辉.阿拉善高原盐湖水化学特征的主成分分析研究[J].地质学报,2009,29(2):199-204.
    [172]比契叶娃K E.水文地球化学—地下水化学成分的形成[M].北京:地质出版社,1981,243-252.
    [173]黄锡荃.水文学[M].北京:高等教育出版社,2000,150-151.
    [174]Yang Xiaoping, Liu Tungsheng, Xiao Honglang. Evolution of megadunes and lakes in the Badain Jaran Desert, Inner Mongolia, China during the last 31000 years [J]. Quaternary International,2003,104:99-112.
    [175]马妮娜,杨小平.巴丹吉林沙漠及其东南边缘地区水化学和环境同位素特征及其水文学意义[J].第四纪研究,2008,28(4):702-712.
    [176]陈建生,凡哲超,汪集肠,等.巴丹吉林沙漠湖泊及其下游地下水同位素分析[J].地球学报,2003,24(6):497-504.
    [177]Chen Jiansheng, Liling, Wang Jiyang et al. Ground water maintains dune landscape. Nature,2004,432:459-460.
    [178]陈建生,赵霞,盛雪芬,等.巴丹吉林沙漠湖泊群与沙山形成机理研究[J].科学通报,2006,51(23):2789-2796.
    [179]Ma Jinzhu, Li Ding, Zhang Jianming et al. Groundwater recharge and climatic change during the last 1000 years from unsaturated zone of SE Badain Jaran Desert [J]. Chinese Science Bulletin,2003,48(14):1469-1474.
    [180]Ma Jinzhu, Wang Shuiian, Edmunds W M. The characteristics of groundwater resources and their changes under the impacts of human activity in the arid northwest China -a case study of the Shiyang River Basin [J]. Journal of Arid Environment,2005,61:277-295.
    [181]Ma Jinzhu, Edmunds W M, He Jianhua et al. A 2000 year geochemical record of palaeoclimate and hydrology derived from dune sand moisture [J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2009,276:38-46.
    [182]Ma Jinzhu, Edmunds W M. Groundwater and lake evolution in the Badain Jaran Desert ecosystem, Inner Mongolia [J]. Hydrogeology Journal,2006,14(7): 1231-1243.
    [183]杨小平.巴丹吉林沙漠腹地湖泊的水化学特征及其全新世以来的演变[J].第四纪研究,2002,22(2):97-104.
    [184]Yang Xiaoping. Chemistry and late quaternary evolution of ground and surface waters in the area of Yabulai Mountains, western Inner Mongolia, China [J]. Catena,2006,66:135-144.
    [185]丁宏伟,张举.河西走廊地下水水化学特征及其演化规律[J].干旱区研究,2005,22(1):24-29.
    [186]工启优.甘肃省河西走廊平原区地下水可开采量探讨[J].甘肃水利水电技术,2004,40(3):202-204.
    [187]丁宏伟,张举.河西走廊深层地下水的赋存和开发[J].西北地质,2009,42(3):109-120.
    [188]唐东明.聚类分析及其应用研究[D].成都:电子科技大学,2010.
    [189]冯起,程国栋.我国沙地水分分布状况及其意义[J].土壤学报,1999,36(2):225-236.
    [190]秦佳琪,托亚,叶冬梅,等.乌兰布和沙漠不同沙地类型土壤水分特征的研究[J].内蒙古农业大学学报,2004,25(2):23-27.
    [191]朱玉伟,陈启民,刘茂秀,等.古尔班通古特沙漠南缘沙丘水分的时空分布特征[J].草业科学,2008,25(12):6-12.
    [192]格日乐,张力,刘军,等.库布齐沙漠人工梭梭林地土壤水分动态规律的研究[J].干旱区资源与环境,2006,20(6):173-178.
    [193]郭柯,董学军,刘志茂.毛乌素沙地沙丘土壤含水量特点-兼论老固定沙地上油蒿衰退原因[J].植物生态学报,2000,24(3):275-279.
    [194]陈荷生,康跃虎,冯今朝.腾格里沙漠沙坡头地区植物生长与水分平衡的初步研究[J].中国沙漠,1991,11(2):1-10.
    [195]EdmundsWM, Ma J Z. Ground water availability and renewal in InnerMongolia, China [A]. Cheng Guodong, Lei Zhidong, Lars Bengtsson. Proceedings of the InternationalSymposium on Sustain-ableWater ResourcesManagement and Oasis-Hydrosphere-Desert Interaction in Arid Region[C]. Beijing:Tsinghua University Press,2005.27-29.
    [196]赵景波,郁科科,邵天杰,等.腾格里沙漠沙层水分状况初步研究[J].资源科学,2011,33(2):259-262.
    [197]赵景波,马延东,邢闪,等.腾格里沙漠宁夏中卫沙层含水量研究[J].山地学报,2010,28(6):653-659.
    [198]赵从举,康慕谊,雷加强.古尔班通古特沙漠腹地水分时空分异研究[J].水土保持学报,2004,18(4):158-162.
    [199]张世军,张希明,王雪梅,等.古尔班通古特沙漠边缘春秋季沙丘水分状况初步研究[J].干旱资源与环境,2005,19(3):131-136.
    [200]顾慰祖,陈建生,汪集旸,等.巴丹吉林高大沙山表层空隙水现象的疑义[J].水科学进展,2004,15(6):695-705.
    [201]赵景波,周旗,陈宝群,等.咸阳地区近年苹果林地土壤含水量动态变化[J].生态学报,2011,31(18):5291-5298.
    [202]赵景波,王长燕,岳应利,等.西安地区人工林土壤干层与水分恢复研究[J].自然资源学报,2007,22(6):890-895.
    [203]杨文治.黄土高原土壤水资源与植树造林[J].自然资源学报,2001,16(5):433-438.
    [204]杨文治,邵明安.黄土高原土壤水分研究[M].北京:科学出版社.2002.84-111.
    [205]Zhao Jingbo, Du Juan, Chenqun Baoqun. Dried earth layers of artificial forestland in the Loess Plateau of Shaanxi Province[J]. Journal of Geographical Sciences, 2007,26(4):114-126.
    [206]许喜明,陈海滨,原焕英,等.黄土高原半干旱区人工林地土壤水分环境的研究[J].西北林学院学报,2006,21(5):60-64.
    [207]黄明斌,杨新良,李玉山,等.黄土区渭北旱塬苹果基地对区域水循环的影响[J].地理学报,2001,56(1):7-13.
    [208]赵景波,顾静,杜娟.关中平原第5层古土壤发育时的气候与土壤水环境研究[J].中国科学,D辑:地球科学,2008,38(3):364-374.
    [209]陈宝群,赵景波,李艳花.特大丰水年洛川人工林地土壤水分特征研究[J].干旱区地理,2006,29(4): 532-537.
    [210]钱亦兵,吴兆宁.古尔班通古特沙漠环境研究[M].北京:科学出版社.2010,7:26-92.
    [211]刘元波,陈荷生,高前兆.沙地降雨人渗水分动态[J].中国沙漠,1995,15(1):143-150.
    [212]熊毅,李庆逵.中国土壤[M].北京:科学出版社,1987.
    [213]李玉山.黄土区土壤水分循环特征及其对陆地水分循环的影响[J].生态学报,1983,3(2):91-101.
    [214]赵景波,马延东,邢闪,等.腾格里沙漠宁夏回族自治区中卫市沙层水分入渗研究[J].水土保持通报,2011,31(3):12-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700