基于酞菁和富勒烯的有机太阳电池的研制及其相关系统与控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机太阳电池作为一种新型的太阳能光伏器件,与无机太阳电池相比,具有原材料广泛、质量轻、成本低、可大面积制作、具有柔性等优点。在能源问题日益突出的当今世界,有机太阳电池作为一种低成本、轻薄型的光电转换器件,具有十分宽广的发展空间、非常重要的实际利用价值和光明的应用前景。
     本论文以酞菁铜和富勒烯组成的有机小分子太阳电池作为研究对象,重点研究了基于酞菁铜和碳60的双层异质结太阳电池有源层最佳厚度组合问题、LiF阴极修饰层的使用及其机理、阳极修饰层的工作机理及其改进、电子受主材料的改善、器件的稳定性与衰减情况等。
     本论文首先对CuPc/C60电池进行了内部光强分布的研究。在基于光学传输矩阵确定器件内部的光强分布函数后,本论文定义了一个新的参量“有效激子产生速率”——单位时间单位面积上施主/受主界面两侧各一个激子扩散长度内光生激子的产生总量;并且将AM1.5G标准光照下太阳光子流密度谱以及衬底的透射情况都引入到了有效激子产生速率的计算过程中,最终得到在实验中使用的ITO基底上制备的CuPc/C60双层异质结有机太阳电池的最佳有源层厚度组合。经过大量实验对该理论结果进行了验证,理论和实际之间的误差是在可接受的范围内的。故利用有效激子产生速率的方法对有机太阳电池有源层厚度的最佳组合的搜索是可以起到一定的指导作用的。这也是本论文的创新点之一。
     在得到最佳有源层厚度组合之后,通过在有机有源层与金属阴极之间插入一层极薄的LiF修饰层可以非常显著地改善有机太阳电池的电性能。本论文对LiF阴极修饰层的厚度进行了优化,发现本实验中LiF阴极修饰层的最优厚度为1.5nm。本论文同时又对LiF阴极修饰层的工作机理进行了分析。在总结文献中常见的LiF阴极修饰层工作机理分析的基础上运用了MIS机理来解释器件性能提高的原因,包括同时可以解释器件短路电流密度和开路电压均得到提高的原因。
     在阳极附近同样存在着相当多的缺陷。本论文经过对基于CuPc/C60的有机异质结小分子太阳电池的阳极界面进行多种改善工作,使得器件的性能得到了大幅度的提升。首先在阳极界面处引入LiF薄膜,器件的光电转换效率得到了一定的提升。模仿阴极LiF修饰层工作机理的分析方法,将MIS引入到阳极LiF修饰层工作机理的解释上,发现同样适用。说明MIS结构的解释具有一定的通用性。其次,在阳极界面处引入PEDOT:PSS修饰层,器件的光照特性,特别是短路电流密度得到了大幅度的提高。PEDOT:PSS修饰层的主要作用是平滑界面、改善载流子输出、降低接触电阻。再次,将PEDOT:PSS修饰层和LiF修饰层同时使用,构成PEDOT:PSS/LiF双阳极修饰层系统。该修饰层系统可以综合发挥两种修饰层材料的优势,使得器件的光电转换特性可以进一步得到提高。这是本论文的另一个创新点。
     本论文除了在电极界面处进行改进工作外,对器件的材料亦做了相应的改善工作。将富勒烯中的C70用于替换有机小分子太阳电池中的C60,与施主材料CuPc构成新的CuPc/C70异质结。实际结果发现,基于CuPc和C70的有机小分子太阳电池同样表现出光伏特性,并且其电性能比CuPc/C60电池更为优越。C70在可见光范围内具有更优越的吸收特性。同时经过分析在C60分子内部载流子复合几率较高;而且C70的电导率要高于C60两个数量级。这就使得使用C70的有机太阳电池在短路电流密度、开路电压以及填充因子等方面表现得更好。对CuPc/C60和CuPc/C70电池的系统全面的对比研究是本论文第三个创新点。
     本论文除了对基于酞菁铜和富勒烯的有机小分子太阳电池的光电转换特性的提高进行改善工作的研究之外,还对论文中进行研究的所有结构的器件的稳定性进行了详细的研究,得出不同器件的稳定性及衰减情况,并对引起稳定性变化的因素进行了分析。
     对于无任何电极修饰层的CuPc/C60有机小分子太阳电池,在无封装的条件下,将器件置于洁净的、低湿度干燥的空气中时,器件除填充因子外,短路电流密度、开路电压以及光电转换效率都会先提升后衰减。当距离制备完成后一个小时左右,器件转换效率达到最高值。分析其中的原因,主要是在C60和Al的界面处由于氧气的侵入形成了一层Al2O3层。Al2O3层的作用与LiF层是一致的,起到了阴极修饰层的作用。在本论文中建议对于无任何电极修饰层的CuPc/C60有机小分子太阳电池,其最佳的封装时间是距离制备完成一个小时左右。这是本论文第四个创新点。
     其他添加了电极修饰层的电池,性能随时间并未提高,只是简单的衰减。其稳定性从优到差依次为:同时使用PEDOT:PSS/LiF阳极修饰层系统和LiF阴极修饰层的器件、同时使用LiF阳极修饰层和LiF阴极修饰层的器件、仅使用LiF阴极修饰层的器件、同时使用PEDOT:PSS阳极修饰层和LiF阴极修饰层的器件。本论文对引起器件衰减的原因以及引起衰减差异的原因进行了详细的分析并加以实验验证。
     最后,本论文还进行了CuPc/C60和CuPc/C70有机小分子太阳电池稳定性的对比研究。研究发现,使用C70作为电子受主材料的电池的稳定性要优于以C60为受主材料的器件。主要原因是C60和C70被氧气侵蚀的程度不同。因此C70相对于C60更合适于有机太阳电池的研究、开发以及制备。
     另外,本论文还做了一些与酞菁铜/富勒烯的有机小分子太阳电池相关系统与控制工作的初步研究。比如寻找了实验中材料真空蒸发膜厚监控的参数以及得到这些参数的方法,以实现今后的在线控制;设计了一台LED太阳光模拟器用于低成本检测;建立了有机太阳电池的等效模型,并使用两种方法对等效模型的参数进行辨识拟合,并且辨识出不同器件的模型参数与之前实验结果与分析是相一致的;最后分析了太阳电池组件匹配损失的影响因素,分析了有机太阳电池组件中电池分档的标准。
     本论文的重点在于解决电极与有源层界面处激子复合和载流子输运的问题;受主材料的改进问题,即两种富勒烯分子选择的问题;器件衰减机理问题等。论文侧重于对实验现象进行机理性的探索与分析,注重基础问题的研究。希望通过这些基础研究能够对基于酞菁铜/富勒烯的有机小分子太阳电池有更深刻的理解,对今后的研究工作能够提供某些指导性的建议。
Organic solar cells, as a kind of new photovoltaic devices, compared to inorganicsolar cells, have many advantages, such as light weight, low cost, good mechanicalflexibility, large area fabrication, etc. Nowadays, since the power problem is more andmore serious, there is a wide developing space, an important practical value and a brightutilizing foreground for organic solar cells.
     The organic solar cells based on copper phthalocyanine and fullerene are studied inthis thesis. The investigation includes the optimization of thickness combination of CuPcand C60, LiF cathode buffer layer and its mechanism, the mechanisms and theirimprovements of the anode buffer layers, the improvements of electron acceptor materials,and the stability and degradation of the cells.
     Firstly, the light intensity distribution inside the CuPc/C60cells is studied. Based onthis result, a new parameter called “Effective Exciton Generation Velocity” is defined,which describes the amount of the excitons that can diffuse to the donor/acceptor interfacein a unit area and a unit time. The photon distribution of AM1.5G sunlight and thetransmisstivity of the substrate are introduced into the calculation process. In this thesis,the optimized thickness combination of CuPc and C60is obtained, and it is verified bypractical experiment. The error is in an acceptable range. So it is a useful way to searchingthe best thickness combination of the active layers by utilizing the method of effectiveexciton generation velocity. And this method is one of innovation points in this thesis.
     After obtaining the best thickness of CuPc and C60, the cells’ characteristics can beimproved by inserting an ultrathin LiF layer between the cathode and acceptor. In thisthesis, the thickness of LiF cathode buffer layer is optimized and the best thickness is1.5nm. The mechanism of this cathode buffer is also discussed. An MIS structure is used hereto explain the increase of both short circuit current density and open circuit voltage of thedevices.
     Actually, a lot of defects also exist in the anode interface. The characteristics of thecells are improved a lot after the utilization of the anode buffer layers. Firstly, LiF anodebuffer layer is introduced. And an MIS structure can also successfully explain themechanism here. So it can be concluded that the MIS method is a universal way to explainthis kind problem. Secondly, a PEDOT:PSS layer is introduced. The characteristics of the cells, especially the short circuit current density are improved a lot. The function of thisPEDOT:PSS layer is to smooth the anode surface, to improve the output of carriers and todecrease the interface resistance. At last, a PEDOT:PSS/LiF anode buffer layer system isused. The performances of the cells with this system are better than those of the cells witha single LiF layer and with a single PEDOT:PSS layer. And this is another innovationpoint in this thesis.
     Beside the investigation on the improvements at the electrode interfaces, the work onthe acceptor improvement is also studied. C70is used to replace C60as an acceptor in thisthesis. The cells using C70as an acceptor show higher Jsc, Voc, FF and efficiency than thatof the ones using C60-acceptor, because of its higher responsibility in visible region, betterelectron transport and quantum current distribution in C70molecule, and its higherconductivity. This is the third innovation point in this thesis.
     The stability and degradation of the cells in this thesis are also discussed.
     For a CuPc/C60cell without any electrode buffers, the performances improve a littleafter placing in the clean air for a while (about an hour). That is caused by an ultrathinAl2O3which is formed between C60and Al. Its function is as a cathode buffer layer. Then,with the increase of the thickness of Al2O3, the performances of the devices degrade. Sothe encapsulation time should be about an hour later after fabrication. This is the fourthinnovation point in this thesis.
     Contrary, the performances of the cells with electrode buffers directly and simplydecline. The increase of the performances in the first hour cannot be seen. The order of thestability from the best to the worst is as follow,①the cells with PEDOT:PSS/LiF anodebuffer system and LiF cathode buffer layer;②the cells with LiF anode buffer layer andLiF cathode buffer layer;③the cells only with LiF cathode buffer layer;④the cells withPEDOT:PSS anode buffer layer and LiF cathode buffer layer. The mechanisms whichcause the different stability are discussed.
     At last, the stability of the cells based on CuPc/C60and CuPc/C70is comparativelystudied. The cells using C70as an acceptor also show a superior stability than that of thecells using C60-acceptor. This comes from the higher electron affinity and ionizationpotential, and the lower symmetry of C70. Using C70as an acceptor not only can increasethe photovoltaic characteristics, but also can improve the stability of the cells dramatically.
     Additionally, some relative jobs based on copper phthalocyanine/fullerene organicsolar cells are also done, such as obtaining the thickness control parameters of theexperimental materials in thermal vacuum evaporation, the design of LED sun simulatorfor low cost test, building the equivalent circuit model of organic solar cells and the modelparameters identification by two different methods, and at the end, analyzing the influencefactors of mismatch in solar cell modules and giving a suggestion of gradating organicsolar cells.
     In this thesis, the emphases are focused on the improvements of the interface betweenthe electrode and active layer, the improvement of acceptor material (i.e. the choice of the two kinds of fullerene molecules), and the investigation on the stability and degradation oforganic solar cells. The research and analysis on the mechanisms and some basic problemsof small molecule organic solar cells are the emphases. It is hoped that the understandingof small molecule organic solar cells based on phthalocyanine and fullerene could be moreintensive from this thesis, and some instructional suggestions may be given to the laterinvestigation.
引文
[1]赵争鸣刘建政孙晓瑛等编著,太阳能光伏发电及其应用[M],北京:科学科学出版社,2006,1~4.
    [2]中国国际节能环保协会研究部编,中国的能源状况与政策[M],北京:中华人民共和国国务院新闻办公室发布,2007年12月.
    [3]施正荣,走可持续发展之路——博弈时代的光伏产业创新之道[C],魏启东袁竹林主编,第十一届中国光伏大会会议论文集,2010,3~7.
    [4]Solarbuzz,全球光伏市场2010年年终分析及2011年市场预测[J],SumForceExpress,2010,(12):20101228-01~20101228-02.
    [5]赵玉文,我国光伏产业发展状况及思考[C],杨德仁汪雷主编,第十届中国太阳能光伏会议论文集,杭州:浙江大学出版社,2008:3~17.
    [6]张正华李陵岚叶楚平等,有机太阳电池与塑料太阳电池[M],北京:化学工业出版社,2006:98~312.
    [7]Moulé A. J.,Power from plastic [J],Current Opinion in Solid State&MaterialsScience,2010,14(5):123~130.
    [8]Rand B. P.,Genoe J.,Heremans P.,et al.,Solar Cells Utilizing Small Molecular WeightOrganic Semiconductors [J],Progress in Photovoltaics: Research and Applications,2007,15(8):659~676.
    [9] Becquerel A.E. Acad C.R.,Memoire sur les effets électriques produits sous l'influencedes rayons solaires [J],Science,1839,9:561~567.
    [10]Green M. A.,Solar Cells:Operation Principles,Technology and System Application
    [M],Prentice-Hall,Englewood Cliffs,NY,1982,1~200.
    [11]施敏,现代半导体器件物理[M],北京:科学科学出版社,2001:362~406.
    [12]陈肖静. HIT电池表面钝化技术及ZnO透明导电膜的研究[D]:[硕士学位论文].无锡:江南大学理学院光学工程,2009.
    [13]Spanggaard H.,Krebs F. C.,A brief history of the development of organic andpolymeric photovoltaics [J],Solar Energy Materials&Solar Cells,2004,83(2~3):125~146.
    [14]Yakimov P. A.,Forrest S. R.,Small molecular weight organic thin-film photodetectorsand solar cells [J],Journal of applied physics,2003,93(71):3693~3723.
    [15]Hoppe H.,Sariciftci N. S.,Organic solar cells:An overview [J],Journal of MaterialsResearch,2004,19(7):1924~1945.
    [16]Benanti T. L.,Venkataraman D.,Organic solar cells:An overview focusing on activelayer morphology [J],Photosynthesis Research,2006,87(1):73~81.
    [17]Dennler G.,Saricifitci N. S.,Flexible Conjugated Polymer-based Plastic Solar Cells:From Basics to Applications [J],Proceedings of the IEEE,2005,93(8):1429~1439.
    [18]席曦,有机小分子太阳电池的研制[D]:[硕士学位论文],无锡:江南大学理学院光学工程,2009.
    [19]Liu P.,Li Q.,Huang M.,et al.,High open circuit voltage organic photovoltaic cellsbased on oligothiophene derivatives [J],Applied physics letters,2006,89(213501):213501-1~213501-3.
    [20]Yoo S.,Domercq B.,and Kippelen B.,Efficient thin-film organic solar cells based onpentacene/C60heterojunctions [J],Applied physics letters,2004,85(22):5427~5429.
    [21]Schultes S. M.,Sullivan P.,Heutz S.,et al.,The role of molecular architecture andlayer composition on the properties and performance of CuPc-C60photovoltaic devices[J],Materials Science and Engineering C,2005,25(5~8):858~865.
    [22]Yoo S.,Domercq B.,Marder S. R.,et al.,Modeling of organic photovoltaic cells withlarge fill factor and high efficiency [C],In:Zakya H. Kafafi,Paul A. Lane,Eds.,Organic Photovoltaics V,Proceedings of SPIE. Bellingham: SPIE,2004,Vol.5520,110~117.
    [23]Hong Z. R.,Huang Z. H.,Zeng X. T.,Investigation into effects of electron transportingmaterials on organic solar cells with copper phthalocyanine/C60heterojunctions [J],Chemical Physics Letters,2006,425(1~3):62~65.
    [24]Uchida S.,Xue J.,Rand B. P.,Forrest S. R.,Organic small molecule solar cells witha homogeneously mixed copper phthalocyanine:C60active layer [J],Applied physicsletters,2004,84(21):4218~4220.
    [25]Hong Z. R.,Huang Z. H.,Zeng X. T.,Utilization of copper phthalocyanine andbathocuproine as an electron transport layer in photovoltaic cells with copperphthalocyanine/buckminsterfullerene heterojunctio:Thickness effects on photovoltaicperformances [J],Thin Solid Films,2007,515(5):3019~3023.
    [26]Singha V. P.,Parsarathya B.,Singh R. S.,et al.,Characterization of high-photovoltageCuPc-based solar cell structures [J],Solar Energy Materials&Solar Cells,2006,90:(6):798~812.
    [27]Sung W. H.,Hyun S. O.,Yong C. O.,et al.,Organic photovoltaic effects using CuPcand C60depending on layer thickness [J],Synthetic Metals,2005,154(1~3):49~52.
    [28]Takahiro O.,Shuhei Y.,Yohei I.,Photocarrier generation in organic thin-film solarcells with an organic heterojunction [J],Solar Energy Materials&Solar Cells,2006,90(10):1519~1526.
    [29]Tang C. W.,Two—layer organic photovoltaic cell [J],Applied physics letters,1986,48(2):183~185.
    [30]Singh V. P.,Singh R. S.,Parthasarathy B.,et al.,Copper-phthalocyanine-based organicsolar cells with high open-circuit voltage [J],Applied physics letters,2005,86(082106):082106-1~082106-3.
    [31]Vogel M.,Strotmann J.,Johnev B.,Influence of nanoscale morphology in smallmolecule organic solar cells [J],Thin Solid Films,2006,511~512:367~370.
    [32]Yamashita Y.,Suzuki H.,Kojima N.,et al.,Interface structure analysis between C60and CuPc for organic solar cells [C],In:Coutts T.,Okamoto H. and Dunlop E.,Eds.,Conference Record of the2006IEEE4th World Conference on Photovoltaic EnergyConversion,2006,Vol.1:263~266.
    [33]Fostiropoulos K.,Vogel M.,Mertesacker B.,et al.,Preparation and Investigation ofPhthalocyanine/C60Solar Cells [C],In:Zakya H. Kafafi,Eds.,Organic PhotovoltaicsIII,Proceedings of SPIE,2003,Vol.4801:1~6.
    [34]Hyun S. O.,Dong H. C.,Chung H. K.,Organic photovoltaic effects using CuPc/C60layer [J],Molecular Crystals&Liquid Crystals,2004,424(1):225~232.
    [35]Brousse B.,Ratier B.,Moliton A.,Vapor deposited solar cells based on heterojunctionor interpenetrating networks of zinc phthalocyanine and C60[J],Thin Solid Films,2004,451~452:81~85.
    [36]Derouiche H.,Berne`de J. C.,L’Hyver J.,Optimization of the properties of bulkheterojunctions obtained by coevaporation of Zn-phthalocyanine/perylene [J],Dyesand Pigments,2004,63(3):277~289.
    [37]Djara V.,Bernede J. C.,Effect of the interface morphology on the fill factor of plasticsolar cells [J],Thin Solid Films,2005,493(1~2):273~277.
    [38]Gebeyehu D.,Pfeiffer M.,Maennig B.,et al.,Highly efficient p–i–n type organicphotovoltaic devices [J],Thin Solid Films,2004,451~452:29~32.
    [39]Alem S.,Pandey A. K.,Unni K. N. N.,Molecular model T6:C60bulk-heterojunctionsolar cells [J],Journal of Vacuum Science and Technology B,2006,24(3):645~648.
    [40]Schulze K.,Uhrich C.,Schüppel R.,et al.,Efficient heterojunction organic solar cellswith high photovoltage containing a low gap oligothiophene derivative [J],In:Paul L.Heremans,Michele Muccini,Eric A. Meulenkamp,Eds.,Organic Optoelectronics andPhotonics II,Proc. of SPIE2006,Vol.6192(61920C):61920C-1~61920C-6.
    [41]Pandey A. K.,Unni K. N. N.,Nunzi J. M.,Pentacene/Perylene co-deposited solar cells[J],Thin Solid Films,2006,511~512:529~532.
    [42]Takahito O.,Yuhsuke S.,Yuhki T.,Top Light-Harvesting Organic Solar Cell UsingUltrathin Ag/MgAg Layer as Anode [J],Japanese Journal of Applied Physics,2007,46(4A):1734~1735.
    [43]Schulze K.,Uhrich C.,Schüppel R.,et al.,Efficient Vacuum-Deposited Organic SolarCells Based on a New Low-Bandgap Oligothiophene and Fullerene C60[J],AdvancedMaterials,2006,18(21):2872~2875.
    [44]Gebeyehu D.,Maennig B.,Drechsel J.,et al.,Bulk-heterojunction photovoltaic devicesbased on donor–acceptor organic small molecule blends [J],Solar Energy Materials&Solar Cells,2003,79(1):81~92.
    [45]Breyer C.,Vogel M.,Mohr M.,et al.,Influence of exciton distribution on externalquantum efficiency in bilayer organic solar cells [J],Physica Status Solidi (b),2006,243(13):3176~3180.
    [46]Yuhki T.,Hiroyuki S.,Chihaya A.,Correlation of hole mobility,exciton diffusionlength,and solar cell characteristics in phthalocyanine/fullerene organic solar cells [J],Applied physics letters,2007,90(103515):103515-1~103515-3.
    [47]Ratierl B.,Brousse B.,Moliton A.,Ion Implantation Effect on Vapor DepositedOrganic Solar Cells Based on pn Junctions or Interpenetrating Networks of Donor andAcceptor Small Molecules [J],IEEE Transactions on Applied Superconductivity,2003,13(2):912~914.
    [48]Youngkyoo K.,Choulis S. A.,Cook S.,et al.,Photovoltaic and charge recombinationcharacteristics of regioregular poly (3-hexylthiophene)/poly(9,9’-dioctyfluorene-co-benzothiadiazole) based solar cells [C],In:NET Nowak Energie&TechnologieAG,Eds.,3rd World Conference on Phorovoltaic Energy Conversion,2003,Osalw,Japan:287~290.
    [49]Inoue K.,Ulbricht R.,Madakasira P. C.,et al.,Optimization of Postproduction HeatTreatment for Plastic Solar Cell [C],In:Zakya H. Kafafi,Paul A. Lane,Eds.,OrganicPhotovoltaics V,Proceedings of SPIE. Bellingham:SPIE,2004,Vol.5520,256~262.
    [50]Stubinger T.,Brutting W.,Exciton diffusion and optical interference in organicdonor–acceptor photovoltaic cells [J],Journal of applied physics,2001,90(7):3632~3641.
    [51]Radbeh R.,Ratier B.,Hojeij W.,et al.,Photovoltaic properties dependence on theactive layer morphology of small molecule organic solar cells [C],In:Paul L.Heremans,Michele Muccini,Eds.,Organic Optoelectronics and Photonics II,Proc.of SPIE2006,Vol.6192,(619223):619223-1~619223-10.
    [52]Colsmann A.,Junge J.,Wellinger T.,et al.,Optimization of electron transport andcathode materials for efficient organic solar cells [C],Paul L. Heremans,MicheleMuccini,Eds.,Organic Optoelectronics and Photonics II,Proc. of SPIE2006,Vol.6192,(619220):619220-1~619220-10.
    [53]Glatthaar M.,Riede M.,Keegan N.,et al.,Efficiency limiting factors of organic bulkheterojunction solar cells identified by electrical impedance spectroscopy [J],SolarEnergy Materials&Solar Cells,2007,91(5):390~393
    [54]Prall H. J.,Koeppe R.,Autengruber R.,et al.,From evaporation to solution processedorganic tandem solar cells [C],In: Andreas Gombert,Eds.,Photonics for SolarEnergy Systems,Proc. of SPIE2006,6197,(61970F):61970F-1~61970F-7.
    [55]Egginger M.,Koeppe R.,Meghdadi F.,et al.,Comparative studies on solar cellstructures using zinc phthalocyanine and fullerenes [C],In:Paul L. Heremans,MicheleMuccini,Eric A. Meulenkamp,Eds.,Organic Optoelectronics and Photonics II,Proc.of SPIE,2006,6192(61921Y):61921Y-1~61921Y-8.
    [56]Mihailetalhi V. D.,Koster L. J. A.,Blom P. W. M.,Effect of metal electrodes on theperformance of polymer:fullerene bulk heterojunction solar cells [J],Applied physicsletters,2004,85(6):970~972.
    [57]Yoo S.,Potscavage W. J.,Domercq B.,et al.,Integrated organic photovoltaic moduleswith a scalable voltage output [J],Applied physics letters,2006,89(233516):233516-1~233516-3.
    [58]Zimmermann B.,Glatthaar M.,Niggemann M.,et al.,Organic solar cells with invertedlayer sequence incorporating optical spacers-simulation and experiment [C],In:Andreas Gombert,Eds.,Photonics for Solar Energy Systems,Proc. of SPIE,2006,6197(61970G):61970G-1~61970G-6.
    [59]Aernouts T.,Geens W.,Poortmans J.,et al.,Extraction of bulk and contact componentsof the series resistance in organic bulk donor-acceptor-heterojunctions [J],Thin SolidFilms,2002,403~404:297~301.
    [60]Shaheen S. E.,Brabec C. J.,Sariciftci N. S.,et al.,2.5%effifiency organic plastic solarcells [J],Applied physics letters,2001,78(6):841~843.
    [61]Ma W.,Yang C.,Gong X.,et al.,Thermally stable,efficient polymer solar cells withnanoscale control of the interpenetrating network morphology [J], AdvancedFunctional Materials,2005,15(10),1617~1622.
    [62]Derouiche H.,Djara V.,Impact of the energy difference in LUMO and HOMO of thebulk heterojunctions components on the efficiency of organic solar cells [J],SolarEnergy Materials&Solar Cells,2007,91(13):1163~1167.
    [63]O’Connor B.,An K. H.,Pipe K. P.,Enhanced optical field intensity distribution inorganic photovoltaic devices using external coatings [J],Applied physics letters,2006,89(233502):233502-1~233502-3.
    [64]Chan M. Y.,Lai S. L.,Fung M. K.,et al.,Doping-induced efficiency enhancement inorganic photovoltaic devices [J],Applied physics letters,2007,90(023504):023504-1~023504-3.
    [65]Peumans P.,Bulovic V.,Forrest S. R.,Efficient photon harvesting at high opticalintensities in ultrathin organic double-heterostructure photovoltaic diodes [J],Appliedphysics letters,2000,76(19):2650~2652.
    [66] Krebs F.C.,Gevorgyan S.A.,GholamkhassB.,et al.,A round robin study of flexiblelarge-area roll-to-roll processed polymer solar cell modules,Solar Energy Materials&Solar Cells,2009,93(11):1968–1977.
    [67]Krebs F.C.,Gevorgyan S.A.,Alstrup J.,A roll-to-roll process to flexible polymer solarcells:model studies,manufacture and operational stability studies [J],Journal ofMaterials Chemistry,2009,19(30):5442~5451.
    [68]Choi K. H.,Jeong J. A.,Kang J. W.,et al.,Characteristics of flexible indium tin oxideelectrode grown by continuous roll-to-roll sputtering process for flexible organic solarcells [J],Solar Energy Materials&Solar Cells,2009,93(8):1248~1255.
    [69]Krebs F. C., All solution roll-to-roll processed polymer solar cells free fromindium-tin-oxide and vacuum coating steps [J],Organic Electronics,2009,10(5):761~768.
    [70]Krebs F. C.,Roll-to-roll fabrication of monolithic large-area polymer solar cells freefrom indium-tin-oxide [J],Solar Energy Materials&Solar Cells,2009,93(9):1636~1641.
    [71]Espinosa N.,García-Valverde R.,Urbina A.,et al.,A life cycle analysis of polymersolar cell modules prepared using roll-to-roll methods under ambient conditions [J],Solar Energy Materials&Solar Cells,2011,95(5):1293~1302.
    [72]Galagana Y.,de Vriesa I. G.,Langena A. P.,et al.,Technology development forroll-to-roll production of organic photovoltaics [J], Chemical Engineering andProcessing,2010,50(5~6):454~461.
    [73]Granstr m M., Petritsch K.,Laminated fabrication of polymeric photovoltaic diodes[J].Nature,1998,395(6699):257~260.
    [74]Rand B. P., Xue J.,Uchida S.,et al.,Mixed donoracceptor molecular heterojunctionsfor photovoltaic applications. I. Material properties [J],Journal of Applied Physics,2005,98(12):124902-1~124902-7.
    [75]Gebeyehu D.,Maennig B.,Drechsel J.,et al.,Bulk-heterojunction photovoltaic devicesbased on donor–acceptor organic small molecule blends[J],Solar Energy Materials&Solar Cells,2003,79(1):81~92.
    [76]Peumans P.,Uchida S.,Forrest S. R.,Efficient bulk heterojunction photovoltaic cellsusing small-molecular-weight organic thin films [J],Nature,2003,425(6954):158~162.
    [77]Uchida S.,Xue J.,Rand B. P.,et al.,Organic small molecule solar cells with ahomogeneously mixed copper phthalocyanine:C60active layer [J],Applied PhysicsLetters,2004,84(21):4218~4220.
    [78]Heutz S.,Sullivan P.,Sanderson B. M.,et al.,Influence of molecular architecture andintermixing on the photovoltaic, morphological and spectroscopic properties ofCuPc-C60heterojunctions [J],Solar Energy Materials and Solar Cells,2004,83(2~3):229~245.
    [79]Sullivan P.,Heutz S.,Schultes S. M.,et al.,Influence of codeposition on theperformance of CuPc-C60heterojunction photovoltaic devices [J],Applied PhysicsLetters,2004,84(7):1210~1212.
    [80]Xue J.,Rand B. P.,Uchida S.,et al.,Mixed donor-acceptor molecular heterojunctionsfor photovoltaic applications. II.Device performance [J],Journal of Applied Physics,2005,98(12):124903-1~124903-9.
    [81]Xue J.,Rand B. P.,Uchida S.,et al.,A hybrid planar-mixed molecular heterojunctionphotovoltaic cell [J],Advanced Materials,2005,17(1):66~70.
    [82]Yu G.,Gao J.,Hummelen J. C.,et al.,Polymer photovohaic cells:enhancedefficiencies via a network of internal donor-acceptor heterojunctions [J],Science,1995,270(5243):1789~1791.
    [83]Brabec C. J.,Shaheen S. E. Winder C.,et al.,Effect of LiF/metal electrodes on theperformance of plastic solar cells [J],Applied Physics Letters,2002,80(7),1288~1290.
    [84]Tan Z. A.,Yang C. H.,Zhou E.,et al.,Performance improvement of polymer solarcells by using a solution processible titanium chelate as cathode buffer layer [J],Applied Physics Letters,2007,91(2),023509-1~023509-3.
    [85]Guang J. Z.,You J. H. and Li Y. F.,6.5%Efficiency of Polymer Solar Cells Based onpoly(3-hexylthiophene) and Indene-C60Bisadduct by Device Optimization [J],Advanced Materials,2010,22(39),4355~4358.
    [86]Park S. H.,Roy A.,Beaupré S.,et al.,Bulk heterojunction solar cells with internalquantum efficiency approaching100%[J],Nature Photonics,2009,3(5),297~302.
    [87]Chen H. Y.,Hou J. H.,Zhang S. Q.,et al,Polymer solar cells with enhancedopen-circuit voltage and efficiency [J],Nature Photonics,2009,3(11),649~653.
    [88]Liang Y. Y.,Xu Z.,Xia J. B.,et al,For the Bright Future—Bulk HeterojunctionPolymer Solar Cells with Power Conversion Efficiency of7.4%[J],AdvancedMaterials,2010,22(20),E135~E138.
    [89]Qin R.P.,Li W.W., Li C.H.,et al,A Planar Copolymer for High Efficiency PolymerSolar Cells [J],Journal of the American Chemical Society,2009,131(41),14612~14613.
    [90]Robert C. C.,J. Peet,J. Rogers,et al.,Streamlined microwave-assisted preparationof narrow-bandgap conjugated polymers for high-performance bulk heterojunctionsolar cells [J],Nature Chemistry,2009,1(11):657~661.
    [91]Koeppe R.,Bossart O.,Calzaferri G.,et al.,Advanced photon-harvesting concepts forlow-energy gap organic solar cells [J],Solar Energy Materials&Solar Cells,2007,91(11):986~995.
    [92]Kim J. Y.,Lee K.,Coates N. E.,et al.,Efficient Tandem Polymer Solar CellsFabricated by All-Solution Processing [J],Science,2007,317(5835):222~225.
    [93]Yakimov A.,Forrest S. R.,High photovoltage multiple-heterojunction organic solarcells incorporating interfacialmetallic nanoclusters [J],Applied Physics Letters,2002,80(9):1667~1669.
    [94]杨健君,有机光伏电池的研发[J],电源世界,2006,(04):35~36.
    [95]Davies M. S.,McConnell R.,Eddy F. P.,Future generation technology status withinthe high-performance pv project [C],In:Coutts T.,Okamoto H. and Dunlop E.,Eds.,Conference Record of the2006IEEE4th World Conference on Photovoltaic EnergyConversion,2006,Vol.1:175~178.
    [96]沈文忠,刘文富,陈启婴等,新型太阳电池与光伏技术[C],魏启东袁竹林主编,第十一届中国光伏大会会议论文集,2010,36~48.
    [97]Konarka Technologies, Inc. Konarka Tech Sheets&Brochures [EB/OL],http://www.konarka.com/index.php/company/tech-sheets-and-brochures/,2011-9-21.
    [98]Gatto K.,Mitsubishi Chemical Corp shows off an organic photovoltaic cell with8.5%conversion efficiency [EB/OL],http://www.physorg.com/news/2011-03-mitsubishi-chemical-corp-photovoltaic-cell.html,2011-3-8.
    [99]Service R., Outlook Brightens for Plastic Solar Cells [J],Sicence,2011,332(6027):293~293.
    [100]Green M. A.,Emery K.,Hishikawa Y. et al.,Solar Cell Efficiency Tables (Version39)[J],Progress in Photovoltaics:Research and Applications,2012,20(1):12~20.
    [101]陈大鹏叶甜春,现代光刻技术[J],核技术,2004,27(2):81~86.
    [102]张麦丽王秀峰,ITO玻璃光刻工艺的研究[J],液晶与显示,2005,20(1):22~26.
    [103]肖啸刘世杰,光刻技术发展现状分析[J],乐山师范学院报,2004,19(5):26~29.
    [104]黄春辉李富友黄维,有机电致发光材料与器件导论[M],上海:复旦大学出版社,2005,82~87.
    [105]Le Q. T.,Nuesch F.,Rotherg L. J.,et al.. Photoemission study of the interfacebetween phenyldiamine and treated indium-tin-oxide [J],Applied Physics Letters,1999,75(10):1357~1359.
    [106]孟庆蕾,提高有机太阳电池中空穴输出效率方法的研究[D]:[硕士学位论文].无锡:江南大学理学院光学工程,2010.
    [107]Nuesch F.,Forsythe E. W.,Le Q. T.,et al.,Importance of indium-tin-oxide surfaceacid basicity for change injection into organic materials based light emitting diodes[J],Journal of Applied Physics,2000,87(11):7973~7980.
    [108]Kwong C. Y.,Djuri i A. B.,Chui P. C.,et al.,Influence of the device architectureto the ITO surface treatment effects on organic solar cell performance [C],In:KafafiZ. H.,Paul A. L.,Eds.,Organic Photovoltaics IV,Proceedings of SPIE. Bellingham:SPIE,2004,Vol.5215,153~160.
    [109]Kwong C. Y.,Djuri i A. B.,Chui P. C.,et al.,Improvement of the efficiency ofphthalocyanine organic Schottky solar cells with ITO electrode treatment [J],Applied Physics A—Materials Science&Processing,2003,77(3~4),555~560.
    [110]Hashimoto Y.,Hamagaki M.,Effect of Oxygen Plasma Treatment of Indium TinOxide for Organic Solar Cell [J],Electrical Engineering in Japan,2006,154(4):1~7.
    [111]Kwong C. Y.,Djuri i A. B.,Chui P. C.,et al.,Phthalocyanine based Schottky solarcells [C].In:Zakya H. Kafafi,Eds.,Organic Photovoltaics III,Proceedings of SPIE.2003,Vol.4801,7~14.
    [112]刘陈朱光喜刘德明,氧等离子体处理ITO薄膜表面性能的影响[J],液晶与显示,2006,21(4):309~313.
    [113]钟志有蒋亚东王涛等,氧等离子体处理改善ITO电极表面湿润性[J],半导体光电,2005,26(5):428~436.
    [114]李云奇主编,真空镀膜技术与设备设计安装及操作维护实用手册[M],北京:化学工业出版社,2006,3~4.
    [115]李云奇主编,真空镀膜技术与设备设计安装及操作维护实用手册[M],北京:化学工业出版社,2006,777~790.
    [116]唐晋发顾培夫,薄膜光学与技术[M],浙江:机械工业出版社,1987,121~122.
    [117]李云奇主编,真空镀膜技术与设备设计安装及操作维护实用手册[M],北京:化学工业出版社,2006,190~194.
    [118]李云奇主编,真空镀膜技术与设备设计安装及操作维护实用手册[M],北京:化学工业出版社,2006,545~551.
    [119]李云奇主编.真空镀膜技术与设备设计安装及操作维护实用手册[M].北京:化学工业出版社,2006,498~516.
    [120]李云奇主编.真空镀膜技术与设备设计安装及操作维护实用手册[M].北京:化学工业出版社,2006,798~812.
    [121]何智兵黄勇刚张溪文等,酞菁铜的性能和应用研究进展[J].材料导报,2000,14(10):51~55.
    [122]Aguilera A.,Singh R. S.,Parthasamthy B,et al.,Analysis of CuPc-based organicsolar cell with high photovoltage [J],In:Coutts T.,Okamoto H. and Dunlop E.,Eds., Conference Record of the Thirty-first IEEE2005on Photovoltaic SpecialistsConference,Vol:1:121~124.
    [123]徐晓鸿王静霞肖丽等,富勒烯功能高分子材料的制备与性能研究[J],功能高分子学报,1999,12(4):470~478.
    [124]闫小琴张瑞珍卫英慧等,富勒烯制备方法研究的进展[J],新型碳材料,2000,15(3):63~69.
    [125]李宝铭吴洪才孙建平等,高分子/富勒烯光伏电池的研究进展[J],功能材料与器件学报,2004,10(1):128-132.
    [126]黄颂羽邓慧华顾建华等,激子和载流子输运研究I.有机肖特基型固态太阳电池[J],太阳能学报,1997,18(2):134~141.
    [127]邓慧华黄颂羽陆祖宏等,激子和载流子输运研究II.有机P-N异质结固态太阳电池[J],太阳能学报,1998,19(1):66-73.
    [128]宋群梁,有机小分子太阳能电池的界面研究[D]:[博士学位论文],上海:复旦大学物理学系,2006.
    [129]Leif A.,Pettersson A.,Roman L. S.,et al.,Modeling photocurrent action spectra ofphotovoltaic devices based on organic thin films [J],Journal of Applied Physics,1999,86(1):487~496.
    [130]任驹郑建邦赵建林,给体-受体型有机太阳电池光敏层的优化设计[J],物理学报,2007,56(5):2868~2872.
    [131]任驹,有机给体-受体型异质结薄膜太阳电池的研究[D]:[硕士学位论文],西安:西北工业大学,2006.
    [132]郭硕鸿,电动力学[M],北京:高等教育出版社,2005,150~158.
    [133]Green M. A.,Solar Cells:Operation Principles,Technology,and System Application
    [M],Prentice-Hall,Englewood Cliffs,NY,1982,1~10.
    [134]Pettersson L. A. A.,Roman L. S.,Ingan s O,Modeling photocurrent action spectraof photovoltaic devices based on organic thin films [J],Journal of Applied Physics,1999,86(1):487~496.
    [135]Brabec C. J.,Shaheen S. E.,Winder C.,et al.,Effect of LiF/metal electrodes on theperformance of plastic solar cells [J],Applied Physics Letters,2002,80(7):1288~1290.
    [136]J rgense M.,Norrman K. and Krebs F.C.,Stability/degradation of polymer solar cells[J],Solar Energy Materials&Solar Cells,2008,92(7):686~714.
    [137]Song Q. L.,Wang M. L.,Obbard E. G.,et.al.,Degradation of small-molecule organicsolar cells [J]. Applied Physics Letters,2006,89(25):251118~251120.
    [138]Chan M.Y.,Lai S.L.,Lau K.M.,et al.,Efficient organic photovoltaic devices usinga combination of exciton blocking layer and anodic buffer layer [J],Journal ofApplied Physics,2006,100(9):094506-1~094506-4.
    [139]Oh H. S.,Lee J. U.,Dependence of Photovoltaic Effects in Organic Semiconductorson the BCP Layer Thickness [J],Journal of the Korean Physical Society,2006,48(6):1488~1491.
    [140]Chan M. Y., Lee C. S.,Lai S. L.,et al.,Efficient organic photovoltaic devices usinga combination of exciton blocking layer and anodio buffer layer [J],Journal ofApplied Physics,2006,100(9):094506-1~094506-4.
    [141]Singh V.,Thakur A. K.,Pandey S. S.,et al.,A comparative study of Al and LiF:Al interfaces with poly (3-hexylthiophene) using bias dependent photoluminescencetechnique [J],Organic Electronics,2008,9(5):790~796.
    [142]J nsson S.K.M.,Carlegrim E.,Zhang F.,et al.,Photoelectron Spectroscopy of theContact between the Cathode and the Active Layers in Plastic Solar Cells:The Roleof LiF [J],Journal of Applied Physics,2005,44(5):3695~3701
    [143]Hung L. S.,Tang C. W.,Mason M. G.,et al.,Application of an ultrathin LiF/Albilayer in organic surface-emitting diodes [J],Applied Physics Letters,2001,78(4):544~546
    [144]Deng X. Y.,Tong S. W.,Hung L. S.,et al.,Role of ultrathin Alq3and LiF layers inconjugated polymer light emitting diodes [J],Applied Physics Letters,2003,82(5):3104~3107
    [145]Hung L. S.,Tang C. W.,Mason M. G.,Enhanced electron injection in organicelectroluminescence devices using an Al/LiF electrode [J],Applied Physics Letters,1997,70(2):152~154
    [146]李方馨,有机小分子太阳电池阴极修饰的研究[D]:[硕士学位论文],无锡:江南大学理学院光学工程,2010
    [147]吴甲奇,器件结构和后期处理对小分子太阳电池性能的影响研究[D]:[硕士学位论文],无锡:江南大学理学院光学工程,2011
    [148]de Jong M.P.,Simons D.P.L.,Reijme M.A.,et al.,Indium diffusion in model polymerlight-emitting diodes [J],Synthetic Metals,2000,110(1):1~6.
    [149]Zimmermann B.,Schleiermacher H.F.,Niggemann M.,et al.,ITO-free flexibleinverted organic solar cell modules with high fill factor prepared by slot die coating[J],Solar Energy Materials&Solar Cells,2011,95(7):1587~1589.
    [150]Galagan Y,Rubingh J.M.,Andriessen R.,et al.,ITO-free flexible organic solar cellswith printed current collecting grids [J],Solar Energy Materials&Solar Cells,2011,95(5):1339~1343.
    [151]Na S. I.,Yu B. K.,Kimc S. S.,et al.,Fully spray-coated ITO-free organic solar cellsfor low-cost power generation [J],Solar Energy Materials&Solar Cells,2010,94(8):1333~1337.
    [152]Kim Y. S.,Oh S. B.,Park J. H.,et al.,Highly conductive PEDOT/silicate hybridanode for ITO-free polymer solar cells [J],Solar Energy Materials&Solar Cells,2010,94(3):471~477.
    [153]Zimmermann B.,Glatthaar M.,Niggemann M.,et al.,ITO-free wrap through organicsolar cells—A module concept for cost-efficient reel-to-reel production [J],SolarEnergy Materials&Solar Cells,2007,91(5):374~378.
    [154]Choi B.,Yoon H.,Lee H.H.,Surface treatment of indium tin oxide by SF6plasma fororganic light-emitting diodes [J],Applied Physics Letters,2000,76(4):412~414.
    [155]Park N.G.,Kwak M.Y.,Kim B.O.,et al.,Effects of indium-tin-oxide surfacetreatment on organic light-emitting diodes [J],Japanese Journal of Applied Physics,2002,41(3A):1523~1526.
    [156]Nardesa A.M.,Kemerinka M.,de Kokb M.M.,et al.,Conductivity, work function,and environmental stability of PEDOT:PSS thin films treated with sorbitol [J],Organic Electronics,2008,9(5):727~734.
    [157]刘振琼,富勒烯C60、C70的发现与研究[J],雁北师范学院学报,2003,19(2):13~15
    [158]Park S.H.,Roy A.,Beauprè S.,et al.,Bulk heterojunction solar cells with internalquantum efficiency approaching100%[J],Nature Photonics,2009,3(5),297~302.
    [159]Kim J.Y.,Lee K.,Coates N.E.,et al.,Efficient tandem polymer solar cells fabricatedby all-solution processing [J],Science,2007,317(5835):222~225.
    [160]He Y.J.,Chen Y.H.,Zhao G.J,et al.,Synthesis and photovoltaic properties ofbiindene-C70monoadduct as acceptor in polymer solar cells [J],Solar EnergyMaterials&Solar Cells,2011,95(7):1762~1766.
    [161]Vilmercati P.,Cudia C.,Larciprete R.,et al.,Molecular orientations,electronicproperties and charge transfer timescale in a Zn-porphyrin/C70donor–acceptorcomplex for solar cells [J],Surface Science,2006,600(18):4018~4023.
    [162]Yakuphanoglu F.,Electronic and photovoltaic properties of p-Si/C70heterojunctiondiode [J],Physica B:Condensed Matter,2007,400(1~2):208~211.
    [163]Inoue J.,Yamagishi K.,Yamashita M.,Photovoltaic properties of multilayer organicthin films [J],Journal of Crystal Growth,2007,298:782~786.
    [164]王利光,郁鼎文,李勇等,C60分子的电子传导和量子流分布研究[J],人工晶体学报,2005,34(4):637~641.
    [165]王利光,李勇,郁鼎文等,C70分子的电子传导和量子流分布[J],中国科学G辑:物理学力学天文学,2007,37(5):576~581.
    [166]Mutolo K. L.,Mayo E. I.,Rand B. P.,et al.,Enhanced open-circuit voltage insubphthalocyanine/C60organic photovoltaic cells [J],Journal of the AmericanChemical Society,2006,128(25):8108~8109.
    [167]Haddon R.C.,C70thin film transistors [J],Journal of the American Chemical Society,1996,118(12):3041~3042.
    [168]Haddon R.C.,Perel A.S.,Morris R.C.,et al.,C60thin film transistors [J],AppliedPhysics Letters,1995,67(1):121~123.
    [169]Hosoya M.,Ichimura K.,Wang Z.H.,et al.,Dark conductivity and photoconductivityin solid films of C70,C60and KxC70[J],Physical Review B,1994,49(7):4981~4986.
    [170]Brabec C.J.,Hauch J.A.,Schilinsky P.,et al.,Production aspects of organicphotovoltaics and their impact on the commercialization of devices [J],MateialsResearch Society Bulletin,2005,30(1):50~52.
    [171]Krebs F.C.,Spanggaard H.,Significant improvement of polymer solar cell stability[J],Chemistry of Materials,2005,17(21):5235~5237.
    [172]Krebs F.C.,Carlè J.E.,Bagger N. C.,et al.,Lifetimes of organic photovoltaics:photochemistry,atmosphere effects and barrier layers in ITO-MEHPPV: PCBM-aluminum devices [J],Solar Energy Materials&Solar Cells,2005,86(4):499~516.
    [173]Krebs F.C.,Air stable polymer photovoltaics based on a process free from vacuumsteps and fullerenes [J],Solar Energy Materials&Solar Cells,2008,92(7):715~726.
    [174]Kawano K.,Pacios R.,Poplavskyy D.,et al.,Degradation of organic solar cells dueto air exposure [J],Solar Energy Materials&Solar Cells,2006,90(20):3520~3530.
    [175]Vivo P.,Jukola J.,Ojala M.,V. Chukharev, et al.,Influence of Alq3/Au cathodeon stability and efficiency of a layered organic solar cell in air [J],Solar EnergyMaterials&Solar Cells,2008,92(11):1416~1420.
    [176]Petersen M.H.,Gevorgyan S.A.,Krebs F.C.,Thermocleavable low band gappolymers and solar cells therefrom with remarkable stability toward oxygen [J],Macromolecules,2008,41(23):8986~8994.
    [177]Norrman K.,Gevorgyan S.A.,Krebs F.C.,Water-induced degradation of polymersolar cells studied by H218O labeling [J],Applly Materials&Interfaces,2009,1(1):102~112.
    [178]Norrman K.,Larsen N.B.,Krebs F.C.,Lifetimes of organic photovoltaics:combining chemical and physical characterisation techniques to study degradationmechanisms [J],Solar Energy Materials&Solar Cells,2006,90(17):2793~2814.
    [179]Cantu M. L.,Norrman K.,Andreasen J.W.,et al.,Oxygen release and exchange inniobium oxide MEHPPV hybrid solar cells [J],Chemistry of Materials,2006,18(24):5684~5690.
    [180]Krebs F.C.,Norrman K.,Analysis of the failure mechanism for a stable organicphotovoltaic during10000h of testing [J],Progress in Photovoltaics: Research andApplications,2007,15(8):697–712.
    [181]李云奇主编.真空镀膜技术与设备设计安装及操作维护实用手册[M].北京:化学工业出版社,2006.317~319.
    [182]Wang M.L.,Song Q.L.,Wu H.R.,et al.,Small-molecular organic solar cells withC60/Al composite anode [J],Organic Electronics,2007,8(4):445~449.
    [183]Pacios R.,Chatten A.J.,Kawano K.,et al,Effects of photo-oxidation on theperformance of poly [2-methoxy-5-(3,7-dimethyloctyloxy)-1,4-phenylenevinylene]:[6,6]-phenyl C61-butyric acid methyl ester solar cells [J],AdvancedFunctional Materials,2006,16(16):2117~2126.
    [184]de Jong M.P.,van Ijzendoorn L.J.,de Voigt M.J.A.,Stability of the interface betweenindium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styr-enesulfonate) inpolymer light-emitting diodes [J],Applied Physics Letters,2000,77(14):2255~2257.
    [185]李云奇主编.真空镀膜技术与设备设计安装及操作维护实用手册[M].北京:化学工业出版社,2006,781.
    [186]李云奇主编.真空镀膜技术与设备设计安装及操作维护实用手册[M].北京:化学工业出版社,2006,1138~1142.
    [187]杨德仁,太阳电池材料[M],北京:化学工业出版社,2007,3~4.
    [188]赵争鸣流建政孙晓瑛等,太阳能光伏发电及其应用[M],北京:科学出版社,2006,46~48.
    [189]国家技术监督局,GB/T12637-90,太阳模拟器通用规范[S],北京:电子工业出版社,1990.
    [190]国家技术监督局,GB/T6495.9,光伏器件:太阳模拟器性能要求[S],北京:电子工业出版社,2006.
    [191]赵争鸣流建政孙晓瑛等,太阳能光伏发电及其应用[M],北京:科学出版社,2006,1~42.
    [192]百度百科,1stopt [EB/OL],http://baike.baidu.com/view/1939680.html?tp=0_10
    [193]丁金磊,太阳电池I-V方程显式求解原理研究及应用[D]:[博士学位论文],合肥:中国科学技术大学工程热物理,2007.
    [194]查珺,提取硅太阳电池模型参数的解析方法研究[D]:[硕士学位论文],合肥:中国科学技术大学工程热物理,2007.
    [195]查琚程晓舫丁金磊等,基于一条I-V曲线提取硅太阳电池参数的一种新方法[J],太阳能学报,2007,28(9):992~995.
    [196]李金刚,智能光伏组件的研究与应用[D]:[硕士学位论文],无锡:江南大学信息学院微电子学与固体电子学,2008.
    [197]王国峰龚海丹邹伟等,太阳电池精确分选问题及解决方法[C],魏启东袁竹林主编,第十一届中国光伏大会会议论文集,2010,161~165.
    [198]Shanghai Solar Energy Science&Technology Co., Ltd.[EB/OL],http://ssec-solar.com/cp/html/?8.html
    [199]Morn M.,Wolf E.,Principles of Optics (7th edition)[M],Cambridge UniversityPress,Cambridge UK,1999:38~42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700