分布式电源系统稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于具有便于模块化、集成化、易扩展、易维护等众多优点,分布式电源系统在航天航空、电力系统、新能源等领域得到了长足发展和广泛应用。然而,随着电源技术的发展和需求的提升,分布式电源系统的稳定性问题越来越成为一个日益突出的问题。本文针对分布式电源系统在稳定性判据、稳定性分析等方面存在的一些缺点和不足,从分布式电源系统的建模、小信号稳定性、大信号稳定性及遮挡对航天器电源系统稳定性影响等方面进行了深入的研究。
     本文建立了适合稳定性分析的分布式电源系统中的源模型、负载模型及开关变换器的小信号和大信号模型。特别是针对开关变换器大信号平均模型在CCM(Continuous Current Mode,电流连续模式)、DCM(Discontinuous Current Mode,电流断续模式)模式切换中存在的问题,提出了一种新的模式切换原则,可以更好地反映开关变换器的大信号动态特性。通过实验手段验证了模型在稳定性分析中的有效性,为后文的稳定性研究奠定了基础。
     在分布式电源系统的小信号稳定判据研究中,阻抗比判据是一种非常流行的方法。针对目前阻抗比判据存在的保守性问题,本文提出了一种使两级级联分布式电源系统小信号稳定的充要条件阻抗比判据,并讨论了任意集成的分布式电源系统的阻抗比判据。针对负载阻抗设计时圆禁区在波特图上难于计算的问题,提出了一种新的扇形禁区,可很容易地完成负载阻抗的设计。仿真研究证明了本文所提出的阻抗比判据及使用扇形禁区进行负载阻抗设计的有效性。
     针对Lyapunov直接法和直接仿真法在求取分布式电源系统这样一个非线性系统的吸引域时存在的缺点和不足,本文提出了一种基于间接数值仿真法和蒙特卡罗分析求取系统吸引域的方法。该方法使用上包络法来判定系统各状态变量是否收敛,以滤波器和变换器级联的分布式电源系统为例,求取了系统的吸引域。实验结果证明了使用文中方法求取吸引域的有效性。
     最后,本文分析了遮挡对航天器电源系统稳定性的影响。根据航天器构造复杂、太阳电池阵安装方式多样的特点,建立了航天器3D模型,考虑了构件的相对运动,提出了一种使用改进的投射阴影法和最小矩形法来精确生成太阳电池阵阴影图形的方法。以月球车为实例分析验证了生成阴影图形方法的正确性和快速性,并根据阴影图形计算了受遮挡后的太阳电池阵的输出特性,进而通过求取不同遮挡条件下系统的吸引域分析了遮挡对整个航天器电源系统稳定性造成的影响。
Distributed power system (DPS) has been widely applied in many areas such as aerospace, aviation, power system, new energy resource, etc., due to its advantages of modularization, integration, extensibility, maintainability and so on. However, with the development of power technology and increasing need, there is an increasing demand in the stability and reliability of DPS. The stability problem of DPS becomes a gradually outstanding problem. Aiming at the shortcoming of stability criterion, stability analysis, etc. of DPS, this thesis conducts a relatively deep research from sides of the model establishment, small-signal stability analysis, large-signal stability analysis, etc. In addition, this thesis also researches the impact of shading on the stability of spacecraft power system.
     The source model, load model and switching converter's small-signal and large-signal models of the DPS are established, which are suitable for stability analysis. Especially, a new mode transition principle is proposed to solve the mode transition problem between CCM (Continuous Current Mode) and DCM (Discontinuous Current Mode) of the switching converter's large-signal averaged model. The proposed mode transition principle can better reflect the large-signal dynamic behavior of the switching converters. Experiment validation is made to ensure the effectiveness of the model in the stability analysis, which laid the foundation for the stability study of the following parts.
     Among the small-signal stability study of the DPS, the impedance criterion is one of the most popular methods. For the conservative problem of the present impedance criterion, a necessary and sufficient impedance stability criterion for the two subsystems cascaded DPS is proposed. And this thesis also discusses the impedance criterion of complex connected DPS. The sector forbidden region, which is a new forbidden region and can be easily calculated in the Bode diagram, is proposed to solve the calculation problem of the round forbidden region in engineering application. Examples and simulations are provided to verify the necessary and sufficient impedance stability criterion and the proposed sector forbidden region for the load impedance specification.
     To overcome the disadvantages of the Lyapunov direct method and the direct simulation method in estimating the region of attraction of the DPS, a typical nonlinear system, the indirect numerical simulation method based on Monte Carlo analysis is proposed. And the upper envelope method is used to judge the convergence property of the state variables of the system. Taking the filter and converter cascaded DPS as an example, this thesis estimates the system's region of attraction. The validity of this method has been proved by experimental approaches.
     Finally, this thesis analyzes the impact of shading on the stability of spacecraft power system. According to the features of spacecraft having complex structure and solar array having various kinds of installation methods,3D model of spacecraft is established to consider the relative movement of the component and an algorithm of precisely calculating the shadow graph of solar array using the modified shadow map method and the minimal rectangle method is proposed. The example of lunar rover's shadow graph calculation is given to validate the correctness and rapidity of the proposed algorithm. Based on the shadow graph, the solar array's output characteristic is calculated, and the impact of shading on stability of spacecraft power system is analyzed through estimating the region of attraction of the whole system with different shading conditions.
引文
[1]钱照明,董伯藩,何湘宁.电力电子技术及其应用的最新发展[J].中国电机工程学报,1998,18(3):153-162.
    [2] Heath C C. The Market for Distributed Power Systems[C]. IEEEProceedings of Applied Power Electronics Conference and Exposition,1991:225-229.
    [3] Suranyi G G. The Value of Distributed Power[C]. IEEE Proceedings ofApplied Power Electronics Conference and Exposition,1995:104-110.
    [4] Thorsell L. Will Distributed On-board DC/DC Converter BecomeEconomically Beneficial in Telecom Switching Equipment[C]. IEEETelecommunications Energy Conference,1990:33-39.
    [5] Rivetta C, Emadi A, Williamson G A, et al. Analysis and Control of a BuckDC-DC Converter Operating with Constant Power Load in Sea andUndersea Vehicles[J]. IEEE Transactions on Industry Applications,2006,42(2):559-572.
    [6] Hua G C, Tabisz W A. Development of a DC Distributed Power System,APEC, Blacksburg,VA, USA, IEEE,1994:763-769.
    [7]佟强,张东来,徐殿国.分布式电源系统中变换器的输出阻抗与稳定性分析[J].中国电机工程学报,2011,31(12):57-64.
    [8] Iftikhar M U, Baig M S. Stability Study of Spacecraft Electrical PowerSystem with Constant-power Loads[C]. IEEE14th InternationaMultitopicConference (INMIC),2011:217-221.
    [9] Komatsu M, Yanabu S. Analysis of the Small Signal Stability for theInternational Space Station/Jem Electric Power Systems[C]. IEEE2ndInternational Power and Energy Conference,2008:106-111.
    [10] Samosir A S, Yatim A M. A Novel Control Strategy of Bidirectional DC-DCConverter for Interfacing Ultracapcitor to Fuel Cell Eclectic VehiclesSystems Based on Dynamic Evolution Control[C]. International Review ofElectrical Engineering (Part A),2010:64-69.
    [11]姚雨迎.航天器多路精确稳压DC-DC变换器数字控制研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2009:1-19.
    [12]王媛彬.矿用本安型开关电源的稳定性研究[J].煤矿机械,2011,32(11):58-60.
    [13]周宇飞,姜丹丹,黄家成,等. DC-DC变换器中负载阻抗特性及其对稳定性的影响[J].中国电机工程学报,2010,30(6):15-21.
    [14]周素莹,齐蓉,林辉.多电飞机电源系统的负载稳定性分析[J].航空计算技术,2002,32(4):93-95.
    [15]张波.电力电子学亟待解决的若干基础问题探讨[J].电工技术学报,2006,21(3):24-35.
    [16]姚雨迎,张东来,徐殿国.级联式DC/DC变换器输出阻抗的优化设计与稳定性[J].电工技术学报,2009,24(3):147-152.
    [17]杨晓平,张浩,马西奎.基于ESAC标准的分布式电源系统稳定裕度监控[J].电工技术学报,2009,24(8):15-21.
    [18]许心.浅谈分布式电源的应用[J].中国科技信息,2007,(2):33-35.
    [19] Choi B, Cho B H. Intermediate Line Filter Design to Meet Both ImpedanceCompatibility and EMI Specifications[J]. IEEE Transaction on PowerElectronics,1995,10(5):583-588.
    [20]张欣,阮新波.用于提高级联型电源系统稳定性的自适应有源电容变换器[J].电工技术学报,2012,27(2):23-32.
    [21] Kundur P, Paserba J, Ajjarapu V, et al. Definition and Classification ofPower System Stability[J]. IEEE Transaction on Power Systems,2004,19(2):1387-1401.
    [22] Zak S H. Systems and Control[M]. New York: Oxford University Press,2003:73-98.
    [23] Fang C C. Sampled-data Modeling and Analysis of One-cycle Control andCharge Control[J]. IEEE Transaction on Power Electronics,2001,16(3):345-350.
    [24] Khalil H K. Nonlinear Systems[M]. New York: Macmillan,1992:35-76.
    [25]李殿璞.非线性控制系统[M].西安:西北工业大学出版社,2009:144-149.
    [26] Mazumder S K, Nayfeh A H, Boroyevich D. Theoretical and ExperimentalInvestigation of the Fast-scale and Slow-scale Instabilities of a DC-DCConverter[J]. IEEE Transaction on Power Electronics,2001,16(2):201-216.
    [27] Krein P T, Bass R M. Types of Instability Encountered in Simple PowerElectronic Circuits: Unboundedness, Chat-tering, And Chaos[C]. AppliedPower Electronics Conference,1990:191-194.
    [28] Tse C K, Bernardo M D. Complex Behavior in Switching PowerConverters[J], Proceedings of the IEEE,2002,90(5):768-781.
    [29] Deane J B, Hamill D C. Instability, Subharmonics, and Chaos in PowerElectronic Systems[J]. IEEE Transaction on Power Electronics,1990,5(3):260-268.
    [30]陈希有.电路理论基础[M].第3版.北京:高等教育出版社,2004:360-362.
    [31] Tsuboi K, Tsuji M, Yamada E. Instability of a Chopper System with InputLC Filter and Its Solution[J], Electrical Engineering in Japan,2001,137(4):49-63.
    [32] Botao M, Zane R, Maksimovic D. Detection of Instability and AdaptiveCompensation of Digitally Controlled Switched-mode Power Supplies[C].Applied Power Electronics Conference and Exposition,2005:63-69.
    [33] Logue D L, Krein P T. Preventing Instability in DC Distribution Systems byUsing Power Buffering[C]. IEEE Power Electronics Specialists Conference,2001:33-37.
    [34] Wu X, Tse C K, Wong S C, et al. Fast-scale Instability in a PFC BoostConverter Under Average Current-mode Control[J]. International Journal ofCircuit Theory and Applications,2006,34(3):341-355.
    [35] Alarcon E, El-Aroudi A, Martinez-Artega J, et al. Predicting Fast-scaleInstabilities in Switching Power Converters: a Ripple-based UnifiedPerspective[C]. IEEE International Symposium on Circuits and Systems,2006:3141-3144.
    [36] Rosado S, Burgos R, Wang F, et al. Large-and Small-signal Evaluation ofAverage Models for Multi-Pulse Diode Rectifiers[C]. IEEE Computers inPower Electronics (COMPEL),2006:89-94.
    [37] Middlebrook R D, Cuk S. A General Unified Approach to ModelingSwitching Converter Power Stages[C]. IEEE Power Electronics SpecialistsConference,1976:18-35.
    [38] Sun J, Grotstollen H. Symbolic Analysis Methods for Averaged Modelingof Switching Power Converters[J]. IEEE Transaction on Power Electronics,1997,12(3):537–546.
    [39] Sun J, Mitchell D M, Greuel M F, et al. Averaged Modeling of PWMConverters Operating in Discontinuous Conduction Mode[J]. IEEETransaction on Power Electronics,2001,16(4):482-492.
    [40] Davoudi A, Jatskevich J. Parasitics Realization in State-spaceAverage-value Modeling of PWM DC–DC Converters Using an Equal AreaMethod[J]. IEEE Transactions on Circuits and Systems–I,2007,54(9):1960-1967.
    [41]马凡,马伟明,付立军,等.直流侧电流断续时不控整流器的动态大信号数学模型建立与验证[J].中国电机工程学报,2010,30(12):36-42.
    [42] Vorperian V. Simplified Analysis of PWM Converters Using Model ofPWM Switch, Part II: Discontinuous Conduction Mode[J]. IEEETransaction on Aerospace and Electronic Systems,1990,26(3):497-505.
    [43] Maksimovic D, Cuk S. A Unified Analysis of PWM Converter inDiscontinuous Mode[J]. IEEE Transaction on Power Electronics,1991,6(4):476-490.
    [44] Erickson R W, Maksimovic D. Fundamentals of Power Electronics[M]. TheSecond Edition. Norwell, MA: Kluwer Publishers,2001:187-264.
    [45]蔡宣三,龚绍文.高频功率电子学[M].北京:科学出版社,1993:203-270.
    [46] Mazumder S K, Acharya K. Multiple Lyapunov Function Based ReachingCondition for Orbital Existence of Switching Power Converters[J]. IEEETransaction on Power Electronics,2008,23(3):1449-1471.
    [47] Hu T. A Nonlinear-System Approach to Analysis and Design ofPower-electronic Converters with Saturation and Bilinear Terms[J]. IEEETransaction on Power Electronics,2011,26(2):399-410.
    [48] Rubensson M, Lennartson B. Global Convergence Analysis for PiecewiseLinear Systems Applied to Limit Cycles in a DC/DC Converter[C].Proceedings of the American Control Conference,2002,2:1272-1277.
    [49] Almér S, J nsson U, Kao C, et al. Stability Analysis of a Class of PWMSystems[J]. IEEE Transaction on Automatic Control,2007,52(6):1072-1078.
    [50] Choi B, Cho B H, Hong S. Dynamics and Control of DC-to-DC ConvertersDriving Other Converters Downstream[J]. IEEE Transactions on Circuitsand Systems–I,1999,46(10):1240-1248.
    [51] Liutanakul P, Awan A, Pierfederici S, et al. Linear Stabilization of a DCBus Supplying a Constant Power Load[J]. IEEE Transaction on PowerElectronics,2010,25(2):475-488.
    [52] Zhang Fanghua, Yan Yangguang. Start-up Process and Step Response of aDC-DC Converter Loaded by Constant Power Loads[J]. IEEE Transactionson Industrial Electronics,2011,58(1):298-304.
    [53] Knyazkin V, Ca izares C A, S der L H. On the Parameter Estimation andModeling of Aggregate Power System Loads[J]. IEEE Transactions onPower Systems,2004,19(2):1023-1031.
    [54]张阳,张军明,杜韦静.基于回转器的Buck变换器大信号建模[J].电工技术学报,2011,26(增刊1):49-55.
    [55] Du Weijing, Zhang Yang, Zhang Junming, et al. Simple Large-signal ModelBased on Gyrator for System Level Analysis[C]. IEEE Energy ConversionCongress and Exposition (ECCE),2011:692-697.
    [56]王润新,刘进军,侯丹.用于实现互联系统仿真的电源模块大信号模型[J].西安交通大学学报,2009,43(6):76-81.
    [57] Horowitz S, Phadke A. Power System Relaying[M]. The Second Edition.Research Studies Press Ltd.,1995:255-275.
    [58]万成安,于磊,刘建强.航天器直流电源系统稳定性分析方法研究[J].航天器工程,2009,18(2):14-19.
    [59] Sudhoff S D, Glover S F. Modeling Techniques, Stability, Analysis, andDesign Criteria for DC Power Systems with Experimental Validation[J].SAE Transactions on Journal of Aerospace,1998:52-67.
    [60] Tan F D, Ramshaw R S. Instabilities of a Boost Converter Under LargeParameter Variations[J]. IEEE Transaction on Power Electronics,1989,4(4):442-449.
    [61] Middlebrook R D. Input Filter Consideration in Design and Application ofSwitching Regulators[C]. IEEE Proceedings of Industrial ApplicationSociety Annual Meeting,1976:94-107.
    [62] Cho B H, Choi B. Analysis and Design of Multi-stage Distributed PowerSystem[C]. Proceedings of Telecommunications Energy Conference,1991:220-226.
    [63] Wildrick C M, Lee F C, Cho B H, et al. A Method of Defining the LoadImpedance Specification for a Stable Distributed Power System[J]. IEEETransaction on Power Electronics,1995,10(3):280-285.
    [64] Feng X, Ye Z, Xing K, et al. Individual Load Impedance Specification for aStable DC Distributed Power System[C]. IEEE Annual Applied PowerElectronics Conference and Exposition (APEC),1999:923-929.
    [65] Sudhoff S D, Glover S F, Lamm P T, et al. Admittance Space StabilityAnalysis of Power Electronic Systems[J]. IEEE Transaction on Aerospaceand Electronic Systems,2000,36(3):965-973.
    [66] Sudhoff S D, Glover S F. Three-dimensional Stability Analysis of DCPower Electronics Based Systems[C]. Power Electronics SpecialistsConference,2000,1:101-106.
    [67] Sudhoff S D, Crider J M. Advancements in Generalized Immittance BasedDistribution Systems[C]. Electric Ship Technologies Symposium (ESTS),2011:207-212.
    [68] Vesti S, Suntio T, Oliver J A, et al. Impedance-based Stability andTransient-performance Assessment Applying Maximum Peak Criteria[J].IEEE Transaction on Power Electronics,2013,28(5):2099-2104.
    [69] Feng X, Ye Z, Xing K, et al. Impedance Specification and ImpedanceImprovement for DC Distributed Power System[C]. IEEE PowerElectronics Specialists Conference (PESC),1999:889-894.
    [70] Feng X, Liu J, Lee F C. Impedance Specification for Stable DC DistributedPower Systems[J]. IEEE Transaction on Power Electronics,2002,17(2):157-162.
    [71] Feng X, Liu C, Ye Z, et al. Monitoring the Stability of DC DistributedPower Systems[C]. IEEE Proceedings of Industrial Electronics SocietyConference (IECON),1999:367-372.
    [72] Feng X, Lee F C. On-line Measurement on Stability Margin of DCDistributed Power System[C]. IEEE Proceedings of Applied PowerElectronics Conference and Exposition (APEC),2000:1190-1196.
    [73] Liu J, Feng X, Lee F C, et al. Stability Margin Monitoring for DCDistributed Power System via Perturbation Approaches[J]. IEEETransaction on Power Electronics,2003,18(6):1254-1261.
    [74] Zhang J, Xie X, Jiao D, et al. Stability Problems and Input ImpedanceImprovement for Cascaded Power Electronic Systems[C]. IEEEProceedings of Applied Power Electronics Conference and Exposition(APEC),2004:1018-1024.
    [75] Suntio T. Dynamic Profile of Switched-mode Converter-modeling, Analysisand Control[M]. Weinheim, Germany: Wiley-VCH,2009:21-30,76-77.
    [76] Zenger K, Altowati A, Suntio T. Dynamic Properties of InterconnectedPower Systems-a System Theoretic Approach[C]. IEEE Proceedings ofIndustrial Electronics and Applications,2006:835-840.
    [77] Leppaaho J, Huusari J, Nousiainen L, et al. Dynamic Properties andStability Assessment of Current-fed Converters in PhotovoltaicApplications[J]. IEEJ Transaction on Industry Applications,2011,131(8):976-984.
    [78] Vesti S, Oliver J A, Prieto R, et al. Stability and Transient PerformanceAssessment in a COTS-module-based Distributed DC/DC Systems[C].IEEE Proceedings of Telecommunications Energy Conference (INTELEC),2011:1-7.
    [79] Tran D, Zhou H, Khambadkone A M. A Simple Design of DC Power Systemwith Multiple Source-side Converters to Operate Stably Under ConstantPower Load[C].2nd IEEE International Symposium on Power Electronicsfor Distributed Generation Systems (PEDG),2010:520-525.
    [80] Rosado S P. Voltage Stability and Control in Autonomous Electric PowerSystems With Variable Frequency[D]. Blacksburg: Virginia PolytechnicInstitute and State University,2007:94-96,110-112.
    [81] Erickson R W, Cuk S, Middlebrook R D. Large-signal Modeling andAnalysis of Switching Regulators[C]. IEEE Proceedings of PowerElectronics Specialists Conference,1982:240-250.
    [82] Marx D, Pierfederici S, Nahid-Mobarakeh B, et al. Contribution toDetermination of Domain of Attraction in Power Systems: Application toDrives with Input Filter[C]. IEEE Proceedings of Industry ApplicationsSociety Annual Meeting,2009:1-8.
    [83] Blanco Y, Perruquetti W, Borne P. Stability and Stabilizability of NonlinearSystems and TS Fuzzy Models[J]. Mathematical Problems in Engineering,2001,7:221-240.
    [84] Brayton R K, Moser J K. A Theory of Nonlinear Networks Part I[J].Quarterly of Applied Mathematics,1964,12(1):1-33.
    [85] Loop B P, Sudhoff S D, Zak S H, et al. Estimating Regions of AsymptoticStability of Power Electronics Systems Using Genetic Algorithms[J]. IEEETransaction on Control Systems Technology,2010,18(5):1011-1022.
    [86] Sullivan C J, Sudhoff S D, Zivi E L, et al. Methods of Optimal LyapunovFunction Generation with Application to Power Electronic Converters andSystems[C]. IEEE Proceedings of Electric Ship Technologies Symposium,2007:267-274.
    [87] Bacha A, Jerbi H, Braiek N B. An Approach of Asymptotic StabilityDomain Estimation of Discrete Polynomial Systems[C]. IEEE Proceedingsof Computational Engineering in Systems Applications,2006:288-292.
    [88] Marx D, Magne P, Nahid-Mobarakeh B, et al. Large Signal StabilityAnalysis Tools in DC Power Systems with Constant Power Loads andVariable Power Loads-A Review[J]. IEEE Transaction on PowerElectronics,2012,27(4):1773-1787.
    [89] Johansson M, Rantzer A. Computation of Piecewise Quadratic LyapunovFunctions For Hybrid Systems[J]. IEEE Transaction on Automatic Control,1998,43(4):555-559.
    [90] Ye H, Michel A N, Hou L. Stability Theory for Hybrid DynamicalSystems[J]. IEEE Transaction on Automatic Control,1998,43(4):461-474.
    [91] Branicky M S. Multiple Lyapunov Functions and Other Analysis Tools forSwitched and Hybrid Systems[J]. IEEE Transaction on Automatic Control,1998,43(4):475-482.
    [92] Rivetta C, Williamson G A. Large-signal analysis of a DC-DC Buck PowerConverter Operating with Constant Power Load[C]. IEEE Conference of theIndustrial Electronics Society,2003,1:732-737.
    [93] Rivetta C, Williamson G A. Global Behavior Analysis of a DC-DC BoostPower Converter Operating With Constant Power Load[C]. IEEEProceedings of the International Symposium on Circuits and Systems,2004,5:956:959.
    [94] Luo S. A Review of Distributed Power Systems Part I-DC DistributedPower System[J]. Aerospace and Electronic Systems Magazine,2005,20(8):5-16.
    [95] Kishor N, Villalva M G, Mohanty S R, et al. Modeling of PV Module withConsideration of Environmental Factors[C]. IEEE Innovative Smart GridTechnologies Conference Europe (ISGT Europe),2010:1-5.
    [96] Imani S, Rezaie A H, Taherbaneh M. Modeling and Evaluation of aTerrestrial Solar Panel in Space Environment[C]. IEEE InternationalConference on Sustainable Energy Technologies,2008:453-458.
    [97] Skoplaki E, Palyvos J A. On the Temperature Dependence of PhotovoltaicModule Electrical Performance: a Review of Efficiency/PowerCorrelations[J]. Solar Energy,2009,83(5):614-624.
    [98] Leban K, Ritchie E. Selecting the Accurate Solar Panel SimulationModel[C]. Proceedings of the Nordic Workshop on Power and IndustrialElectronics,2008:1-7.
    [99] Zhu Hongyu, Zhang Donglai. Influence of Multijunction Ga/As Solar ArrayParasitic Capacitance in S3R and Solving Methods for High-PowerApplications[J]. IEEE Transaction on Power Electronics,2014,29(1):179-190.
    [100]Kumar R A, Suresh M S, Nagaraju J. Effect of Solar Array Capacitance onthe Performance of Switching Shunt Voltage Regulator[J]. IEEETransaction on Power Electronics,2006,21(2):543-548.
    [101]吴茜琼,常晓颖.基于Matlab/Simulink的太阳能电池特性分析[J].华北水利水电学院学报,2010,31(5):90-92.
    [102]Macau E N, Turci F R, Yoneyama T. Controlling Chaos in a Satellite PowerSupply Subsystem[J]. The European Physical Journal Special Topics,2008,165(1):221-228.
    [103]Cho B H, Lee F C. Modeling and Analysis of Spacecraft Power Systems[J].IEEE Transaction on Power Electronics,1988,3(1):44-54.
    [104]秦岭,谢少军,杨晨,等.太阳能电池的动态模型和动态特性[J].中国电机工程学报,2013,33(7):19-26.
    [105]Anderson D R, Cantrell W H. High-efficiency High-level Modulator forUse in Dynamic Envelope Tracking CDMA RF Power Amplifiers[C]. IEEEInternational Microwave Symposium Digest,2001,3:1509-1512.
    [106]刘青.快速参考跟踪电源的研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2013:6-22.
    [107]林成森.数值分析[M].北京:科学出版社,2006:318-321.
    [108]佟强.数字DC-DC变换器动态性能和系统稳定性提高方法研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2010:10-16.
    [109]Rauschenbach H S.太阳电池阵设计手册[M].张金熹,廖春发,傅德棣,等译.北京:宇航出版社,1987:43-62.
    [110]张臻,沈辉,李达.局部阴影遮挡的太阳电池组件输出特性实验研究[J].太阳能学报,2012,33(1):5-12.
    [111]李国良,李明,王六玲,等.阴影遮挡下空间太阳电池串联组件输出特性分析[J].光学学报,2011,31(1):1-6.
    [112]李鹏,程惠尔.太阳电池阵极月轨道在轨热分析[J].空间科学学报,2006,26(4):303-308.
    [113]徐向华,程雪涛,梁新刚.圆形太阳同步轨道卫星的空间热环境分析[J].宇航学报,2012,33(3):399-404.
    [114]薛守良,苏鸿根.实时阴影算法及实现[J].计算机应用,2004,24(3):82-84.
    [115]黄海兵,唐国金,李海阳.组合体太阳帆板遮挡分析[J].系统仿真学报,2009,21(11):3215-3218.
    [116]上爱红,刘明治.空间结构之间对太阳直接辐射的遮挡算法的研究[J].机械,2004,31(8):4-6.
    [117]叶荣,胡勇.空间光学遥感器太阳光照分析计算方法的研究[J].红外,2009,30(10):27-32.
    [118]Li L, Cai B, Hu J, et al. Satellite Illumination Algorithm Applied to PanelMulti-axis Rotation[C]. IEEE International Conference on InformationEngineering and Computer Science,2010:1-4.
    [119]Cai B, Li L, Hu J, et al. Research on Spacecraft Illumination[J].International Journal of Modern Education and Computer Science,2011,3(4):40-46.
    [120]孙伟,张琦,郭松辉.一种OpenGL中3D Studio模型的读取与控制方法[J].仪器仪表学报,2005,8(26):93-95.
    [121]常明,李丹,罗年猛.计算机图形学算法与应用[M].武汉:华中科技大学出版社,2009:40-46.
    [122]翟载腾,程晓舫,丁金磊,等.被部分遮挡的串联光伏组件输出特性[J].中国科学技术大学学报,2009,39(4):398-402.
    [123]冯宝成,苏建徽.部分遮挡条件下光伏组件的建模与仿真研究[J].电气传动,2011,41(7):61-64.
    [124]Turci F R, Macau E N, Yoneyama T. Efficient Chaotic Based SatellitePower Supply Subsystem[J]. Chaos, Solitons and Fractals,2009,42(1):396-407.
    [125]Cho B H, Lee J R, Lee F C. Large-signal Stability Analysis of SpacecraftPower Processing Systems[J]. IEEE Transaction on Power Electronics,1990,5(1):110-116.
    [126]Li Q, Yanag X, Chen S. Hyperchaos in a Spacecraft Power System[J].International Journal of Bifurcation and Chaos,2011,21(6):1719-1726.
    [127]Mojallizadeh M R, Karimi B. Nonlinear Control of a Satellite PowerSystem Based on the Sliding Mode Control[C]. IEEE Iranian Conference onElectrical Engineering (ICEE),2013:1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700