任意条件下光伏阵列的输出性能预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于太阳电池的特殊性质,光伏发电系统的研究如果采用真实的光伏阵列,会产生实验成本高、需要大量空旷场地和对光照、自然气候依赖性强等一系列的问题。若能够准确预测太阳电池在不同光照和温度下的输出特性,以及当太阳电池串、并联构成光伏阵列后新的输出特性,并由此分析其最大的输出功率,就能够节约大量实验成本。
     首先,提出了一种快速、精确的太阳电池(组件)模型参数的确定方法:基于太阳电池(组件)一般电流模型,通过对电流方程的一阶求导和在短路点处的合理简化,经过数学变换将超越方程转换为代数方程,结合电流方程在最大功率点处的极值表述,构造出一个封闭的代数方程组,可以较为准确地求解出五个参数值,再用非线性拟合的方法对解析解进行优化,从而一方面提高了太阳电池(组件)一般电流方程模型参数的求解精度,另一方面也大大提高了解的稳定性。
     其次,预测太阳电池(组件)的性能:太阳电池(组件)的制造厂商仅提供标准测试条件下的一条I-V曲线,而实际使用时组件的工作状态通常并不在测试条件上,因此预测组件在各种工况下的输出特性就十分必要。本文第三章提出仅依靠一条标准测试条件下组件的I-V特性曲线就可准确预测组件在不同工况下输出特性的方法。该方法先由一条标准测试条件下的I-V曲线提取出太阳电池模型参数,再结合模型参数随光照和温度的变化关系式,给出了不同光照和温度下组件性能特性的预测;并对模型参数就最大输出功率的影响做出了一些有意义的探讨:指出了标准测试条件下光生电流和二极管影响因子对组件P-T特性和P-S特性有着较大的影响,且均是值越大输出的最大功率越大;对太阳电池串、并联原则提出了有益的补充,在串联时各单体太阳电池除最大功率点电流相等外,最好各电池在标准测试条件下光生电流也相等;并联时除最大功率点电压相等外,最好各电池在标准测试条件下二极管影响因子也相等。
     在分析光伏阵列输出特性时,由于在串联连接时需要单独地研究电压,并联连接时需要单独地分析电流,而I-V方程的隐式表述无法将电流和电压分开,因而给分析组件串、并联连接特性带来了困难。运用Lambert W函数得到电流和电压方程的显式表述,分别给出了各组件模型参数相等和不等时光伏阵列的模型参数与构成阵列的组件模型参数之间的关系,从而可以对阵列的输出特性进行预测;对于安装了旁路二极管和隔离二极管的光伏阵列,运用分段函数的理论给出了预测其输出特性的方程,论证了光照不均和温度不均对阵列输出特性的影响:指出了光照不均匀对串联支路影响很大,对并联支路则影响不大;而温度不均匀对串联支路影响不大,但对并联支路则影响较大。
     针对Mallab仿真环境,以太阳电池五参数模型为基础,结合模型参数随光照和温度的变化关系式,现代电力电子技术,建立了光伏阵列模拟器的仿真模型。该模型完全模拟了太阳电池主电路结构,可分别对任意环境温度、太阳辐射强度下光伏阵列和带有二极管的光伏阵列的输出特性进行仿真实验,其结果对建立可以完全模拟任意工况下光伏阵列输出特性曲线的仿真模型具有很大的理论指导意义。
Because of the special properties of the solar cell, if the research of the solar power systems adopts true photovoltaic array, will produce a series of questions such as the high cost of experiment , needing a large number of spacious field, strong dependence on insolation level and natural climate. If the solar cell output characteristics can be predicted at different insolation level and ambient temperature accurately, as well as the array that the cells are connected in parallel and series output characteristics can be predicted, thus the maximum power can be analysed. A large number of experiment cost may be saved.
     First of all, a fast, accurate method for extracting the solar cell (module) model parameters is put forward. Based on solar cell current model, the current equation is transformed from the complicated transcendental equation into the simple algebraic equation by differential coefficient to current equation and simplifing at short circuit, combining with the description at the maximum power point to set up a close algebraic equation group for solving the series resistance, the shunt resistance, the photo-generated current, the reverse saturation current density and the diode ideal factor, then educe analytic solutions of various model parameters. At last, using nonlinear fitting optimizes the analytic solutions. This method on the one hand improves the precision of extracting parameters , on the other hand greatly improves the stability.
     Next, predicting the solar cell (module) performance. The solar cell (module) manufacturers provide only an I-V curve under the standard test condition, but the solar cell (module) actually does not work at the standard testing condition. Thus, the prediction of the solar cell (module) output characteristics under various working conditions is very necessary. A method can accurately predict the module output characteristics under different working conditions which only needs a measured I-V curve under standard testing conditions is present in the third chapter. This method, firstly, extracts the solar module model parameters using an I-V curve under standard testing conditions. Secondly, together with the relationships of model parameters varying with illumination intensity and cell temperature, the prediction of solar module output characteristics under different work condition is made. Finally some significant phenomena of solar module characteristics impacting the maximum power is discussed. The results show that the photo-generated current and the diode ideal factor at the standard testing condition have greater influence on the module P-T and P-S characteristics. Some useful supplements are put forward on the principles of series and parallel. The photo-generated current of individual cell in series at the standard testing condition is equal besides the current of maximum power, the diode ideal factor of individual cell in parallel at the standard testing condition is equal besides the voltage of maximum power.
     When analysing the output characteristics of photovoltaic array, series connected module need study voltage separately and parallel connected module need study current separately. But the implicit I-V equation expression can not be used to study current and voltage separately, which make the analysis for characteristics of series and parallel connected module difficult. But the explicit expressions of current and voltage which based on the Lambert W function make analysing current and voltage separately possible. The relationships between the array parameters and the modules parameters respectively are showed for individual module parameters being identical and different, thus the output characteristics of array are predicted. For photovoltaic array with bypass diodes and block diodes, the output characteristics of array are accurately described by subsection function. Uneven illumination and temperature impacting the output characteristics of array is demonstrated.
     A simulation model for photovoltaic array simulator is developed under Matlab environment, based on solar cell five parameters model, together with the relationships of model parameters varying with illumination intensity and cell temperature ,and modern power electronic technology,The model fully simulates the main circuit structure of solar cell. The I-V characteristics of photovoltaic array without diode and with diode can be simulated at any corresponding insolation level, ambient temperature. The results have great theoretical significance for developing the simulation model that can completely simulate the output characteristics of array under different working conditions .
引文
[1].安其霖,曹国琛,李国欣,刘宝元,张忠奎编.1984,太阳电池原理与工艺[M].上海:科学技术出版社,3-10.
    [2].京特.莱纳,汉斯.卡尔著,1991,太阳能的光伏利用[M].余世杰,何慧若译.合肥工业大学,1-17.
    [3].王长贵,崔容强,周篁,2003,新能源发电技术[M].北京:中国电力出版社,19-20.
    [4].Chenming Hu,Richard M.White,1983,Solar Cells,Mcgraw-Hill Inc,3-10,54-58.
    [5].赵争鸣,刘建政,孙晓瑛,袁立强.2005,太阳能光伏发电及其应用[M].北京:科学出版社,37-39.
    [6].P.T.Landsberg,G.Tonge,1980,J.Appl.Phys.51,R1-R20.
    [7].W.Shockley,H.J.Queisser,,J.Appl.Phys.32,510-519.
    [8].汉斯S劳申巴赫,1987,太阳电池阵设计手册-光电能转换原理及其应用.张金熹等译.北京:宇航出版社,31-34,131.
    [9].Duffle,J.A.,Beckman,W.A.,1991.Solar Engineering of Thermal Processes,second ed.John Wiley & Sons Inc.,New York.
    [10].余世杰,何慧若译.1991,太阳能的光伏利用[M].合肥:合肥工业大学,17-34.
    [11].赵争鸣,刘建政,孙晓瑛,袁立强.2005,太阳能光伏发电及其应用.北京:科学出版社,120-122.
    [12].Tae-Yeop Kim,Ho-Gyun Ahn,Seung Kyu Park,Youn-Kyun Lee,2001,in Proceedings of IEEE International Symposium on Industrial Electronics[J],2:1011-1014.
    [13].Liu X,Lopes L A C.2004,in Proceedings of 35~(th)Power Electronics Specialists Conference,3:2005-2010.
    [14].Z.Ouennoughi,M.Chegaar.1999,A simpler method for extracting solar cell parameters using the conductance method[J],Solid-State Electronics,43(11):1985-1988.
    [15].M.K.EL-Adwi,I.A.A1-Nuaim.2002,A method to determine the solar cell series resistance from a single I-V.Characteristic curve considering its shunt resistance-new approach[J].Vacuum,64(1):33-36.
    [16].M.Bashahu,1995,A.Habyarimana.Review of and test of methods for determination of the solar cell series resistance[J].Renewable Energy.6(2):129-138.
    [17].S K Sharmat,D Pavithra,N Srinivasamurthy.B L Agrawal.1993,Determination of solar cell parameters:an analytical approach[J].Phys.D,26:1130-1133
    [18].苏建徽,余世杰,赵为等,2001,硅太阳电池工程用数学模型[J],太阳能学报,22(4):409-412
    [19].Engin Kiran,Demir Inan.1999,An approximation to solar cell equation for determination of solar cell parameters[J].Renewable Energy.17(2):235-241
    [20].M.HaouariMerbah,M.Belhamel.2005,Extraction and analysis of solar cell parameters from the illuminated current-voltage curve[J].Solar Energy Materials & Solar Cells,87(1-4):225-233
    [21].徐林,崔容强,庞乾骏,2000,对太阳电池I-V曲线进行拟合的数论方法[J],太阳能学报,21(2):160-164
    [22].A.Ortiz-Conde,F.J.Garci'a Sa'nchez,2006,New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated I-V characteristics[J],Sol.Energy Mater.Sol.Cells,90(3):352-361.
    [23].V.Martinez,J.C.Jimeno,1998,Simultaneous fit to I-V characteristics of solar cells,Proceeding of 2"d World Conference and Exhibition on Photovoltaic Solar Energy Conversion,Wien,July,1324
    [24].A.Kaminski,JJ.Marchand,1997,A new method of parameters extraction from dark I-V curve,Proceedings of 26th PVSC,Washington,IEEE,203.
    [25].King,D.L.,2000.Sandia_s PV Module Electrical Performance Model(Version,2000).Sandia National Laboratories,Albuquerque,NM,September 5.
    [26].King,D.L.,Kratochvil,J.A.,Boyson,W.E.,Bower,W.I.,1998.Field Experience with a New Performance Characterization Procedure for Photovoltaic Arrays presented at the 2~(nd)World Conference and Exhibition on Photovoltaic Solar energy Conversion,Vienna,Austria,July 6-10.
    [27].King,D.L.,Boyson,W.E.,Kratochvil,J.A.,2004.Photovoltaic array performance model,Sandia Report No.SAND2004-3535 available from US Department of Commerce,National Technical Information Service,5285 Port Royal Rd,Springfield,VA 22161.
    [28].W.De Soto,S.A,Klein,W.A.Beckman,2006,Improvement and validation of a model for photovoltaic array performance[J],Sol.Energy 80,78-88.
    [29].Klein,S.,2005.EES--Engineering Equation Solver,F-Chart Software.Available from:www.fchart.com.
    [30].Jinlei Ding,Xiaofang Cheng,Tairan Fu,2005,Vaccum 77,163-167.
    [31].Riza Muhida,Minwon Park,and Mohammed Dakkak,et al.2003,A maximum power point tracking for photovoltaic-SPE system using a maximum current controller[J].Solar energy materials & solar cells, 75 (3-4) :697-706.
    [32].Mohammad A.S. Masoum, Hooman Dehbonei and Ewald F. Fuchs. 2002, Theorectical and Experimental Analyses of Photovoltaic System with Voltage- And Current-Based Maximum Power-Point Tracking. IEEE Transactions on energy conversion, 17(4):514-522.
    [33].Charles E. Chamberlin, Peter Lehman, James Zoellick and Gian Pauletto. 1995, Effects of mismatch losses in photovoltaic arrays [J]. Solar Energy, 54(3): 165-171.
    [34].Narendra D,Kaushika and Nalin K. 2003, Gautam.Energy Yield Simulations of Interconnected Solar PV Arrays, IEEE Transactions on energy conversion, 18(1):127-133.
    [35].F.Iannone, G.Noviello and A.Sarno. 1998, Mote Carlo techniques to analyze the electrical mismatch losses in large-scale photovoltaic generators [J].Solar Energy, 62(2):85-92.
    [36].Rafael Pen~a and Carlos Algora. 2003,Evaluation of Mismatch and Non-uniform Illumination Losses in Monolithically Series-Connected GaAs Photovoltaic Converters[J], Progress in Photovoltaics: Research and applications, 11(2): 139-150
    [37].M.C. Alonso,J.M. Ruiz, F. Chenlo, 2006, Experimental study of mismatch and shading effects in the I-V characteristic of a photovoltaic module[J], Solar Energy Materials & Solar Cells, 90(3):329-340.
    [38].Gavaghan D.J., Hahn C.E.W, Kovach A, 1996, Determination of energy output losses due to shading of building-integrated photovoltaic arrays using a raytracing technique[J], Solar Energy, 57 (2): 117-124.
    [39].Achim Woyte, Johan Nijs, Ronnie Belmansa, 2003, Partial shadowing of photovoltaic arrays with different system configurations: literature review and field test results[J], Solar Energy, 74 (3): 217-233.
    [40].Sharma, A.K. Dwivedi, R.Srivastava, 2003, Pperformance analysis of a solar array under shadow condition[J], Solar Energy, 74(3): 217—233.
    [41]. A. Jain, A. Kapoor, 2004, Sol. Energy Mater. Sol. Cells 81269-277.
    [42]. Wolf M., Rauschenbach H, 1963,Adv. Energy Conversion 3,455.
    [43].Rauschenbach H. 1980, Solar Cell Array Design handbook, New York, Van Nostrand Reinhold Company, P56.
    
    [44].Rajkanan K., Shewchun J., 1979, Solid State Electron. 22,193.
    [45].G. L. Araujo and E. Sanchez, 1982 ,IEEE Trans. Electron Dev. ED-29 ,1511.
    [46].Green M.A., 1982, Solar Cells Operating Principles Technology and System applications, Englewood Cliffs, NJ: PrenticeHall,971
    
    [47].Phang J. C. H., Chan D. S. H. and Phillips J. R., 1984,Electron. Lett. 20,406.
    [48].Phang J. C. H., Chan D. S. H., 1984, IEEE Trans. Electron. Dev. ED-31,717-718.
    [49].Kennerud K. L., IEEE Trans. 1969,Aerosp. Electr. Syst. AES-5 ,912.
    [50].Charles J. P., Abdelkrim M.,. Muoy Y. H and. Mialhe P, 1981, Solar Cells 4,169.
    [51].Sah C.T., Noyce R.N., Shockley W., 1957, Proc. IRE 45,1228-1243.
    [52].Shockley W., Bell Syst. 1949Tech.J. 28 ,435-489.
    [53].Faulkner E.A., Buckingham M.J, 1968 Electron Lett 4 , 359-360.
    [54].Nassbaum A., 1973,Phys Stat. Sol. A 19 ,441-450.
    [55].Ashburn A, Morgan D.V., Howes M.J., 1975,Solid State Electron. 18 , 569-577.
    [56].Ponpon J P, Siffert P J. 1976 ,Appl. Phy. 47,3248-3251.
    [57].Green M A, 1977,SoIid State Electron. 20,265-266.
    [58].Mialhe P. Charette J , Charles J. P., 1983, Proc. Znt. AMSE Conf. Modelling and Simulation, 97-103.
    [59]. Mialhe P., Charette J. Am. J. 1983,Phys.,51, 68-70.
    [60]. Wolf M. and Rauschenbach H., 1963,Adv. Energy Convers. 3,455-479.
    [61].Panayotatos P, Card H C, 1978,Proc. 13th ZEEE Photovoltaic Specialists Conf. 633-638.
    [62].Tarr N. G.,Pulfrey D.L., 1979, Proc. 2nd Eur. Communities Conf. on Phorouolraic Solar Energy, Berlin, p58-64.
    [63].Dhanasekarian P. C, 1981,Gopalam B. S. V. Solid State Electron. 24, 1077-1080.
    [64]. Warashina M and Ushirokawa A Japan. J. 1980 ,Appl. Phys. 19,179-182.
    [65].Singal C.M., 1981,Solar Cells 3 ,163-177.
    [66].Quanxi J,.Enke L., 1987,Solar Cells 22,15-21.
    [67].Quanxi J,.Anderson W. A, Enke L., Zhang S. 1988,Solar Cells 25,311-318.
    [68].Gupta S K, Vyas J C , Gupta M K, 1986,1 Phys. E: Sci. Instrum ,19.
    [69].Datta S.K,.Mukhopadhyaay K ,.Bandopadhyay S, Saha H., 1992,Solid State Electronics 35,1667-1673.
    [70].Giardini K,. Jacobsen S.E, 1991,Solid State Elect. 31 , 69-77
    [71].Conde A. Ortiz, Garcia F.J. 1992, Electron. Lett. 28 ,1964-1965.
    [72]. Garcia F.J., Conde A. Ortiz, Liou J.J. 1996, IEE Proc.-Circuits Devices systems 143, 68-70
    [73].Conde A.Oritz ,Yuansheng Ma,J.Thomson,E.Santos, Liou J J,.Garcia F.J,.Lei M,Finol J.,Layman P. 1999, Solid State Elect 43 , 845-848.
    [74].Ouennoughi Z,.Cheggar M. 1999, Solid State Elect. 43,1985-1988.
    [75].Cheggar M., Ouennoughi Z, Hoffmann A. 2001, Solid State Elect 45,293-296.
    [76].Easwarakhanthan T, Bottin J, Bouhouch I, Boutrit C. 1986,Int J Solar Energy 4 ,1.
    [77].Kothari L.S., Kapoor A., J. 1982,Appl. Phys. 53 ,5982-5984.
    [78].Kaminski A., Marchand J.J., Laugier A, 1999,Solid State Elect,43 , 741-745.
    [79].Lee TC,Fung S,beling CD,Au HL.1992,J.Appl.Phys,,72,4739.
    [80].Keith.R.McIntosh,James D.Clark,2002,Solid State Elect,46,2009-2011.
    [81].Charles E.Chamberlin,Peter Lehman,James Zoellick,Ghan Pauletto,1995,Solar Energy 54,165-171.
    [82].Shen Yuliang.1997,A photovoltaic array simulator[J],Acta Energiae Solaris Sinica,(18):448-451.
    [83].沈玉,1997,跟随样品太阳电池的光伏阵列模拟器[J],太阳能学报,18(4):448-451.
    [84].苏建徽,余世杰,赵为等.2002,数字式太阳电池阵列模拟器[J],太阳能学报,23(1):111-114.
    [85].宋平岗.2003,再生能源系统中太阳能电池仿真器的研究[J],电力电子技术,37(4):41-44.
    [86].张熙霖.2004.基于DSP2407的光伏方阵仿真电源的设计与研究[D],北京:中国科学院电工研究所硕士学位论文,
    [87].Leem C S.1996,An automated fault diagnosis for manufacturing process monitoring and control[J].International Journal of Modeling and Simulation,16(4):200-208.
    [88].Shafer G.1976,A mathematical theory of evidence[M].Princeton University Press,Princeton,New Jersey,1-32.
    [89].余世杰,何慧若译,1991,太阳能的光伏利用[M],合肥:合肥工业大学,11-17.
    [90].Easwarakhanthan T,Bottin J,Bouhouch I,Boutrit C.1986,Nonlinear Minimization Algorithm for Determining the Solar Cell Parameters with Microcomputers[J],Int J Solar Energy,4(1):1-12
    [91].石振东,刘国庆,1991.实验数据处理与曲线拟合技术[M],哈尔滨:哈尔滨船舶工程学院,
    [92].韦博成,万方焕等译,1997.非线性回归分析及其应用[M],北京:中国统计出版社
    [93].周剑平,2007.Origin实用教程(7.5版)[M],西安:西安交通大学,
    [94].Adel A.Ghoneim,Ahmad Y.A1-Hasan,Ali H.Abdullah,2002,Renewable Energy 25,81-100.
    [95].Messenger,R.A.,Ventre,J.,2004.Photovoltaic Systems Engineering,second ed.CRC Press LLC,Boca Raton,FL.
    [96].魏晋云.2004,太阳电池效率与串联电阻的近似指数关系,太阳能学报,25(3):356-358.
    [97].丁金磊.2007.太阳电池I-V方程显式求解的原理研究及应用[D]:[博士].合肥:中国科学技术大学,54-56.
    [98].A.Virtuani,E.Lotter,M.Powalla,2003,Performance of Cu(In,Ga)Se2 solar cells under low irradiance,Thin Solid Films,443-447
    [99].L.S.Kothari,P.C.Mathur,Avinashi Kapoor etc.1982,J.Appl.Phys.53,5982-5984.
    [100].Schroder,D.K.,1998.Semiconductor Material and Device Characterization,second ed.John Wiley & Sons Inc.,NewYork.
    [101].W.De Soto,2004,Improvement and Validation of a Model for Photovoltaic Array Performance[D]:[mater].Solar Energy Laboratory University of Wisconsin-Madison,101
    [102].Wolf M,1963,Rauschenbach H.Adv.Energy Conversion 3,455
    [103].J.H.Lambert,1758,Acta Helv.Phys.Math.Anat.Bot-Med.3,128.
    [104].L.Euler,1921,De Serie Lambertina Plurimisque eius ingignibus properitatibus,Lenolardi Euleri opera Omania,Series Prima,Vol.Ⅵ,350.
    [105].R.M.Corless,G.H.Gonnet,D.E.G.Hare,D.J.Jeffrey,D.E.Knuth,1996,Adv.Comput.Math.5,329-359.
    [106].F.N.Fritsch,R.E.Shafer,W.P.Crowley,197,3Commun.ACM 16,123-124.
    [107].D.A.Barry,P.J.Culligan-Hensley,S.J.Barry,1995,ACM Trans.Math.Software 21,161-171.
    [108].D.A.Barry,P.J.Culligan-Hensley,S.J.Barry,1995,ACM Trans.Math.Software 21,172-181.
    [109].D.A.Barry,J.-Y.Parlange,L.Li,H.Prommer,C.J.Cunningham,F.Stagnitti,2000,Mathematics and Computers in Simulation 53,95-103.
    [110].S.R.Valluri,D.J.Jeffrey,R.M.Corless,Canad.J.2000,Phys.78,823-831.
    [111].J.M.Caillol,2003,J.Phys.A:Gen.36,10431-10442.
    [112].Matlab,The MathWorks,Inc.2007.http://www.mathworks.com.
    [113].Maplesoft,Waterloo Maple Inc.2007.http://www.maplesoft.com.
    [114].Mathematic,Wolfram Research Inc.2007.http://www.wolfram.com.
    [115].余世杰,何慧若译,1991,太阳能的光伏利用[M],合肥:合肥工业大学,20-34.
    [116].韩力,吴海霞等著,2001,Electronics Workbench应用教程[M],北京:电子工业出版社
    [117].康华光主编,2002,电子技术基础:模拟部分[M],北京:高等教育出版社,45-46
    [118].赵争鸣,刘建政,孙晓瑛,袁立强.2005,太阳能光伏发电及其应用[M].北京:科学出版社,233-234.
    [119].Leem C S.1996,An automated fault diagnosis for manufacturing process monitoring and control[J].International Journal of Modeling and Simulation,16(4):200-208.
    [120].Shafer G.1976,A mathematical theory of evidence[M].Princeton University Press,Princeton,New Jersey,1-32.
    [121].薛定宇,陈阳泉.2005,基于MATLAB/Simulink的系统仿真技术与应用[M].清华大学出版社.第六版
    [122].Shoichiro Nakamaura[美],粱恒、刘晓艳译.2002.科学计算引论-基于MATLAB的数值分析(第二版)[M].电子工业出版社.
    [123].李维波.2006,MATLAB在电气工程中的应用[M].中国电力出版社.第一版.
    [124].车晴.2000.电子系统仿真与MATLAB[M].北京:北京广播学院出版社.
    [125].茆美琴,余世杰,苏建徽.2005,带有MPPT功能的光伏阵列Matlab通用仿真模型[J].系统仿真学报.17(5):1248-1251.
    [126].姚仲熙,崔容强.1998,一种工业用太阳电池参数测试台[J].太阳能学报.9(2):226-232.
    [127].朱小强,杜燕,苏建徽等.太阳电池阵列光伏特性测试的研究和应用[A].中国高校学校电力系统及其自动化专业第二十届学术年会论文集[c].485-487.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700