基于并网逆变器电能质量与变换效率的若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
世界能源危机和环境污染已经成为制约人类社会可持续发展的严重问题。以太阳能、风能等为代表的分布式发电和并网逆变技术在发展可再生能源、实现我国节能减排中具有重要的战略意义和应用价值。在分布式发电系统中,并网逆变器作为能量传输的通道,如何实现尽可能高的变换效率和电能质量是一个重要的研究课题。论文围绕这两个关键问题,在总结、归纳当前研究现状和技术发展的基础上,主要从以下几个方面进行深入研究:无变压器型并网逆变器电路拓扑及其调制方式、并网逆变器死区补偿和消除方法、两级式并网逆变器建模和控制策略、并网逆变器电流控制技术等。
     首先,论文在分析无变压器型并网逆变器对地共模漏电流产生原理的基础上,推导了无变压器型并网逆变器共模谐振电路的数学模型,给出了无变压器型并网逆变器的无共模漏电流条件。根据无共模漏电流条件,论文提出一种对称H6结构的无变压器型并网逆变器拓扑结构,并基于该拓扑,实现了单极性SPWM和倍频SPWM调制策略。单极性调制有利于提高拓扑的变换效率和降低系统的散热难度;倍频调制则提高了拓扑的等效工作频率,使并网电流谐波含量和THD下降,有效改善了并网电能质量。论文还详细研究了该对称H6结构无变压器型并网逆变器在非理想条件下存在的并网电流与输出电压的相移问题、开关器件的死区时间问题和开关器件寄生结电容的平衡条件。
     其次,论文在分析电压源型逆变器死区效应产生原理的基础上,推导了理想条件下死区效应的数学模型,详细分析了功率器件开通和关断时间、导通压降等固有非线性特征及零电流箝位现象对逆变器死区效应的影响,并获得了死区电压导致的并网电流基波损失、基波相移和低次谐波注入的数学表达式。在上述基础上,论文提出一种基于无效器件原理的在线自适应死区消除方法。该方法通过在线跟踪负载变化,自适应地计算合理的电感电流过零区域宽度,能够较准确地实现电流过零区域和非过零区域中死区效应的分别消除,有效降低输出电压和电流的低次谐波含量和THD,改善并网电能质量,该方法对电流过零区域内电压、电流畸变的抑制效果尤为明显。利用DSP实现的在线自适应算法降低了对电流检测器件特性和精度的依赖,增强了该方法的工程实用性和可靠性。
     然后,论文从两级式并网发电系统出发,推导了高增益有源箝位软开关交错并联Boost变流器稳态特性更为准确的数学模型。模型证明该变流器的电压增益表达式与占空比、耦合电感匝比、耦合电感等效漏感、变流器开关频率以及负载大小有关,具有较高的精度,有利于提高两级式系统的控制精度和最大功率点跟踪效果。针对作为功率后级的并网逆变器,论文提出一种带双补偿环节的直接电流控制方法。该方法建立在PI控制器基础之上,通过增加两个前馈补偿环节,在不影响双环控制系统稳定性的前提下,能有效消除直流母线电压和电网电压各次谐波及随机扰动对并网电流THD的影响。为实现并网电流对正弦参考的无静差跟踪,论文还提出一种预测电流控制的改进模型,证明了传统预测电流控制的基本模型仅是该改进模型的一个特例。应用该改进模型的预测电流控制方法除能提高并网电流的跟踪精度,减小并网电流的谐波含量和THD外,还能有效抑制模型参数特别是滤波电感参数发生匹配失真时对系统稳定性造成的影响,降低并网电流发生振荡的概率,使控制系统鲁棒性加强。
     最后,利用上述研究成果,论文完成了并网逆变器在电梯能量回馈单元、光伏并网发电系统和绿色节能电子负载三种工程实例中的应用工作。产品测试和应用实践证明,研发产品的主要技术参数已达到或超过目前工业界主流产品的性能水平。
The energy crisis and environmental pollution around the world have become two severe issues that impede the sustainable development of human society. The distributed generation typified by solar and wind energy and the grid-connected inverting technologies possess both strategic significance and application prospect in developing renewable energy and realizing energy saving and pollutant reduction. The power energy is transmitted by grid-connected inverters in distributed generation systems. Hence, the realization of high efficiency and power quality in such system is a significant subject of studies. Focused on the two crucial tasks, and based on the overview of the existing studies and technologies, this dissertation has made thorough research on the following aspects:topology and modulation strategy of the transformerless grid-connected inverter, dead-time compensation and elimination method of the grid-connected inverter, modeling and control scheme of the two-stage grid-connected system, and current control technology of the grid-connected inverter.
     Firstly, based on the generation principle of the common-mode leakage current, a mathematical model of the common-mode resonant circuit in transformerless gird-connected inverters is derived in this dissertation. The condition to meet no common-mode leakage current is obtained by adopting the model. And a novel transformerless grid-connected inverter topology with symmetrical H6-type configuration is proposed, which can guarantee not to generate the common-mode leakage current. The unipolar SPWM and double frequency SPWM strategies can be both applied in the proposed inverter. The high efficiency and convenient thermal design are achieved by adopting the unipolar SPWM. Moreover, the higher equivalent frequency and lower current ripple are achieved depending on the double frequency SPWM. Therefore the harmonic contents and THD of the output current are reduced greatly, and the power quality is improved accordingly. Furthermore, the influences of the phase shift between the output voltage and grid-connected current, the configurations of the dead time among all power switches and the balance conditions of the switches'parasitical junction capacitance are discussed detailedly.
     Secondly, the generation principle of dead-time effects is analyzed, and an ideal model of dead-time effects is derived in this dissertation. Furthermore, the nonideal characteristics of the turn-on time, turn-off time and conduction voltage of power switches are discussed in detail. The mathematical functions for describing the loss and phase shift of the fundamental component and low-frequency harmonic contents of the output current, which are induced by the dead-time voltage, are formulated. Based on the above analyses, a novel online adaptive dead-time elimination method is proposed. Through tracking the load change on-line and determining dynamically the current direction, the zero-crossing current region and the non-zero-crossing current region are precisely distinguished and the optimal width of the zero-crossing current region is adaptively calculated. Therefore, the dead-time effects are eliminated respectively in the two different regions of the whole sinusoidal modulation cycle. The proposed method can significantly restrain the output distortion in the zero-crossing current region and reduce the low-frequency harmonic contents and THD. Moreover, the online adaptive arithmetic is implemented by DSP chip and has little dependence on the precision of the current detection devices, which improves the practicability and reliability of the proposed method.
     Then, the topological structure and control strategy of two-stage grid-connected system are explored in this dissertation. As the first power-processing stage, an accurate steady-state model of the high step-up interleaved Boost converter with active-clamp circuits is derived, which correlates the voltage gain of the converter with the duty cycle, the turns ratio and leakage inductance of the winding-coupled inductors, the switching frequency and the load. A full-bridge inverter with bidirectional power flow is used at the second power-processing stage, which employs the direct current control strategy based on PI regulators. And two feedforward compensation units are added in to perform in the control loops to restrain the disturbances of the DC-bus voltage and grid voltage, and then achieve the low THD of the output current. Meanwhile, the proposed control method has no influence on the system's stability. Furthermore, an improved predictive current control expression is proposed, which calculates the inverter voltages required to force the output current to follow the reference without the steady-state error. The algorithm not only has the advantages of precise current tracking, low harmonic contents and THD of the output current, but also reduces the probability of output current oscillation and enhances the system stability and robustness to the model parameter mismatch especially in the filter inductance estimate.
     Lastly, based on the above research results, the engineering applications of grid-connected inverters are achieved in the three projects of energy regenerative unit for the elevator system, grid-connected photovoltaic power system and regenerative electronic load. Furthermore, the production tests and the practical application have proved that the major technical parameters and performances of the grid-connected inverters have reached or exceeded those of the similar products in present industry.
引文
[1]BP Group, "BP statistical review of world energy 2008," June 2008.
    [2]BP Group, "BP statistical review of world energy 2009," June 2009.
    [3]郭金瑞,许华明,”世界一次能源消费分析,”资源与产业,vol.12,no.1,pp.28-32,2010
    [4]周庆凡,郭金瑞,”我国一次能源开发利用现状,”资源与产业,vol.11,no.1,pp.27-33,2009.
    [5]王立敏,”从动荡与结构变化中认知世界能源市场——《BP世界能源统计2009》解析,”国际石油经济,vol.17,no.7,pp.44-52,2009.
    [6]江泽民,”对中国能源问题的思考,”上海交通大学学报,vol.42,no.3,pp.345-359,2008.
    [7]中华人民共和国国家统计局,“中华人民共和国2009年国民经济和社会发展统计公报,”2010年2月25日.
    [8]中华人民共和国国家统计局,“中华人民共和国2008年国民经济和社会发展统计公报”2009年2月26日.
    [9]中华人民共和国国家统计局,“中华人民共和国2007年国民经济和社会发展统计公报,”2008年2月28日.
    [10]中华人民共和国国家统计局,“中华人民共和国2006年国民经济和社会发展统计公报”2007年2月28日.
    [11]中华人民共和国国家统计局,“中华人民共和国2005年国民经济和社会发展统计公报”2006年2月28日.
    [12]周大地,郁聪,朱跃中,“我国节能现状与“十一五”节能重点,”人民网/人民日报/中国经济时报.
    [13]中国科学院可持续发展战略研究组,“2009中国可持续发展战略报告—探索中国特色的低碳道路,”科学出版社,2009年3月.
    [14]华贲,“低碳发展时代的世界与中国能源格局,”中外能源,vol.15,no.2,pp.1-9,2010.
    [15]赵争鸣,刘建政,孙晓瑛,袁立强,“太阳能光伏发电及其应用,”科学出版设,2005.
    [16]徐孝纯,“中国与全球气候变化,”技术经济与管理研究,vol.5,pp.69-72,2008.
    [17]李元,王继停,““低碳经济”的思维模式—哥本哈根会议掀起全球绿色浪潮,”武汉理工大学学报(社会科学版),vol.23,no.2,pp.167-172,2010.
    [18]耿海青,谷树忠,侯西勇,“基于地统计学方法的我国SO2污染时空演变分析,”中北大学学报(自然科学版),vol.26,no.5,pp.372-375,2005.
    [19]左然,施明恒,王希麟,“可再生能源概论,”北京:机械工业出版社,2007.6.
    [20]余寅,唐宏德,郭家宝,“中国可再生能源发展前景分析,”华东电力,vol.37,no.8,pp.1306-1308,2009.
    [21]徐冬青,“世界可再生能源的发展与我国的政策取向,”学海,no.6,pp.69-72,2009.
    [22]国务院发展研究中心课题组,〝促进新能源技术的开发利用,〞发展研究,no.2,pp.4-8,2009.
    [23]钱伯章,〝世界能源消费现状和可再生能源发展趋势(上),〞节能与环保,no.3,pp.8-11,2006.
    [24]钱伯章,〝世界能源消费现状和可再生能源发展趋势(下),〞节能与环保,no.4,pp.13-16,2006.
    [25]UNEP, "Global Trends in Sustainable Energy Investment 2009," 2009.
    [26]H. Haeberlin, "Evolution of inverters for grid connected PV systems from 1989 to 2000," Proc. of 17th European Photovoltaic Solar Energy Conference, Munich, Germany, Oct.22-Oct.26,2001.
    [27]M. Frisch, E. Temesi,韩军,陈道杰,〝最新高效率光伏逆变器拓扑结构及功率器件介绍,〞变频器世界,no.3,pp.31.36,2009.
    [28]R. Gonzalez, J. Lopez, P. Sanchis, E. Gubia, A. Ursua, L. Marroyo, "High-Efficiency Transformerless Single-phase Photovoltaic Inverter," in Power Electronics and Motion Control Conference,2006. EPE-PEMC 2006. 12th International,2006, pp.1895-1900.
    [29]T. Kerekes, R. Teodorescu, C. Klumpner, M. Sumner, D. Floricau, P. Rodriguez, "Evaluation of three-phase transformerless photovoltaic inverter topologies," in Power Electronics and Applications,2007 European Conference on,2007, pp.1-10.
    [30]O. Lopez, R. Teodorescu, J. Doval-Gandoy, "Multilevel transformerless topologies for single-phase grid-connected converters," in IEEE Industrial Electronics, IECON 2006-32nd Annual Conference on,2006, pp.5191-5196.
    [31]S. B. Kjaer, J. K. Pedersen, F. Blaabjerg, "A review of single-phase grid-connected inverters for photovoltaic modules," Industry Applications, IEEE Transactions on, vol.41, no.5, pp.1292-1306,2005.
    [32]L. Quan, P. Wolfs, "A Review of the Single Phase Photovoltaic Module Integrated Converter Topologies With Three Different DC Link Configurations," Power Electronics, IEEE Transactions on, vol.23, no.3, pp. 1320-1333,2008.
    [33]Sunways AG, Photovoltaic Technology, "Sunways Solar Inverter AT 5000, AT 4500, AT 3600 and AT 2700," SD110312A version 01/10 EN,2010.
    [34]SMA Solar Technology AG, "Sunny Boy 3000TL/4000TL/5000TL," Sunny Family 2008/2009,2009.
    [35]Elettronica Santerno, "Sunway M XS 2200/3000/3800/5000 TL," Products Catalogue 2010,2010.
    [36]Ingeteam Energy, S.A., "Ingecon SunLite 2.5TL/3TL/3.3TL/3.68TL/ 3.8TL/4.6TL/5TL/6TL " Ingecon Sun, Photovoltaic Solar Energy,2010.
    [37]R. Gonzalez, J. Lopez, P. Sanchis, L. Marroyo, "Transformerless Inverter for Single-Phase Photovoltaic Systems," Power Electronics, IEEE Transactions on, vol.22, no.2, pp.693-697,2007.
    [38]T. Kerekes, R. Teodorescu, M. Liserre, "Common mode voltage in case of transformerless PV inverters connected to the grid," in Industrial Electronics, 2008. ISIE 2008. IEEE International Symposium on,2008, pp.2390-2395.
    [39]O. Lopez, F. D. Freijedo, A. G. Yepes, P. Fernandez-Comesaa, J. Malvar, R. Teodorescu, J. Doval-Gandoy, "Eliminating Ground Current in a Transformerless Photovoltaic Application," Energy Conversion, IEEE Transactions on, vol.25, no.1, pp.140-147,2010.
    [40]T. Kerekes, R. Teodorescu, U. Borup, "Transformerless Photovoltaic Inverters Connected to the Grid," in Applied Power Electronics Conference, APEC 2007-Twenty Second Annual IEEE,2007, pp.1733-1737.
    [41]韦钢,吴伟力,胡丹云,李智华,〝分布式电源及其并网时对电网的影响,〞高电压技术,vol.33,no.1,pp.36-40,2007.
    [42]韩民晓,刘迅,〝分布式电源并网中电能质量相关规范探讨,〞电力设备,vol.8,no.1,pp.57-60,2007.
    [43]T. Ackermann, V. Knyazkin, "Interaction between distributed generation and the distribution network:operation aspects," in Transmission and Distribution Conference and Exhibition 2002:Asia Pacific. IEEE/PES,2002, pp. 1357-1362 vol.2.
    [44]IEEE Std.1547, "IEEE standard for interconnecting distributed resources with electric power systems," 2003.
    [45]IEC 61727 CDV, "Characteristics of the utility interface for photovoltaic (PV) systems," 2002.
    [46]马昕霞,宋明中,李永光,〝风力发电并网技术及其对电能质量的影响,〞上海电力学院学报,vol.22,no.3,pp.283-286,2006.
    [47]"DKE Deutsche Kommission Elektrotechnik Elektronik Informationstechnik im DIN und VDE," DIN VDE 0126-1-1,2005.
    [48]R. Gonzalez, E. Gubia, J. Lopez, L. Marroyo, "Transformerless Single-Phase Multilevel-Based Photovoltaic Inverter," Industrial Electronics, IEEE Transactions on, vol.55, no.7, pp.2694-2702,2008.
    [49]N. Kasa, T. Iida, H. Iwamoto, "An inverter using buck-boost type chopper circuits for popular small-scale photovoltaic power system," in Industrial Electronics Society,1999. IECON '99 Proceedings. The 25th Annual Conference of the IEEE,1999, pp.185-190 vol.1.
    [50]K. Dietrich, "Wechselrichter," DE Patent DE19642522 (C1),1998-04-23.
    [51]S. Araujo, P. Zacharias, R. Mallwitz, "Highly Efficient Single-Phase Transformerless Inverters for Grid-Connected Photovoltaic Systems," Industrial Electronics, IEEE Transactions on, vol. PP, no.99, pp.1-1,2009.
    [52]V. Matthias, G. Frank, B. Sven, H. Uwe, "Method of converting a direct current voltage from a source of direct current voltage, more specifically from a photovoltaic couse of direct current voltage, into a alternating current voltage " DE Patent DE102004030912 (B3),2006-01-19.
    [53]S. Heribert, S. Christoph, K. Juergen, "Current inverter for direct/alternating currents, has direct and alternating connections with an intermediate power store, a bridge circuit, rectifier diodes and a inductive choke," DE Patent DE10221592 (A1),2003-12-04.
    [54]Y. Wensong, L. Jih-Sheng, Q. Hao, C. Hutchens, Z. Jianhui, G. Lisi, A. Djabbari, G. Smith, T. Hegarty, "High-efficiency inverter with H6-type configuration for photovoltaic non-isolated ac module applications," in Applied Power Electronics Conference and Exposition (APEC),2010 Twenty-Fifth Annual IEEE,2010, pp.1056-1061.
    [55]J. Seung-Gi, P. Min-Ho, "The analysis and compensation of dead-time effects in PWM inverters," Industrial Electronics, IEEE Transactions on, vol.38, no.2,pp.108-114,1991.
    [56]C.M.Wu,L.Wing-Hong,H.Shu-Hung Chung,”Analytical technique forcalculating the output harmonics of an H-bridge inverter with dead time," Circuits and Systems Ⅰ:Fundamental Theory and Applications, IEEE Transactions on, vol.46, no.5, pp.617-627,1999.
    [57]刘军锋,李叶松,”死区对电压型逆变器输出误差的影响及其补偿,”电工技术学掘vol.22,no.5,pp.117-122,2007.
    [58]A. R. Munoz, T. A. Lipo, "On-line dead-time compensation technique for open-loop PWM-VSI drives," Power Electronics, IEEE Transactions on, vol. 14, no.4, pp.683-689,1999.
    [59]S. Y. Kim, P. Seung-Yub, "Compensation of Dead-Time Effects Based on Adaptive Harmonic Filtering in the Vector-Controlled AC Motor Drives," Industrial Electronics, IEEE Transactions on, vol.54, no.3, pp.1768-1777, 2007.
    [60]刘凤君,"SPWM逆变器死区影响的几种补偿方法,"中国电工技术学会电力电子学会第七届全国学术会议,pp.213-222,2000.
    [61]刘凤君,”现代逆变技术及应用,”北京:电子工业出版社,2006.9.
    [62]T. Sukegawa, K. Kamiyama, K. Mizuno, T. Matsui, T. Okuyama, "Fully digital, vector-controlled PWM VSI-fed AC drives with an inverter dead-time compensation strategy," Industry Applications, IEEE Transactions on, vol.27, no.3, pp.552-559,1991.
    [63]余功军,钟彦儒,杨耕,"一种IGBT变频器死区时间的补偿策略,"电力电子技术,no.4,pp.7-9,1997.
    [64]Y. H. Liu, C. L. Chen, "Novel dead time compensation method for induction motor drives using space vector modulation," Electric Power Applications, IEE Proceedings-, vol.145, no.4, pp.387-392,1998.
    [65]黄文新,胡育文,李磊,”一种新颖的空间电压矢量调制逆变器的死区补偿方法,"南京航空航天大学学报,vol.34,no.2,pp.143-147,2002.
    [66]D. Leggate, R. J. Kerkman, "Pulse-based dead-time compensator for PWM voltage inverters," Industrial Electronics, IEEE Transactions on, vol.44, no.2, pp.191-197,1997.
    [67]S. H. Kim, T. S. Park, J. Y. Yoo, G. T. Park, N. J. Kim, "Dead time compensation in a vector-controlled induction machine," in Power Electronics Specialists Conference,1998. PESC 98 Record.29th Annual IEEE,1998, pp. 1011-1016 vol.2.
    [68]梁希文,蔡丽娟,”逆变器死区效应傅里叶分析与补偿方法,”电力电子技术,vol.40,no.6,pp.118-120,2006.
    [69]吴茂刚,赵荣祥,汤新舟,”空间矢量PWM逆变器死区效应分析与补偿方法,”浙江大学学报(工学版),vol.40,no.3,pp.469-473,2006.
    [70]程小猛,陆海峰,瞿文龙,张星,樊扬,伍理勋,蒋时军,”用于逆变器死区补偿的空间矢量脉宽调制策略,”清华大学学报(自然科学版),vol.48,no.7,pp.1077-1080,2008.
    [71]O. Won Seok, K. Yong Tae, K. Hee Jun, "Dead time compensation of current controlled inverter using space vector modulation method," in Power Electronics and Drive Systems,1995., Proceedings of 1995 International Conference on,1995, pp.374-378 vol.1.
    [72]胡庆波,吕征宇,”一种新颖的基于空间矢量PWM的死区补偿方法,"中国电机工程学报,vol.25,no.3,pp.13-17,2005.
    [73]H. Sugimoto, K. Washida, "A proposition of design method for modified repetitive control system with corrected dead time using sensitivity function shaping and its application to motor control system," in Power Conversion Conference-Nagaoka 1997., Proceedings of the,1997, pp.619-624 vol.2.
    [74]L. Ben-Brahim, "On the compensation of dead time and zero-current crossing for a PWM-inverter-controlled AC servo drive," Industrial Electronics, IEEE Transactions on, vol.51, no.5, pp.1113-1118,2004.
    [75]李剑,康勇,陈坚,"单相SPWM逆变器的死区效应分析和补偿策略,”电气传动,no.1,pp.12-17,2003.
    [76]C. Attaianese, G. Tomasso, "Predictive compensation of dead-time effects in VSI feeding induction motors," Industry Applications, IEEE Transactions on, vol.37, no.3, pp.856-863,2001.
    [77]刘亮,邓名高,欧阳红林,周马山,"基于预测电流控制的PWM逆变器死区补偿方法研究,”电工技术学报,vol.20,no.8,pp.78-83,Aug.2005.
    [78]T. J. Summers, R. E. Betz, "Dead-time issues in predictive current control," Industry Applications, IEEE Transactions on, vol.40, no.3, pp.835-844, 2004.
    [79]K. Hyun-Soo, M. Hyung-Tae, Y. Myung-Joong, "On-line dead-time compensation method using disturbance observer," Power Electronics, IEEE Transactions on, vol.18, no.6, pp.1336-1345,2003.
    [80]N. Urasaki, T. Senjyu, K. Uezato, T. Funabashi, "On-line dead-time compensation method for voltage source inverter fed motor drives," in Applied Power Electronics Conference and Exposition,2004. APEC '04. Nineteenth Annual IEEE,2004, pp.122-127 Vol.1.
    [81]N. Urasaki, T. Senjyu, K. Uezato, T. Funabashi, "An adaptive dead-time compensation strategy for voltage source inverter fed motor drives," Power Electronics, IEEE Transactions on, vol.20, no.5, pp.1150-1160,2005.
    [82]C. Attaianese, V. Nardi, G. Tomasso, "A novel SVM strategy for VSI dead-time-effect reduction," Industry Applications, IEEE Transactions on, vol. 41, no.6, pp.1667-1674,2005.
    [83]刘海舰,高艳霞,李南,"用于脉宽调制逆变器的死区补偿方法,”电机与控制应用,vol.34,no.11,pp.15-17,2007.
    [84]L. Yong-Kai, L. Yen-Shin, "Dead-time elimination method and current polarity detection circuit for three-phase PWM-controlled inverter," in Energy Conversion Congress and Exposition,2009. ECCE 2009. IEEE,2009, pp. 83-90.
    [85]R. J. Kerkman, D. Leggate, D. W. Schlegel, C. Winterhalter, "Effects of parasitics on the control of voltage source inverters," Power Electronics, IEEE Transactions on, vol.18, no.1, pp.140-150,2003.
    [86]何正义,季学武,瞿文龙,”一种新颖的基于死区时间在线调整的SVPWM补偿算法,"电工技术学报,vol.24,no.6,pp.42-27,2009.
    [87]C. Attaianese, D. Capraro, G. Tomasso, "A low cost digital SVM modulator with dead time compensation," in Power Electronics Specialists Conference, 2001. PESC.2001 IEEE 32nd Annual,2001, pp.158-163 vol.1.
    [88]N. Urasaki, T. Senjyu, K. Uezato, T. Funabashi, "On-line dead-time compensation method for permanent magnet synchronous motor drive," in Industrial Technology,2002. IEEE ICIT '02.2002 IEEE International Conference on,2002, pp.268-273 vol.1.
    [89]A. C. Oliveira, A. M. N. Lima, C. B. Jacobina, "Varying the switching frequency to compensate the dead-time in pulse width modulated voltage source inverters," in Power Electronics Specialists Conference,2002. pesc 02. 2002 IEEE 33rd Annual,2002, pp.244-249 vol.1.
    [90]吴茂刚,赵荣祥,汤新舟,”正弦和空间矢量PWM逆变器死区效应分析与补偿,"中国电机工程学报,vol.26,no.12,pp.101-105,Jun.2006.
    [91]C. Jung-Soo, Y. Ji-Yong, L. Seung-Won, K. Young-Seok, "A novel dead time minimization algorithm of the PWM inverter," in Industry Applications Conference,1999. Thirty-Fourth IAS Annual Meeting. Conference Record of the 1999 IEEE,1999, pp.2188-2193 vol.4.
    [92]P. Shihong, T. M. Jahns, "A novel dead-time elimination method using single-input enhanced phase-leg configuration," in Industry Applications Conference,2003.38th IAS Annual Meeting. Conference Record of the,2003, pp.2033-2040 vol.3.
    [93]Z. Bin, A. Q. Huang, C. Bin, "A novel IGBT gate driver to eliminate the dead-time effect," in Industry Applications Conference,2005. Fourtieth IAS Annual Meeting. Conference Record of the 2005,2005, pp.913-917 Vol.2.
    [94]C. Lihua, P. Fang Zheng, "Dead-Time Elimination for Voltage Source Inverters," Power Electronics, IEEE Transactions on, vol.23, no.2, pp. 574-580,2008.
    [95]C. Kyu Min, O. Won Seok, K. Young Tae, K. Hee Jun, "A New Switching Strategy for Pulse Width Modulation (PWM) Power Converters," Industrial Electronics, IEEE Transactions on, vol.54, no.1, pp.330-337,2007.
    [96]张崇巍,张兴,"PWM整流器及其控制,”北京:机械工业出版社,2003.10.
    [97]R. Wu, S. B. Dewan, G. R. Slemon, "Analysis of an AC-to-DC voltage source converter using PWM with phase and amplitude control," Industry Applications, IEEE Transactions on, vol.27, no.2, pp.355-364,1991.
    [98]Y. Taesik, C. Sewan, K. Hyosung, "Indirect Current Control Algorithm for Utility Interactive Inverters for Seamless Transfer," in Power Electronics Specialists Conference,2006. PESC '06.37th IEEE,2006, pp.1-6.
    [99]K. Hyosung, Y. Taesik, C. Sewan, "Indirect Current Control Algorithm for Utility Interactive Inverters in Distributed Generation Systems," Power Electronics, IEEE Transactions on, vol.23, no.3, pp.1342-1347,2008.
    [100]王英,张纯江,陈辉明,"三相PWM整流器新型相位幅值控制数学模型及其控制策略,”中国电机工程学报,vol.23,no.11,pp.85-90,2003.
    [101]H. Komurcugil, O. Kukrer, "A novel current-control method for three-phase PWM AC/DC voltage-source converters," Industrial Electronics, IEEE Transactions on, vol.46, no.3, pp.544-553,1999.
    [102]熊健,张凯,裴雪军,陈坚,〝一种改进的PWM整流器间接电流控制方案仿真,”电工技术学报,vol.18,no.1,pp.57-63,2003.
    [103]H. Fujimoto, K. Kuroki, T. Kagotani, H. Kidoguchi, "Photovoltaic inverter with a novel cycloconverter for interconnection to a utility line," in Industry Applications Conference,1995. Thirtieth IAS Annual Meeting, IAS '95., Conference Record of the 1995 IEEE,1995, pp.2461-2467 vol.3.
    [104]陶永华,”新型PID控制及其应用(第2版),”北京:机械工业出版社,2002.9.
    [105]T. M. Rowan, R. J. Kerkman, "A New Synchronous Current Regulator and an Analysis of Current-Regulated PWM Inverters," Industry Applications, IEEE Transactions on, vol. IA-22, no.4, pp.678-690,1986.
    [106]N. R. Zargari, G. Joos, "Performance investigation of a current-controlled voltage-regulated PWM rectifier in rotating and stationary frames," Industrial Electronics, IEEE Transactions on, vol.42, no.4, pp.396-401,1995.
    [107]C. T. Rim, N. S. Choi, G. C. Cho, G. H. Cho, "A complete DC and AC analysis of three-phase controlled-current PWM rectifier using circuit D-Q transformation," Power Electronics, IEEE Transactions on, vol.9, no.4, pp. 390-396,1994.
    [108]P. Hsu, M. Behnke, "A three-phase synchronous frame controller for unbalanced load [invertor operation]," in Power Electronics Specialists Conference,1998. PESC 98 Record.29th Annual IEEE,1998, pp.1369-1374 vol.2.
    [109]P. Mattavelli, "Synchronous-frame harmonic control for high-performance AC power supplies," Industry Applications, IEEE Transactions on, vol.37, no.3, pp.864-872,2001.
    [110]王宝诚,梅强,邬伟扬,孙孝峰,"三相变流器的模糊PI神经网络控制研究,"电工技术学报,vol.20,no.8,pp.68-73,Aug.2005.
    [111]F. Harashima, Y. Demizu, S. Kondo, H. Hashimoto, "Application of neutral networks to power converter control," in Industry Applications Society Annual Meeting,1989., Conference Record of the 1989 IEEE,1989, pp.1086-1091 vol.1.
    [112]A. Dell'Aquila, M. Liserre, C. Cecati, A. Ometto, "A fuzzy logic CC-PWM three-phase AC/DC converter," in Industry Applications Conference,2000. Conference Record of the 2000 IEEE,2000, pp.987-992 vol.2.
    [113]A. B. Plunkett, "A current controlled PWM transistor inverted drive," in Proc. IEEE IAS Annu. Meeting,1979, pp.785-792.
    [114]S. Buso, L. Malesani, P. Mattavelli, "Comparison of current control techniques for active filter applications," Industrial Electronics, IEEE Transactions on, vol.45, no.5, pp.722-729,1998.
    [115]顾和荣,杨子龙,邬伟扬,〝并网逆变器输出电流滞环跟踪控制技术研究,〞中国电机工程学报,vol.26,no.9,pp.108-112,2006.
    [116]M. P. Kazmierkowski, L. Malesani, "Current control techniques for three-phase voltage-source PWM converters:a survey," Industrial Electronics, IEEE Transactions on, vol.45, no.5, pp.691-703,1998.
    [117]M. Milosevic, J. Allmeling, G. Andersson, "Interaction between hysteresis controlled inverters used in distributed generation systems," in Power Engineering Society General Meeting,2004. IEEE,2004, pp.2187-2192 Vol.2.
    [118]B. K. Bose, "An adaptive hysteresis-band current control technique of a voltage-fed PWM inverter for machine drive system," Industrial Electronics, IEEE Transactions on, vol.37, no.5, pp.402-408,1990.
    [119]L. Malesani, P. Tenti, "A novel hysteresis control method for current-controlled voltage-source PWM inverters with constant modulation frequency," Industry Applications, IEEE Transactions on, vol.26. no.1, pp. 88-92,1990.
    [120]C. Tae-Won, C. Meong-Kyu, "Development of adaptive hysteresis band current control strategy of PWM inverter with constant switching frequency," in Applied Power Electronics Conference and Exposition,1996. APEC '96. Conference Proceedings 1996., Eleventh Annual,1996, pp.194-199 vol.1.
    [121]B. J. Kang, C. M. Liaw, "Robust hysteresis current-controlled PWM scheme with fixed switching frequency," Electric Power Applications, IEE Proceedings-, vol.148, no.6, pp.503-512,2001.
    [122]M. N. Kumar, K. Vasudevan, "Bi-directional real and reactive power control using constant frequency hysteresis control with reduced losses," Electric Power Systems Research, vol.76, no.1-3, pp.127-135, September 2005.
    [123]W. Genping, Y. Lingzhi, Z. Xiao, H. Sufeng, L. Ming, "The design of constant frequency hysteresis current controller with voltage space vector in PV grid-connected inverter," in Automation Congress,2008. WAC 2008. World, 2008, pp.1-5.
    [124]Q. Yao, D. G. Holmes, "A simple, novel method for variable-hysteresis-band current control of a three phase inverter with constant switching frequency," in Industry Applications Society Annual Meeting,1993., Conference Record of the 1993 IEEE,1993, pp.1122-1129 vol.2.
    [125]P. Ching-Tsai, H. Yi-Shuo, J. Tai-Lang, "A constantly sampled current controller with switch status dependent inner bound," Industrial Electronics, IEEE Transactions on, vol.50, no.3, pp.528-535,2003.
    [126]T. Kataoka, T. Ishizuka, K. Nezu, Y. Sato, H. Yamaguchi, "Current control of voltage-type PWM rectifier introducing resonance-based controller," in Power Electronics and Variable Speed Drives,1996. Sixth International Conference on (Conf. Publ. No.429),1996, pp.519-524.
    [127]Y. Xiaoming, W. Merk, H. Stemmler, J. Allmeling, "Stationary-frame generalized integrators for current control of active power filters with zero steady-state error for current harmonics of concern under unbalanced and distorted operating conditions," Industry Applications, IEEE Transactions on, vol.38, no.2, pp.523-532,2002.
    [128]M. Liserre, R. Teodorescu, F. Blaabjerg, "Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values," Power Electronics, IEEE Transactions on, vol.21, no.1, pp.263-272,2006.
    [129]M. Liserre, R. Teodorescu, F. Blaabjerg, "Multiple harmonics control for three-phase grid converter systems with the use of PI-RES current controller in a rotating frame," Power Electronics, IEEE Transactions on, vol.21, no.3, pp.836-841,2006.
    [130]D. N. Zmood, D. G. Holmes, "Stationary frame current regulation of PWM inverters with zero steady-state error," Power Electronics, IEEE Transactions on, vol.18, no.3, pp.814-822,2003.
    [131]赵清林,郭小强,邬伟扬,“单相逆变器并网控制技术研究,”中国电机工程学报,vol.27,no.16,pp.60-64,Jun.2007.
    [132]张凯,“基于重复控制原理的CVCF-PWM逆变器波形控制技术研究,”华中理工大学博士论文,2000.
    [133]陈宏,“基于重复控制理论的逆变电源控制技术研究,”南京航空航天大学博士论文,2003.
    [134]X. H. Wu, S. K. Panda, J. X. Xu, "Design of a Plug-in Repetitive Control Scheme for Eliminating Supply-side Current Harmonics of Three Phase PWM Boost Rectifiers UnderGeneralized Supply Voltage Conditions," Power Electronics, IEEE Transactions on, vol. PP, no.99, pp.1-1,2010.
    [135]H. Haibing, H. Qingbo, L. Zhengyu, "A simple repetitive controller embedded in Pi-based UPS for reducing Total Harmonic Distortion with nonlinear loads," in Power Electronics Specialists Conference,2006. PESC '06.37th IEEE,2006, pp.1-5.
    [136]窦伟,徐正国,彭燕昌,李晶,许洪华,“三相光伏并网逆变器输出电流波形控制技术研究,”太阳能学报,vol.28,no.11,pp.1262-1265,Nov.2007.
    [137]张凯,彭力,熊健,陈坚,“基于状态反馈与重复控制的逆变器控制技术,”中国电机工程学报,vol.26,no.10,pp.56-62,2006.
    [138]刘飞,查晓明,周彦,殷进军,段善旭,“基于极点配置与重复控制相结合的三相光伏发电系统的并网策略,”电工技术学报,vol.23,no.12,pp.130-136,Dec.2008.
    [139]Y. Shin-Chung, T. Ying-Yu, "Adaptive repetitive control of a PWM inverter for AC voltage regulation with low harmonic distortion," in Power Electronics Specialists Conference,1995. PESC '95 Record.,26th Annual IEEE,1995, pp. 157-163 vol.1.
    [140]T. Ying-Yu, J. Shih-Liang, Y. Hsin-Chung, "Adaptive repetitive control of PWM inverters for very low THD," Power Electronics, IEEE Transactions on, vol.14, no.5, pp.973-981,1999.
    [141]H. Abu-Rub, J. Guzinski, Z. Krzeminski, H. A. Toliyat, "Predictive current control of voltage-source inverters," Industrial Electronics, IEEE Transactions on, vol.51, no.3, pp.585-593,2004.
    [142]D. G. Holmes, D. A. Martin, "Implementation of a direct digital predictive current controller for single and three phase voltage source inverters," in Industry Applications Conference,1996. Thirty-First IAS Annual Meeting, IAS '96., Conference Record of the 1996 IEEE,1996, pp.906-913 vol.2.
    [143]O. Kukrer, "Discrete-time current control of voltage-fed three-phase PWM inverters," Power Electronics, IEEE Transactions on, vol.11, no.2, pp. 260-269,1996.
    [144]Y. A. R. Mohamed, E. F. El-Saadany, "Adaptive Discrete-Time Grid-Voltage Sensorless Interfacing Scheme for Grid-Connected DG-Inverters Based on Neural-Network Identification and Deadbeat Current Regulation," Power Electronics, IEEE Transactions on, vol.23, no.1, pp.308-321,2008.
    [145]Y. A. R. I. Mohamed, E. F. El-Saadany, "An Improved Deadbeat Current Control Scheme With a Novel Adaptive Self-Tuning Load Model for a Three-Phase PWM Voltage-Source Inverter," Industrial Electronics, IEEE Transactions on, vol.54, no.2, pp.747-759,2007.
    [146]K. Nishida, M. Rukonuzzman, M. Nakaoka, "Advanced current control implementation with robust deadbeat algorithm for shunt single-phase voltage-source type active power filter," Electric Power Applications, IEE Proceedings-, vol.151, no.3, pp.283-288,2004.
    [147]Y. Bo, W. Jiande, L. Xiaodong, H. Xiangning, "An improved DSP-based control strategy with predictive current control and fuzzy voltage control for grid-connected voltage source inverters," in Industrial Electronics,2008. IECON 2008.34th Annual Conference of IEEE,2008, pp.2296-2300.
    [148]G. S. Perantzakis, F. H. Xepapas, S. A. Papathanassiou, S. N. Manias, "A Predictive Current Control Technique for Three-Level NPC Voltage Source Inverters," in Power Electronics Specialists Conference,2005. PESC '05. IEEE 36th,2005, pp.1241-1246.
    [149]H. Jiabing, H. Yikang, N. Heng, "Improved predictive current control of grid-connected DC-AC converters under unbalanced grid voltage conditions," in Energy Conversion Congress and Exposition,2009. ECCE 2009. IEEE, 2009, pp.1-8.
    [150]Y. Bin, C. Liuchen, "Improved Predictive Current Controlled PWM for Single-Phase Grid-Connected Voltage Source Inverters," in Power Electronics Specialists Conference,2005. PESC '05. IEEE 36th,2005, pp.231-236.
    [151]G. K. Hung, C. C. Chang, C. L. Chen, "Analysis and implementation of a delay-compensated deadbeat current controller for solar inverters," Circuits, Devices and Systems, IEE Proceedings-, vol.148, no.5, pp.279-286,2001.
    [152]G. H. Bode, L. Poh Chiang, M. J. Newman, D. G. Holmes, "An improved robust predictive current regulation algorithm," Industry Applications, IEEE Transactions on, vol.41, no.6, pp.1720-1733,2005.
    [153]H. M. Kojabadi, Y. Bin, I. A. Gadoura, C. Liuchen, M. Ghribi, "A novel DSP-based current-controlled PWM strategy for single phase grid connected inverters," Power Electronics, IEEE Transactions on, vol.21, no.4, pp. 985-993,2006.
    [154]H. Chih-Chiang, W. Chun-Wei, C. Chih-Wei, "A Digital Predictive Current Control With Improved Sampled Inductor Current for Cascaded Inverters," Industrial Electronics, IEEE Transactions on, vol.56, no.5, pp.1718-1726, 2009.
    [155]孙向东,任碧莹,钟彦儒,松井斡彦,”滤波电感在线估计方法在预测电流控制中的应用,”电工技术学报,vol.24,no.7,pp.150-156,Jul.2009.
    [156]任碧莹,孙向东,同向前,罗小英,”并网逆变器的改进无差拍控制策略,它力电子技术,vol.43,no.8,pp.35-36,Aug.2009.
    [157]J. Se-Jong, K. Byoung-Wook, S. Seung-Ho, J. Kye-Yong, S. Hyun-Seok, "Improvement of predictive current control performance using on-line parameter estimation in phase controlled rectifier," in Industry Applications Conference,2003.38th IAS Annual Meeting. Conference Record of the,2003, pp.1772-1777 vol.3.
    [158]S. XiangDong, R. BiYing, Z. YanRu, M. Matsui, S. Hong, "A predictive current controller based on on-line parameter estimation for single-phase distribution grid-connected generation systems," in Industrial Electronics and Applications,2009. ICIEA 2009.4th IEEE Conference on,2009, pp.842-847.
    [159]T. Yokoyama, A. Kawamura, "Disturbance observer based fully digital controlled PWM inverter for CVCF operation," Power Electronics, IEEE Transactions on, vol.9, no.5, pp.473-480,1994.
    [160]P. Mattavelli, "An improved deadbeat control for UPS using disturbance observers," Industrial Electronics, IEEE Transactions on, vol.52, no.1, pp. 206-212,2005.
    [161]李春龙,沈颂华,卢家林,”基于状态观测器的PWM整流器电流环无差拍控制技术,"电工技术学报,vol.21,no.12,pp.84-89,2006.
    [162]H. Schmidt, B. Burger, C. Siedle, "Gefahrdungspotential transformatorloser Wechselrichter-Fakten und Geriichte," 18. Symposium Photovoltaische Solarenergie, pp.89-98, March 2003.
    [163]J. M. A. Myrzik, M. Calais, "String and module integrated inverters for single-phase grid connected photovoltaic systems-a review," in Power Tech Conference Proceedings,2003 IEEE Bologna,2003, Vol.2.
    [164]刘陵顺,尚安利,顾文锦,"SPWM逆变器死区效应的研究,”电机与控制学报,vol.5,no.4,pp.237-241,Dec.2001.
    [165]程曙,徐国卿,许哲雄,"SPWM逆变器死区效应分析,”电力系统及其自动化学报,vol.14,no.2,pp.39-42,Apr.2002.
    [166]B. J. Baliga, Morden Power Devices:John Wiley & Sons,1987.
    [167]A. C. Oliveira, C. B. Jacobina, A. M. N. Lima, E. R. C. da Silva, "Dead-time compensation in the zero-crossing current region," in Power Electronics Specialist Conference,2003. PESC '03.2003 IEEE 34th Annual,2003, pp. 1937-1942 vol.4.
    [168]W. Qingyi, L. Hui, D. Xing, W. Shuyun, "An Improved Method of Dead Time Compensation in the Zero-crossing Current Region with Low-Frequency Operation," in Industrial Electronics and Applications,2007. ICIEA 2007.2nd IEEE Conference on,2007, pp.1971-1975.
    [169]沈国桥,〝燃料电池并网逆变技术研究,〞浙江大学博士论文,2008.
    [170]丁金磊,〝太阳电池I_V方程显式求解原理研究及应用,〞中国科技大学博士论文,2007.
    [171]李武华,〝三绕组耦合电感实现高增益、高效率交错并联软开关Boost变换器,〞浙江大学博士论文,2008.
    [172]Z. Qun, F. C. Lee, "High-efficiency, high step-up DC-DC converters," Power Electronics, IEEE Transactions on, vol.18, no.1, pp.65-73,2003.
    [173]G. F. Franklin, J. D. Powell, A. Emami-Naeini, Feedback Control of Dynamic Systems,4 ed.:Prentice Hall,2002.
    [174]S. Jain, V. Agarwal, "Comparison of the performance of maximum power point tracking schemes applied to single-stage grid-connected photovoltaic systems," Electric Power Applications, IET, vol.1, no.5, pp.753-762,2007.
    [175]T. Esram, P. L. Chapman, "Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques," Energy Conversion, IEEE Transactions on, vol.22, no.2, pp.439-449,2007.
    [176]R. W. Erickson, D. Maksimovic, Fundamentals of Power Electronics,2 ed.: Kluwer Academic Publishers,2001.
    [177]Texas Instruments, "TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, UCD9501, TMS320C2802, TMS320C2801, and TMS320F2801x DSPs Data Manual," October 2003-Revised June 2006.
    [178]赵修科,开关电源中的磁性元件:南京航空航天大学自动化学院,2004.
    [179]Magnetics, "Datasheet:Powder Cores-Molypermalloy, High Flux, Kool Mμ, XFlux," 2009.
    [180]张舟云,王晓东,徐国卿,沈祥林,〝电力电子装置滤波电容容量的设计方法,〞电力电子技术,vol.39,no.1,pp.70-72,2005.
    [181]Marty Brown,开关电源设计指南.北京:机械工业出版社,2004.
    [182]刘邦银,段善旭,康勇,〝单相单级并网光伏发电系统中二次功率扰动的分析与抑制,〞太阳能学报,vol.29,no.4,pp.407-411,2008.
    [183]沈玉梁,苏建徽,赵为,余世杰,〝不可调度式单相光伏并网装置的平波电容容量的选择,〞太阳能学报,vol.24,no.5,pp.655-658,2003.
    [184]陈永真,电容器及其应用.北京:科学出版社,2006.
    [185]三宅和司,电子元器件的选择与应用-电阻器与电容器的种类、结构及性能.北京:科学出版社,2007.
    [186]Cornell Dubilier Electronics, Inc., "Datasheet:Type 947C-High Capacitance, High Current, DC Link Capacitors," 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700