农杆菌介导的转Bt cry1Iα基因抗虫花椰菜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
花椰菜(Brassica oleracea Var.botrytis)是十字花科芸薹属中重要的蔬菜作物,不仅在我国的蔬菜生产中占有重要地位,在世界范围内也广泛种植。但是近年来,花椰菜的虫害十分严重,其中以鳞翅目的菜青虫(Pieris rapae)和小菜蛾(Plutella xylostella)为主。在我国,小菜蛾对花椰菜的危害呈明显上升趋势。常用的化学防治措施不仅污染环境,且害虫容易产生抗药性,因此,选育和应用抗虫品种,既经济有效又安全环保,是防治害虫最理想的方法。
     Bt cry1Ia杀虫晶体蛋白基因是由本课题组从苏云金芽胞杆菌(Bacillus thuringiensis,简称Bt)的野生菌株Btc008中克隆得到的一种具有很高杀虫活性的杀虫晶体蛋白(Insecticidal crystal proteins,ICPs)。它是一类特殊的cry1类基因,与生产中常用的cry1A类基因相似性较低。Cry1Ia蛋白有较强的杀虫活性和相对较广的杀虫谱,对亚洲玉米螟、小菜蛾等有很强的杀虫活性,其杀虫效果与CrylAb和CrylAc相当,但与CrylAb和CrylAc无交互抗性。
     本研究以具柄子叶和下胚轴为外植体,通过根癌农杆菌介导法将苏云金芽胞杆菌杀虫蛋白基因Cry1Ia导人花椰菜中,并优化了转化体系,研究了不同因素对花椰菜转化效率的影响。试验结果表明:花椰菜的基因型与外植体对抗性芽的再生有显著影响,本试验中瑞士雪球的具柄子叶和下胚轴是比较理想的外植体;不同激素对花椰菜芽再生的影响较大,本试验中添加2mg/L的6-BA和0.05mg/L的NAA时不定芽的再生频率较高;生根培养基中添加0.1mg/L的IAA时,生根效果最好;另外,用农杆菌EHA105介导的转化,转化效率要高于LBA4404;在侵染液及共培养基中添加乙酰丁香酮,能提高花椰菜的转化频率;在培养基中添加银离子并没有促进芽的再生;使用10mg/L的卡那霉素筛选阳性植株,可有效筛选出转基因植株;使用300mg/L的羧苄青霉素能完全抑制住农杆菌的污染;同时对农杆菌的侵染时间进行了优化,结果表明以下胚轴8 min、具柄子叶15min为最佳。
     转化后的外植体在含有卡那霉素的培养基上诱导不定芽和诱导生根,共获得了42株抗性植株,经PCR检测,其中的18株呈阳性。进一步通过RT-PCR和Western blot检测,共有14株均呈阳性反应,检测结果初步说明cry1Ia基因已整合到花椰菜的基因组中并得到有效地表达。转基因植株用小菜蛾幼虫进行饲虫试验,结果表明昆虫幼虫的校正死亡率高达99.96%,同时,存活幼虫的生长发育也受到了明显抑制。
Cauliflower (Brassica oleracea Var.botrytis), one of the most important vegeTab. crops, is planted all over the world. Nowadays, it is also a main vegeTab. in China. But insect-pests have caused severe damage. Among them green worm (Pieris rapae L.) and diamondback moth (Plutella xylostella L.) are the primary pests. In China,diamondback moth is one of the most destructive pests and its damage has risen rapidly especially for cruciferous vegeTab.s. Because the pests are easy to induce resistance to insecticide, it is the best way to obtain the cultivars of insect-resistance in pest control.
     Bt cry1Ia gene has been cloned from Bacillus thuringiensis strains Btc008 and has no homology with cry1A-type which is commonly used in pest control. Cry1Ia protein have relatively broad insecticidal controlling spectrum, strong insecticidal activity for corn borer, diamondback moth. Insecticidal activity of Cry1Ia protein is similar to Cry1Ab and Cry1AC, but didn’t have cross-resistance with both of them.
     The cotyledon petioles and hypocotyls of cauliflower(Brassica oleracea Var.botrytis))were transformed with Agrobacterium tumefaciens harboring CaMV35S-1Ia-NOS expression vector containing CaMV35S promoter,nptⅡmarker gene and the insecticidal protein gene Bt cry1Ia gene. In this study the effects of influencing factors on genetic transformation frequency of cauliflower were investigated. The results showed: Both the hypocotyls and cotyledon of RuiXue were perfect explants for transformation; The hormone was an important factor on the regeneration of adventitious buds, we could obtain high regeneration frequency by supplementing 6-BA 2 mg/L and NAA 0.05 mg/L on the MS medium; Adding 0.lmg/L IAA to MS medium had good effect on rooting period and root quality of regenerate shoots; Infectious activity of Agrobacterium tumefaciens EHA105 was superior to LBA4404; Acetosyringone could promote the regeneration of adventitious buds in the transformation; It was no obvious difference to add silver nitrate on transformation frequency of cauliflower; The result showed that 10mg/L kanamycin would completely inhibit green shoot regeneration from explants of cauliflower, so it was available to selecting transgenic plants; The carbenicillin concentration was decided to use with 300mg/L; The experiment detected that the optimized infection time was 8 min for cotyledon and 15 min for hypocotyls.
     Through successive selection in the period of shoot and root induction under kanamycin selecting pressure,42 kanamycin resistant regenerated plants were obtained,18 of them were positive resulted by PCR detection which demostrated that cry1Ia gene was integrated into the genome. Moreover, RT-PCR and Western blot analysis demonstrated that cry1Ia gene was expressed in RNA and protein levels in 14 plants. The transformation plants were given insect feeding test with larvae of diamondback moth.The results showed the mortality of insect larvae was accounted for 99.6%,and the growth of the survival larvae were seriously inhibited.
引文
蔡荣旗,孙德岭,赵前程等.2000.根癌农杆菌介导Bt杀虫基因对花椰菜的转化初报.天津农业科学.6 (4) :9~12
    曹孜义,刘国民.2001.实用植物组织培养技术教程(修订本) .甘肃科学技术出版社.78~82
    陈晓邦,华学军.1995.农杆菌介导的Intron-GUS嵌合基因转人花椰菜获得转基因植株.植物学报.12: 50~5
    陈之浩,程罗根.2000.小菜蛾抗药性研究的现状及展望.昆虫知识.37(2): 103~106
    崔磊,杨丽梅,刘楠等.2009.Bt cry1Ia8抗虫基因对结球甘蓝的转化及其表达.园艺学报.36(8): 128~134
    窦黎明,韩岚岚,张杰.2007.苏云金芽胞杆菌ctylla基因的克隆、表达与活性研究.农业生物技术学报.15(6): 1053-~1057
    杜虹,庄东红,黄文华.2000.AgN03对大白菜子叶芽再生的促进作用.热带亚热带植物学报.8(2): 109~112.
    范正琪.2002.青菜离体再生和农杆菌介导遗传转化影响因子的研究.学位论文,浙江大学
    方宏筠,李大力,王关林等.1997.转豇豆胰蛋白酶抑制剂基因抗虫甘蓝植株的获得.植物学报(英文版).39(10): 940~945.
    费瑞,杨洋等.2004.蜘蛛毒素的研究概况及应用吉林大学学报.30(6): 994~997
    郭三堆,倪万潮,徐琼芳.1998.编码杀虫蛋白质融合基因和表达载体及其应用.中国专利号:ZL 951195638 .
    胡开林,杨瑞环.1998.青花菜试管苗玻璃化发生及克服途径的初步研究.华南农业大学学报.19(4): 63~66
    华学军,陈晓邦,范云六.1992.Bacillus thuringiensis基因杀虫在花椰菜愈伤组织的整合与表达.中国农业科学.25(4): 82~87.
    蒋红,朱玉贤,陈章良.1996.导入蜘蛛杀虫肽基因的烟草具有抗虫性.植物学报,10(38): 95~99.
    李贤,姚泉洪,彭日荷,熊爱生,薛永,金晓芬.Bt转基因抗虫甘蓝的研制.上海农业学报,2008,24(3):16~20.
    李东栋,石玮,邓秀新等.2002.不同根癌农杆菌菌株对柑橘愈伤组织遗传转化效率的影响.华中农业大学学报.21(4): 379~381
    李汉霞,张晓辉等.2008.转Bt基因青花菜的抗虫性研究.会议论文,武汉,华中农业大学
    李明亮,张辉,胡建军等.2000.转Bt基因和蛋白酶抑制剂基因杨树抗虫性的研究.林业科学.36(2): 93~97
    李子东,赵翠珠等.2008.农杆菌介导的DREB1 A基因转化多花黑麦草及其转化体系的优化.山东大学学报.43(8): 11~17
    刘晶,周树峰,陈华.2006.农杆菌介导的双价抗盐基因转化番茄的研究.中国农业科学.38(8): 1636~1644
    刘国宝,刘昀,郑易之.2008.水稻高效再生体系的建立及其对大豆Em基因的转化.西北植物学报.28(4): 0686~0691
    刘灵芝.2008.Bt基因转化彩色甜椒的研究.学位论文,华南农业大学
    吕玲玲,雷建军,宋明等.2004.豇豆胰蛋白酶抑制剂基因转化花椰菜的研究.华南农业大学学报.25(3): 78~82
    欧阳立明,吴宏文,喻子牛,等.害虫对转Bt基因植物抗性的治理策略.植物保护学报,2001,28(2):183-188
    潘仰星,黄敬浩,邓昌琳.2005.花椰菜再生苗去玻璃化试验.福建农业科技.16(5): 59~60
    秦颖.2006.青花菜、花椰菜离体再生体系及青花菜雄核发育体系的建立.学位论文,中国农业大学
    秦新民,高成伟,李春瑶等.1999.小白菜苏云金芽孢杆菌基因CryⅠB的遗传转化.广西师范大学学报.17(3): 77~82.
    孙鹤,郎志宏,陆伟等.2009.转2mG2-epsps基因烟草的草甘膦耐受性分析.中国农业科技导报.11(4): 100~106
    唐微.2006.Bt抗虫水稻的培育.学位论文,华中农业大学
    王翠艳,丁东鼹,于小菊等.2008.用Floral dip法对黄瓜遗传转化的初步研究.生物学通报.43(2): 9~11
    王关林,方宏筠.1997.植物基因工程原理与技术.北京,科学出版社
    王秀君,郎志宏,陆伟.2008.利用花粉管通道法将耐草甘膦基因mG2-epsps导入玉米自交系的研究初报,中国农业科技导报.10(4): 56~62
    王旭静,贾士荣.2008.国内外转基因作物产业化的比较生物工程学报.24(4): 541~546
    王志斌,郭三堆.1999.表达CryIA/GNA双价抗虫基因烟草兼抗棉铃虫和蚜虫.科学通报.44(19): 2068~2075.
    吴涛.2005.农杆菌介导cry1Ac基因高效转化辣椒的改进方法.学位论文,.华中师范大学
    吴青君,张文吉,朱国仁.2001.小菜蛾的发生危害特点及抗药性现状.中国蔬菜.12(5): 49~54
    夏启中,张明菊.2005.抗植物虫害基因及其应用.鄂州大学学报.12(3): 56~60
    向书农.2003.植物发育生物学.北京,北京大学出版社.
    熊恒硕,康俊梅,杨青川等.2008.双价抗虫植物表达载体p3300-Bt-pta转化苜蓿的初步研究.中国草地学报.30(1): 21~26.
    徐淑平,卫志明,黄建秋等.2002.根癌农杆菌介导Bt基因和CpTI基因对花椰菜的转化.植物生理与分子生物学学报.28(3): 193~199.
    徐晓峰,黄学林,黄霞.2003.ACC氧化酶反义基因转化青花菜的研究.中山大学学报(自然科学版) .42(6): 64-68.
    徐艳聆,王振营,何康来,等.昆虫对Bt杀虫蛋白的抗性机制及治理策略.植物保护学报,2006,33(4):437-444
    许耀,贾敬芬,郑国昌.1988.酚类化合物促进根癌农杆菌对植物离体外植体的高效转化.科学通报.33(22): 1745~1748
    杨仲南,许智宏,白永延等.l994.外源GUS基因在PEG介导的花椰菜原生质体中的瞬间表达.植物生理学报.20(3): 272~276
    姚斌,范云六,曾勤等.1996.表达昆虫特异性神经毒素AaIT基因的转基因烟草的抗虫性.生物工程学报.12(2): 113~118.
    尤进钦,曾梦蛟,陈良筠.1996.苏力菌杀虫晶体蛋白基因转移到青花菜、花椰菜及小白菜.中国园艺(台湾) .42(4): 312~330
    于守江.2007.蔬菜学CryⅠAC基因的克隆及转化结球甘蓝的研究.学位论文.东北农业大学
    张凯,徐艳辉.2003.花椰菜的分子遗传与育种研究进展概述.辽宁农业科学.6(1): 31~34
    赵秀枢,李名扬,朱文玲等.2009.观赏羽衣甘蓝高频再生体系的建立.基因组学与应用生物学.28 (1): 141~148
    郑丽娟.2009.黄瓜离体培养及根癌农杆菌介导的遗传转化体系的研究.学位论文,扬州大学
    朱至清,王敬驹,孙敬三等.1975.通过氮源比较试验建立一种较好的水稻花药培养基.中国科学.17(5): 484~490
    邹智.2008.油菜安全高效转化体系研究.学位论文,中国农业科学院
    Barton K A. 1990. Insecticidal toxin in plants express on insect-specific toxin from a scropion. Europen Patent. 11(6): 56~59
    Bond J E, Roose M L. 1998. Agrobacterium-mediated transformation of the commercially important citrus cultivar Washington navel orange. Plant Cell Repor. 18: 229~234
    Broadway R M, Duffey S S, Pearce G and Ryan C A. 1986. Plant proteinase inhibitors: A defense against herbivorous insects. Entomologia experimentalis et applicata. 41(1): 33~38
    Cao J, Earle E D. 1999. Transgenic broccoli with high levels of Bacillus thuringiensis Cry1C protein control diamondback moth larvae resistant to Cry1A or Cry1C. Molecular Breeding. 3(5): 131~141
    Chabaud M, Passiatore J E, Cannon F et al. 1988. Parameters affecting the frequency of kanamycin resistant alfalfa oBtained by Agrobacterium-mediated transformation. Plant Cell Rep.16(7): 512~516
    Cheng W L, Chen C L. 2008. Expression of a Bacillus thuringiensis toxin (cry1Ab) gene in cabbage chloroplasts confers high insecticidal efficacy against Plutella xylostella. TAG Theoretical and Applied Genetics. 16(2): 245~253
    Crickmore N, Zeigler D R, et al. l998. Revision of the nomenclature for the Bacillus thunngi -ensis pesticidal crysml proteins. Microbiology and Molecular Biology Reviews. 6(2): 807~813
    Damgaard O, Rasmussen O. 1991. Direct regeneration of transformed shoots in Brassica napus from hypocotyl infections with Agrobacterium rhizogenes. Plant Mol Biol. 17(1): l~8
    De G M, Bundock P, Hooykaas P J, et a1. 1998. Agrobacterium tumefaciens-mediated trans
    Ding L C, Hu C Y, YehKW, et al. 1998. Development of insect-resistant transgenic cauliflower plants expressing the tryps in inhibitor gene isolated from local swat potato.Plant Cell Rep. 17(5): 854~860
    Eimert K, Schroder C, Siegemund F. 1992. Expression of the NPTⅡ-sequence in caulif -lower after injection of agrobacteria into seeds. Plant Physiol. 140(1): 37~40
    Escudero I R, Estela A et al. 2006. Molecular and insecticidal characterization of a CrylI protein toxic to insects of the families Noctuidae, Tortricidae, Plutellidae and Chrysomelidae. Applied and Environmental Microbiology. 72(7): 4796~4804
    Estruch J J, Warren G W, Mullins M A, et al. 1996 .A novel Bacillus thuringiensis vegeta -tive insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc Natl Acad Sci U S A. 93(11): 5389~5394 -formation of filamentous fungi. Nat Biotechnol. 16(9): 839~842
    James C. 2009. Global Status of Commercialized Biotech/GM Crops: 2009. ISAAA Brief No. 41. ISAAA: Ithaca, NY
    Laemmli U K et al. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 16(7): 680~685
    McBride K E, Svab Z, Schaaf D J, et al. 1995.Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Bio/Technology. 15: 362~365.
    Metz T D, Earle E D, et al. 1995. Agrobacteriummm tumefaciens–mediated transformation of broccoli(Brassicaoleracea var. italica) and cabbage(B.oleracea var.capitata). Plant Cell Rep. 11: 15~18
    Nam J, Mysore K S, Gelvin S B. 1998. Agrobacterium-mediated transformation of the radiation hypersensitive Arabidopsis thaliana mutants uvhl and rad5. Molecular Plant Microbe Interactions. l l: 1l36~l 141
    Prem L B, Mohan B S. 2008.Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea. Protocol. 3(2): 181~189
    Roger F., Cecile R., Monique R.. Managing insect resistance to plants producing Bacillus thuringiensis toxin. Crit Rev in Biotechnol, 1999, 19 :227-276
    Rousting J P, Latche A, Fallot J. 1990. Inhibition of ethylene production and stimulation of carrot somatic embryo genesis by salicylic acid. Biologia Plantarum. 32(4): 273~280.
    Ryan C A. 1990. Protease Inhibitors in Plants: Genes for Improving Defenses against Insects and Pathogens. Annual Review of Phytopathology. 28(7): 425~449
    Schnepf H E, Whiteley H R. 1981.Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli. Proc Natl Acad Sci. 78(5): 2893~2897
    Schroder M, Dixelius C, Rahlen L. 1994. Transformation of Brassica napus by using the and A gene as selecTab. marker and inheritance studies of the marker genes. Physil Plant. 92: 37~46
    Staehel S E, Messens E, Montagu M V, Zambryski P. 1985. Identification of the signal molecules produced by wounded plant cells that active T-DNA transfer in Agrobacterium tumefaciens. Nature. 3(18): 624~629
    Tabashnik B E, Carrière Y. 2006. Bt transgenic crops do not have favorable effects on resistant insects. Journal of Insect Science. 4(4): 1~3
    Tabashnik B E, Cushing N L, Finson N, et al. 1990. Field development of resistance to Bacillus thuringiensis in diamondback moth(Lepidoptera:Plutellidae) . Journal of Economic Entomology. 83(5): 1671~1676
    Vernader D, Wang K, el a1. 1988. Glycine betainc allows enhanced induction of the agribacterium tumefaciens vir genes by aeetosyringone at low Ph. Bacteriol. 170(12): 5822~5829
    Xiang Y, Wong W R, Ma M C, et al. 2000. Agrobacterium-mediated transformation of Brassica campestrisssp Parachinensis with synthetic Bacillus thuringgiensis cry1Ab and cry1Ac genes. Plant Cell Report. 19(2): 201~256
    Xue J,Liang G,Crickmore N,et al. Cloning and characterization of a novel Cry1A toxin from Bacillus thuringiensis with high toxicity to the Asian corn borer and other lepidopteran insects. FEMS Microbiol Lett,2008,280(1):95-101
    Zhang F L, Takahata Y, Xu J B. 1998. Medium and genotype factors influencing shoot regeneration from cotyledonary explants of Chinese cabbage(Brassica campestris L.). Plant Cell Report. 6(17): 780~786
    Zheng S J, HenKen B, Maggd R, et al. 2005. Two different bacillus thuringiensis toxin genes confer resistance to beet armyworm in transgenic Bt-shallots. Transgenic Research. 14(3): 261~272
    Zlotkin E, Fraenkel G, Miranda F, Lissitzky S. 1971. The effect of scorpion venom on blowfly larvae: a new method for the evaluation of scorpion venom

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700