RNAi介导的TGF-β不敏感的肿瘤反应性CD8+T细胞对小鼠肾癌细胞体内外杀伤作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【研究背景】
     肾癌( renal cell carcinoma, RCC)是泌尿生殖系统最常见的恶性肿瘤之一,虽然其发病率仅占全身恶性肿瘤的3%,但近来全世界的肾癌发病率以每年2%的速度在增长,每年死于肾癌者约10万多例。在我国,肾癌发病率仅次于膀胱癌居泌尿系肿瘤第二位,近年来有逐年上升的趋势,是威胁人民健康的最重要肿瘤之一。绝大多数肾癌为先天多药耐药,对化疗和放疗不敏感,除了早期肾癌手术治疗效果较好外,大多数中、晚期肾癌目前尚缺乏特异性的治疗方法。然而约50%的患者首次就诊时已属中、晚期,约40%的患者术后发生转移或复发,转移性肾癌预后差,平均存活时间小于1年,3年存活率低于5%。故寻找一种有效的、特异性的肾癌治疗方法,是泌尿外科临床治疗中迫切需要解决的问题。
     免疫基因治疗的出现给人们带来了新的希望,治疗基因和效应细胞的选择是免疫基因治疗的关键环节。转化生长因子β(TGF-β)是一种多功能的细胞因子,对细胞的增殖、分化、凋亡以及许多组织的发育形成有着十分重要的作用。TGF-β是很强的免疫抑制因子,很多肿瘤产生大量的TGF-β,通过TGF-β抑制宿主的免疫系统,主要包括抑制各种免疫细胞(T,B,巨噬细胞等)的增殖、分化,从而使这些免疫细胞无法识别、杀伤肿瘤细胞,导致所谓的免疫逃逸,从而加速了恶性肿瘤的发展。TGF-β受体分为三型,有高度同源性,通过其跨膜的受体复合物进行信号转导,这些受体分为Ⅰ型(55KD)、Ⅱ型(75KD)、Ⅲ型(280KD),Ⅰ型(TβR-Ⅰ)和Ⅱ型受体(TβR-Ⅱ)均属丝氨酸/苏氨酸活性的Ⅰ型跨膜糖蛋白,Ⅲ型受体(TβR-Ⅲ)不介导TGF-β信号转导,但调节TGF-β与受体结合,Ⅱ型受体能以较高的亲和性首先与TGF-β配体结合,继而介导其下游一系列的信号通路反应,使细胞的生物学行为受到调控。
     由此可见,TβR-Ⅱ是TGF-β信号通路中的关键分子,而CD8+T细胞又是肿瘤免疫中具有杀伤作用的效应细胞,在保证CD8+T细胞具有肿瘤反应性的前提下,通过RNA干扰敲除CD8+T细胞表面的TβR-Ⅱ,使这些肿瘤反应性的CD8+T细胞对TGF-β不敏感,降低TGF-β对CD8+T细胞分化、增殖的抑制作用,以提高CD8+T细胞对肿瘤细胞的杀伤作用,有望为临床中肾癌的治疗提供新的免疫基因治疗策略。
     【目的】
     构建含有针对小鼠TβR-Ⅱ基因shRNA的逆转录病毒载体,通过逆转录病毒介导的RNAi敲除肿瘤反应性CD8+T细胞表面的TβR-Ⅱ以制备肿瘤反应性的TGF-β不敏感的CD8+T细胞,观察其对小鼠肾癌Renca细胞系的体内外杀伤作用。
     【方法】
     1 siRNA的筛选以及MSCV-shRNAs逆转录病毒载体的构建
     1.1干扰靶点的选取
     根据小鼠TβR-Ⅱ基因(GenBank AF406755)的序列设计并合成三对siRNA,针对三个干扰位点,分别命名为siRNA.1、siRNA.2和siRNA.3。
     1.2 siRNA的筛选
     使用Oligofectamine?将三对siRNAs转染至小鼠成纤维细胞NIH3T3细胞系48小时后分别提取细胞总RNA和总蛋白,以RT-PCR及Western Blot鉴定干涉效果,选择干涉效果最好的一对siRNA用于后续实验。
     1.3 MSCV-shRNAs逆转录病毒载体的构建
     对应1.2中选取的siRNA合成相应的shRNA,并合成阴性对照shRNA,分别命名为shRNA-T和shRNA-N,将其分别插入使用ApaⅠ和EcoRⅠ线性化的pEGFP/U6载体,再以BamHⅠ和EcoRⅠ完整切取U6-shRNA-T和U6-shRNA-N ,插入经BamHⅠ和EcoRⅠ切除TβRIIDN后线性化的MSCV-TβRIIDN-IRES-GFP载体,所构建逆转录病毒载体分别命名为MSCV-shRNA-T和MSCV-shRNA-N,并经过测序鉴定所构建载体。
     2 TGF-β不敏感的肿瘤反应性CD8+T细胞的制备
     2.1 MSCV-shRNAs逆转录病毒的包装、滴定
     将MSCV-shRNAs质粒和pVSV-G质粒使用Lipofectamine?共转染泛嗜性GP293逆转录病毒包装细胞,37℃下共转染12小时,弃去上清后加入新鲜的DMEM(10%FBS)培养基37℃、5%CO2下继续培养48小时,收集上清,获得含有MSCV-shRNAs重组逆转录病毒的上清液,用于病毒滴度测定或者冻存于-80℃。
     2.2肿瘤反应性CD8+T细胞的分离、培养和鉴定
     制备BALB/c小鼠Renca肿瘤荷瘤模型,取其脾脏采用MagCellect小鼠CD8+ T细胞分离试剂盒(R&D公司)分离CD8+ T细胞,加入含Renca细胞裂解物、照射后的自体脾细胞、10% FBS、rmIL-2 (50 U/ml)、HEPE (25 mM)、L-glutamine (4 mM)、2-ME (25 mM)、以及抗CD3单克隆抗体(30 ng/ml, R&D)的RPMI-1640培养基于37℃、5%CO2下继续培养,并以流式细胞仪鉴定分离细胞的纯度。
     2.3 MSCV-shRNAs感染肿瘤反应性CD8+T细胞,获取肿瘤反应性TGF-β不敏感的CD8+T细胞
     MSCV-shRNAs重组逆转录病毒感染肿瘤反应性CD8+T细胞,5%CO2、37℃下孵化48小时后,获得敲除TβR-Ⅱ或未敲除TβR-Ⅱ的肿瘤反应性CD8+T细胞,同时将自未经任何处理的BALB/c小鼠脾脏中分离得到的CD8+T细胞设为对照组,三组细胞分别命名为M-T-CD8+T细胞、M-N-CD8+T细胞和N-CD8+T细胞。
     2.4 RT-PCR检测各组CD8+T细胞中TβR-ⅡmRNA表达情况
     2.5 Western Blot检测各组CD8+T细胞中TβR-Ⅱ蛋白表达情况
     3 TGF-β不敏感的肿瘤反应性CD8+T细胞对小鼠肾癌Renca细胞系的体内外杀伤作用
     3.1 Western Blot检测各组CD8+T细胞TGF-β信号通路中SMAD-2和磷酸化SMAD-2的表达
     3.2胸腺嘧啶脱氧核苷核素掺入法进行各组CD8+T细胞体外增殖抑制实验
     3.3 51Cr释放实验测定各组CD8+T细胞对Renca细胞的体外杀伤作用,黑色素瘤细胞B16-F1作为对照靶细胞
     3.4 TGF-β不敏感的肿瘤反应性CD8+T细胞体内抗肿瘤作用的评价建立小鼠肾癌Renca细胞皮下荷瘤BALB/c小鼠模型,皮下荷瘤小鼠30只,随机分为3组,每组10只,各组分别于腹腔内注射M-T-CD8+T细胞、M-N-CD8+T细胞和N-CD8+T细胞观察各组荷瘤小鼠的生存期和肿瘤的体积改变,于40天后处死全部存活小鼠,酶联免疫吸附(ELISA)测定细胞因子IL-2和IFN-γ变化,并分离各组小鼠脾脏中CD8+T细胞,流式细胞仪检测GFP阳性细胞百分率。
     【结果】
     1 siRNA的筛选以及MSCV-shRNAs逆转录病毒载体的构建
     三对siRNA转染小鼠成纤维细胞NIH3T3细胞系48小时后分别提取细胞总RNA和总蛋白,RT-PCR及Western Blot结果说明siRNA.1干涉组TβR-Ⅱ表达水平显著降低,是三者中干涉效果最好的,遂根据siRNA.1序列合成相应的shRNA,并合成阴性对照shRNA,分别命名为shRNA-T和shRNA-N,利用基因工程技术构建逆转录病毒载体,经DNA测序后证实成功构建了含有shRNAs的重组逆转录病毒载体,分别命名为MSCV-shRNA-T和MSCV-shRNA-N。
     2 TGF-β不敏感的肿瘤反应性CD8+T细胞的制备
     2.1 MSCV-shRNAs逆转录病毒的包装、滴定
     共转染MSCV-shRNAs质粒和pVSV-G质粒至泛嗜性GP293逆转录病毒包装细胞获得含有MSCV-shRNAs重组逆转录病毒的上清液后,以不同稀释浓度感染NIH3T3细胞,荧光显微镜下观察NIH3T3细胞绿色荧光,以流式细胞仪测定GFP阳性细胞数,计算病毒滴度为7.15×1010VP/L。
     2.2肿瘤反应性TGF-β不敏感的CD8+T细胞的获取
     自BALB/c小鼠Renca肿瘤荷瘤模型脾脏采用MagCellect小鼠CD8+ T细胞分离试剂盒(R&D公司)分离肿瘤反应性CD8+T细胞,流式细胞仪鉴定纯度为95.3% ;以逆转录病毒感染肿瘤反应性CD8+T细胞,MSCV-shRNA-T和MSCV-shRNA-N感染效率分别为93.1%和91.6%,同时将自未经任何处理的BALB/c小鼠脾脏中分离得到的CD8+T细胞设为对照组,三组细胞分别命名为M-T-CD8+T细胞、M-N-CD8+T细胞和N-CD8+T细胞。
     2.3各组CD8+T细胞中TβR-Ⅱ表达情况
     RT-PCR及Western Blot结果显示M-T-CD8+T细胞TβR-ⅡmRNA及蛋白水平明显降低,M-N-CD8+T细胞和N-CD8+T细胞TβR-ⅡmRNA及蛋白水平未见明显变化,表明成功获得敲除TβR-Ⅱ的肿瘤反应性CD8+T细胞。
     3 TGF-β不敏感的肿瘤反应性CD8+T细胞对小鼠肾癌Renca细胞系的体内外杀伤作用
     3.1各组CD8+T细胞TGF-β信号通路中SMAD-2和磷酸化SMAD-2的表达情况
     各组CD8+T细胞与10 ng/ml的TGF-β1孵育后,Western Blot在各组中均可以检测到Smad-2,M-T-CD8+T细胞中却没有检测到磷酸化的Smad-2。表明逆转录病毒介导的RNAi成功阻断了M-T-CD8+T细胞的TGF-β信号通路。
     3.2各组CD8+T细胞体外增殖抑制实验结果
     与TGF-β1共同培养72小时后,N-CD8+T细胞、M-N-CD8+T细胞和M-T-CD8+T细胞的脱氧胸腺嘧啶苷核素摄入抑制率分别为67.5%、63.5%和17%,M-T-CD8+T细胞的胸腺嘧啶脱氧核苷核素摄入抑制率与其他各组比较差异有显著统计学意义(P<0.05),表明M-T-CD8+T细胞对TGF-β1的抗增殖作用不敏感。
     3.3各组CD8+T细胞对Renca细胞的体外杀伤作用实验结果
     标准的51Cr释放实验测定各组CD8+T细胞对Renca细胞的体外杀伤作用,并以黑色素瘤细胞B16-F1作为对照靶细胞。实验结果显示:当靶细胞为Renca细胞时,M-T-CD8+T细胞具有最强的CTL杀伤活性(E/T比率为100:1时杀伤活性为41%),M-N-CD8+T细胞具有一定的CTL杀伤活性(E/T比率为100:1时杀伤活性为10%),N-CD8+T细胞杀伤活性最低;三组CD8+T细胞均对无关的黑色素瘤B16-F1细胞没有明显杀伤作用。结果表明阻断肿瘤反应性CD8+T细胞的TGF-β信号通路能增加肿瘤特异性杀伤活性。
     3.4各组CD8+T细胞体内抗肿瘤作用的评价
     成功地构建了小鼠肾癌Renca细胞皮下荷瘤BALB/c小鼠模型。与对照组相比,腹腔内注射M-T-CD8+T细胞、M-N-CD8+T细胞能够抑制荷瘤小鼠的肿瘤生长(P<0.01,P<0.05,vs.对照组),其中M-T-CD8+T细胞组抑制效果更明显,有2例肿瘤完全消失,这表明M-T-CD8+T细胞具有更强的抗肿瘤效果。40天后腹腔注射N-CD8+T细胞、M-N-CD8+T细胞和M-T-CD8+T细胞的荷瘤小鼠生存率分别为20%、30%和80%。Mantel-Haenszel log-rank统计分析表明:M-T-CD8+T细胞与其他2组相比差别有统计学意义(P<0.01)。这些结果说明TGF-β不敏感的肿瘤反应性CD8+T细胞能有效提高Renca皮下荷瘤小鼠的生存率。
     40天后处死全部存活小鼠,酶联免疫吸附(ELISA)测定细胞因子IL-2和IFN-γ变化,结果显示:相对于N-CD8+T细胞组,腹腔内注射M-T-CD8+T细胞和M-N-CD8+T细胞的荷瘤小鼠体内IL-2和IFN-γ水平明显升高,注射M-T-CD8+T细胞的荷瘤小鼠体内该两种细胞因子水平升高更明显。这些结果说明TGF-β不敏感的肿瘤反应性CD8+T细胞能够促进机体产生相应的细胞因子以协同对肿瘤细胞的杀伤作用。
     分离各组小鼠脾脏中CD8+T细胞,流式细胞仪检测GFP阳性细胞百分率,注射M-T-CD8+T细胞和M-N-CD8+T细胞的荷瘤小鼠脾脏分离的CD8+T细胞中GFP阳性细胞百分率分别为2.0%和0.2%,两组之间的差别有统计学意义(P<0.01)。结果说明TGF-β不敏感的肿瘤反应性CD8+T细胞能够在肿瘤的刺激下维持一定的时间。
     【结论】
     1成功构建了小鼠TβR-ⅡRNAi逆转录病毒表达载体。
     2采用自荷瘤小鼠分离CD8+T细胞的方法以及使用肾癌Renca细胞裂解产物作为抗原,诱导出了肾癌反应性的CD8+T细胞。
     3首次使用含有针对TβR-ⅡshRNA的逆转录病毒感染肾癌反应性的CD8+T细胞,敲除其表面的TβR-Ⅱ,阻断TGF-β信号通路。
     4 TGF-β不敏感的肿瘤反应性CD8+T细胞对TGF-β1的抗增殖作用不敏感,并具有较强的肿瘤特异性杀伤活性。
     5 TGF-β不敏感的肿瘤反应性CD8+T细胞能够在肿瘤的刺激下维持一定的时间,显著提高Renca皮下荷瘤小鼠的生存率,明显抑制肿瘤生长,而且有2例肿瘤完全消失。TGF-β不敏感的肿瘤反应性CD8+T细胞处理的荷瘤小鼠体内IL-2和IFN-γ水平明显升高。
     用逆转录病毒介导的RNAi敲除肿瘤反应性CD8+T细胞表面的TβR-Ⅱ,可以阻断这些CD8+T细胞中的TGF-β信号通路,降低TGF-β对CD8+T细胞分化、增殖的抑制作用,以提高CD8+T细胞对肿瘤细胞的杀伤作用,合理地利用RNAi技术以促进免疫效应细胞对肿瘤的杀伤作用,是肾癌免疫基因治疗的一个新方向。
[Background]
     Renal cell carcinoma (RCC) is the most common malignancy in urogenital system. Although the incidence of RCC occupied only 3% of systemic malignant tumors, the incidence of RCC in the whole world increased 2% per year recently, and every year more than 100,000 people died of RCC. In our country, the incidence of RCC, which is inferior to the incidence of bladder cancinoma, occupys the second place in urogenital tumors. In recent years, there has been a ascending tendency of the RCC incidence and RCC is one of the most important tumors which threaten the people’s health. Most RCCs are congenitally multidrug resistant and insensitive to chemotherapy and radiotherapy. In addition to that surgical treatment of early stage RCCs can achieve a better therapeutic efficacy, there are no specific treatment methods to most advanced RCCs nowadays. Hower, about 50% patients with RCCs are diagnosed as intermediate or advanced stage of RCC for the first visit. In about 40% patients, metastasis and recurrence happened. The prognosis of metastatic RCCs is bad. The mean survival time of patients with metastatic RCCs was less than one year and the three-year survival rate of the patients was only less than 5%. Therefore, to find a effective and specific treatment method to RCCs is the exigent problem to resolve in the clinic therapy of urology.
     The development of immunogene therapy has brought the new hope to the people. Both the selection of target gene and the effector cell are the key points of immunogene therapy. Transforming growth factorβ(TGF-β) is a multifunctional cytokine. It is important to cell proliferation, differentiation, apoptosis and development of lots of tissues. TGF-βis a potent immunosuppressant. The overproduction of TGF-βby tumor cells and the resulting inhibition of immune effector cells (T cell, B cell, macrophage, etc) in proliferation and differentiation may lead to tumor evasion from the host immune surveillance and tumor progression. Three types of TGF-βreceptors with high homology have been identified: typeⅠ(TβR-Ⅰ, 55KD), typeⅡ(TβR-Ⅱ, 75KD), and typeⅢ(TβR-Ⅲ, 280KD). They perform the signal transduction via the transmembrane receptor compounds. TβR-Ⅰand TβR-Ⅱexhibit serine/threonine kinase activity in their intracellular domains. TβR-Ⅲfunctions by binding TGF-βand then transferring it to its signaling receptors, the typeⅠandⅡreceptors. The current understanding shows that TGF-βfirst binds to TβR-Ⅱwith high affinity, which initiates intracellular signaling by phosphorylating several transcription factors and regulates the cell biological behaviour.
     It can be seen that TβR-Ⅱis the key molecule in TGF-βsignaling and CD8+ T cell is one of the effctor cells with killing effect in tumor immunity. We hypothesized that based on the premise that CD8+ T cells were tumor-reactive, knock-out of TβR-Ⅱon these CD8+ T cells via RNAi to make these tumor-reactive CD8+ T cells TGF-β-insensitive would resist the inhibition effect of TGF-βon proliferation and differentiation of CD8+ T cells, so that the killing effect of CD8+ T cells on tumor cells would be improved. This new strategy of immunogene therapy is expected to be provided in clinic for the treatment of RCCs.
     [Objective]
     To construct a retrovirus vector which contains the shRNA to mouse TβR-Ⅱgene. To product tumor-reactive TGF-β-insensitive CD8+ T cells by knocking down TβR-Ⅱon tumor-reactive CD8+ T cell surface via MSCV-incuced RNAi. To observe the killing effect of these CD8+ T cells to mouse renal cancer Renca cell line in vitro and in vivo.
     [Materials and methods]
     1 Selection of siRNAs and construction of MSCV-shRNAs retrovirus vectors
     1.1 Selection of the target sites of TβR-Ⅱgene
     Based on the mouse TβR-Ⅱgene (GenBank accession No. AF406755) sequence, three pairs of siRNAs to three different target sites were designed and synthesized, and named siRNA.1, siRNA.2 and siRNA.3.
     1.2 Selection of siRNAs
     The three pairs of siRNAs were separately transfected to mouse fibroblast NIH3T3 cell line by Oligofectamine?. After 48h of transfection, cell total RNA and protein was extrcated for RT-PCR and Western Blot analysis to identify which pair of siRNA was the most effective one. Then this pair of siRNA was selected for the further experiments.
     1.3 Construction of MSCV-shRNAs retrovirus vector
     Correspondingly, shRNA to TβR-Ⅱgene, with the name of shRNA-T, was synthesized based on the selected siRNA sequence. Negative control shRNA, with the name of shRNA-N, was also synthesized. The two shRNAs were ligated into the linearized pEGFP/U6 vector by ApaⅠand EcoRⅠ. Then the whole U6-shRNA sequence was obtained by BamHⅠ/EcoRⅠdigestion and inserted into the MSCV-TβRⅡDN-IRES-GFP vector, which was also linearized by BamHⅠ/EcoRⅠdigestion. The reconstructed MSCV-shRNAs were named MSCV-shRNA-T and MSCV-shRNA-N respectively and were identified by DNA sequencing.
     2 Production of tumor-reactive TGF-β-insensitive CD8+ T cells
     2.1 Package and titration of MSCV-shRNAs retrovirus
     MSCV-shRNA and pVSV-G were cotransfected to pantropic GP293 retroviral packaging cells. After cotransfection at 37℃for 12h, the supernatant was replaced by fresh DMEM medium containing 10% FBS for additioanl incubation at 37℃, 5% CO2 for 48h. The supernatant, which contained MSCV-shRNA reconstructed retrovirus, was then collected for determination of virus tite or for cryopreservation at -80℃.
     2.2 Isolation, cultivation and identification of tumor-reactive CD8+ T cells
     Renca tumors were established in BALB/c mouse. Splenic CD8+ T cells were isolated by using MagCellect* mouse CD8+ T cell isolation kit (R&D Systems) and cultured at 37℃, 5% CO2 in the presence of Renca lysates and irradiated autologous splenocytes in a medium containing RPMI-1640 with 10% FBS, rmIL-2 (50 U/ml), anti-CD3+ moloclonal antibody (30 ng/ml, R&D), HEPE (25 mM), L-glutamine (4 mM), and 2-ME (25 mM). The cell purity was determined by flow cytometry.
     2.3 Production of tumor-reactive TGF-β-insensitive CD8+ T cells by infection of MSCV-shRNAs retrovirus
     Tumor-reactive CD8+ T cells were infected by MSCV-shRNAs retrovirus and incubated at 37℃, 5% CO2 for 48h. Three types of CD8+ T cells were established. The first type was tumor-reactive RNAi-induced TGF-β-insensitive CD8+ T cells (tumor-reactive CD8+ T cells infected with the MSCV-shRNA-T virus). The second type was tumor-reactive CD8+ T cells infected with the MSCV-shRNA-N virus. The third type was na?ve CD8+ T cells, which were freshly isolated from the spleen of na?ve donor animals without any treatment. The three types of CD8+ T cells were named M-T-CD8+T, M-N-CD8+T and N-CD8+T.
     2.4 The expression level of TβR-ⅡmRNA in each group of CD8+ T cells was determined by RT-PCR
     2.5 The expression level of TβR-Ⅱprotein in each group of CD8+ T cells was determined by Western Blot
     3 The killing effect of tumor-reactive RNAi-induced TGF-β-insensitive CD8+ T cells to mouse renal cancer Renca cell line in vitro and in vivo
     3.1 Western Blot analysis for the expression of SMAD-2 and P-SMAD in each group of CD8+ T cells
     3.2 Thymidine incorporation assay for the analysis to each group of CD8+ T cells proliferation in vitro
     3.3 Detection of each group of CD8+ T cells’killing effect on Renca cell line or an irrelevant mouse melanoma B16-F1 cell line in vitro by a standard 51Cr release assay
     3.4 Assessment of anti-tumor effect presented by tumor-reactive TGF-β- insensitive CD8+ T cells in vivo
     Subcutaneous Renca tumors were established in BALB/c mouse. Total of 30 BALB/c tumor-bearing mice were divided into 3 groups randomly and inoculated i.p. with each group of CD8+ T cells respectively. Tumor growth and mouse survival were monitored post-inoculation. Forty days later, all of the survival mice were sacrificed and serum levels of IL-2 and IFN-γwere determined by enzyme-linked immunoabsorbant assay (ELISA). Splenic CD8+ T cells were isolated and the percentage of GFP-positive ones was determined by flow cytometry.
     [Results]
     1 Selection of siRNAs and construction of MSCV-shRNAs retrovirus vectors
     Three pairs of siRNAs transfected to mouse fibroblast NIH3T3 cell line. After 48h of transfection, cell total RNA and protein was extrcated. The results of RT-PCR and Western-Blot indicated that the expression level of TβR-Ⅱin siRNA.1 transfected cells decreased significantly and that siRNA.1 was the most effective one. Correspondingly, shRNA to TβR-Ⅱgene, with the name of shRNA-T, was synthesized based on the selected siRNA sequence. Negative control shRNA, with the name of shRNA-N, was also synthesized. By use of gene engineering technology and DNA sequencing, MSCV retrovirus vectors containing shRNAs were successfully reconstructed and named MSCV-shRNA-T and MSCV-shRNA-N, respectively.
     2 Production of tumor-reactive TGF-β-insensitive CD8+ T cells
     2.1 Package and titration of MSCV-shRNAs retrovirus
     MSCV-shRNA and pVSV-G were cotransfected to pantropic GP293 retroviral packaging cells. Then the collected supernatant at different dilution, which contained MSCV-shRNA reconstructed retrovirus, infected NIH3T3 cells. The NIH3T3 cells with green fluorescence were observed by fluorescence microscope and the GFP-positive cell counts were determined by flow cytometry. The calculated virus tite was 7.15×1010VP/L.
     2.2 Production of tumor-reactive TGF-β-insensitive CD8+ T cells
     Splenic tumor-reactive CD8+ T cells were isolated from BALB/c Renca tumor-bearing mouse by using MagCellect* mouse CD8+ T cell isolation kit (R&D Systems). The cell purity was 95.3% determined by flow cytometry. Tumor-reactive CD8+ T cells were infected with the MSCV-shRNAs retrovirus. The infection efficiency was determined by flow cytometry analysis. They were 93.1% and 91.6%, respectively, for the MSCV-shRNA-T and MSCV-shRNA-N retrovirus. MSCV-shRNA-T, MSCV-shRNA-N retrovirus infected tumor-reactive CD8+ T cells and na?ve CD8+ T cells freshly isolated from the spleen of na?ve donor animals without any treatment were established and named M-T-CD8+T, M-N-CD8+T and N-CD8+T respectively.
     2.3 The expression level of TβR-Ⅱin each group of CD8+ T cells
     RT-PCR and Western Blot indicated that TβR-Ⅱexpression in mRNA and protein level was decreased in the M-T-CD8+T. While in M-N-CD8+T and N-CD8+T, there was no significant decrease of TβR-Ⅱexpression. These results suggested that tumor-reactive TGF-β-insensitive CD8+ T cells were successfully established.
     3 The killing effect of tumor-reactive RNAi-induced TGF-β-insensitive CD8+ T cells to mouse renal cancer Renca cell line in vitro and in vivo
     3.1 Western Blot analysis for the expression of SMAD-2 and P-SMAD in each group of CD8+ T cells
     Smad-2 and phosphorylated Smad-2 were detected by Western blot analysis after the three types of CD8+ T cells were treated with 10 ng/ml TGF-β1. The presence of Smad-2 was detected in all CD8+ T groups. But, phosphorylated Smad-2 was only detected in M-N-CD8+T and N-CD8+T in response to TGF-β1; absence of phosphorylated Smad-2 in M-T-CD8+T confirmed that TGF-βsignal transduction was successfully blocked by the MSCV-shRNA induced RNAi.
     3.2 Results of thymidine incorporation assay
     The inhibitory rate of TGF-βon thymidine uptake was compared among the three types of CD8+ T cells after the addition of TGF-β1 for 72 h. TGF-β1 showed a dramatic antiproliferative effect on the established M-N-CD8+T and N-CD8+T, inhibiting uptake by a mean of 67.5% and 63.5% respectively. Whereas the mean inhibitory rate of thymidine uptake by M-T-CD8+T was 17%, the resistance to the antiproliferative effects of M-T-CD8+T was statistically significant when compared with the other groups (P<0.05). These results suggested that M-T-CD8+T were insensitive to the antiproliferative effect of TGF-β1.
     3.3 Detection of each group of CD8+ T cells’killing effect on Renca cell line in vitro
     The ability of these CD8+ T cells to lyse Renca cells or irrelevant mouse melanoma B16-F1 cells was assayed in vitro using a standard 51Cr release assay. The results indicated that M-T-CD8+T showed the most potent Renca-specific CTL response (41% killing activity at an effector:target cell ratio of 100:1). M-N-CD8+T showed determinate Renca-specific CTL response (10% killing activity at an effector:target cell ratio of 100:1). N-CD8+T showed no significant CTL response. No apparent lysis was observed against irrelevant B16-F1 cells by these three types of CD8+ T cells. These results suggested that blocking TGF-βsignaling of tumor-reactive CD8+ T cells may improve the tumor-specific killing activity.
     3.4 Assessment of anti-tumor effect presented by tumor-reactive TGF-β- insensitive CD8+ T cells in vivo
     To assess the antitumor effect of the M-T-CD8+T in vivo, Renca tumors were established in BALB/c mice. Compared with N-CD8+T group, adoptive i.p. transfer of M-T-CD8+T and M-N-CD8+T significantly suppressed the growth of the tumor (P<0.01,P<0.05,vs.control, respectively), with the M-T-CD8+T showing the more significant inhibitory effect. Complete tumor regression occurred in 20% of Renca-tumor-bearing mice that were treated with M-T-CD8+T. Forty days later, the survival rate of M-T-CD8+T, M-N-CD8+T and N-CD8+T treated mice was 80%, 30% and 20% respectively. Statistical analysis by using the Mantel-Haenszel log-rank test indicated a significant difference between the M-T-CD8+T and the other two control groups (P<0.01). These results demonstrated that the tumor-reactive TGF-β-insensitive CD8+ T cells were effective in improving the survival rate in mice bearing Renca tumors.
     Forty days after adoptive i.p. transfer of these three types of CD8+ T cells, all of the survival mice were sacrificed. Serum levels of IL-2 and IFN-γwere detected by enzyme-linked immunoabsorbant assay (ELISA). Compared with N-CD8+T treated group, the level of IL-2 and IFN-γin M-T-CD8+T and M-N-CD8+T treated mice increased significantly. A further increase in serum IL-2 and IFN-γwas observed in M-T-CD8+T group, suggesting the tumor-reactive TGF-β-insensitive CD8+ T cells promoted the host to product corresponding cytokines to kill the tumor cells robustly.
     Splenic CD8+ T cells were isolated and the percentage of GFP-positive ones was determined by flow cytometry. Adoptively transferred M-T-CD8+T cells were detected with a percentage of 2.0%, and 0.2% for M-N-CD8+T cells. The difference between the two groups was statistically significant, suggesting that these tumor-reactive TGF-β-insensitive CD8+ T cells were able to persist in recipient tumor-bearing hosts at least at the time of sacrifice, which occurred 40 days after the initial adoptive transfer.
     [Conclusions]
     1 We successfully constructed a retrovirus vector to deliver shRNA to mouse TβR-Ⅱgene.
     2 By use of the method to isolate CD8+ T cells from the tumor-bearing mice and make Renca cell lysate as antigens, we successfully induced the renal cancer reactive CD8+ T cells.
     3 MSCV retrovirus containing shRNA to TβR-Ⅱgene was used for the first time to infect renal cancer reactive CD8+ T cells. The TβR-Ⅱwas successfully knocked down so that the TGF-βsignaling was blocked.
     4 Tumor-reactive TGF-β-insensitive CD8+ T cells were insensitive to the antiproliferative effect of TGF-β1 and their tumor-specific killing activity was stronger.
     5 Tumor-reactive TGF-β-insensitive CD8+ T cells were able to persist for a period in recipient tumor-bearing hosts. These CD8+ T cells significantly suppressed tumor growth and increased survival rate of Renca tumor-bearing mice. Furthermore, complete tumor regression occurred in 2 treated mice. Serum levels of IL-2 and IFN-γin tumor-reactive TGF-β-insensitive CD8+ T cells treated mice were significantly improved.
     Taken together, by use of retrovirus induced RNAi to knock down TβR-Ⅱon the surface of tumor-reactive CD8+ T cells, the TGF-βsignaling was blocked, which decreased the inhibitory effect of TGF-βon the proliferation and differentiation of CD8+ T cells. Thus, the tumor-killing activity of CD8+ T cells were improved. It was demonstrated that reasonable use of RNAi technology to promote the tumor-killing activity of immune effctor cells could potentially be a new experimental approach for the immunogene therapy to renal cancer.
引文
1. Mclaughlin JK, Lipworth L. Epidemiologic aspects of renal cell cancer. Semin Oncol, 2000, 27(2): 115-123.
    2. Scheltema JM, Romijn JC, van Steenbrugge GJ, et al. Inhibition of apoptotic proteins causes multidrug resistance in renal carcinoma cells. Anticancer Res, 2001, 21(5): 3161-3166.
    3. Drucker BJ. Renal cell carcinoma: current status and future prospects. Cancer Treat Rev, 2005, 31(7): 536-545.
    4. Van der Bruggen P, TraversariC, Chomez P, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science, 1991, 254(5038): 1643-1647.
    5. Dudley ME, Rosenberg SA. Adoptive-cell-transfer therapy for the treatment of patients with cancer. Nat Rev Cancer, 2003, 3(9): 666-675.
    6. Rosenberg SA. Development of effective immunotherapy for the treatment of patients with cancer. J Am Coll Surg, 2004, 198(5): 685-696.
    7. 马建辉,许秉责,肖振东,等. 过继 TAK 细胞免疫治疗在晚期肾癌的应用价值. 中华泌尿外科杂志, 1995, 16(12):713-715.
    8. 万云霞,陈毓仙,马建辉,石卫,李艳芬,李秀琴,储大同. 负载肾癌肿瘤裂解物的树突状细胞诱导产生抗原特异性细胞毒 T 淋巴细胞. 中华泌尿外科杂志, 2002,23(9);524-526.
    9. 万云霞,陈毓仙,马建辉,李艳芬,张学斌,石卫,李秀琴,储大同.细胞毒 T 淋巴细胞识别人肾癌 c2erbB22 蛋白.中华泌尿外科杂志, 2003, 24(4); 229-231.
    10. Speiser DE, Romero P. Toward improved immunocompetence of adoptively transferred CD8+ T cells. J Clin Invest, 2005, 115(6):1467-469.
    11. Yee C, Thompson JA, Byrd D, Riddell SR, Roche P, Cells E, Greenberg PD. Adoptive T cell therapy using antigen-specific CD8+ T cells clones for the treatment of patients with metastatic melanoma: In vivo persistence, migration, and antitumor effect of transferred T cells. Proc. Natl. Acad. Sci.USA, 2002, 99(25): 16168-16173
    12. Thomas DA, Massague J. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell, 2005, 8(5): 369-380.
    13. Cox DA, Maurer T. Transforming growth factor-beta. Clin Immunol Immunopathol, 1997, 83(1): 25-30.
    14. Trapani JA. The dual adverse effects of TGF-beta secretion on tumor progression. Cancer Cell, 2005, 8(5): 349-350.
    15. Kaklamani VG, Pasche B. Role of TGF-beta in cancer and the potential for therapy and prevention. Expert Rev Anticancer Ther, 2004, 4(4): 649-661
    16. Yingling JM, Blanchard KL, Sawyer JS. Development of TGF-beta signalling inhibitors for cancer therapy. Nat Rev Drug Discov, 2004, 3(12): 1011-1022
    17. Jemal A, Murray T, Samuels A, et al. Cancer statistics. Cancer J Clin, 2003, 53 (1): 5-26.
    18. Gitlitz BJ, Figlin RA. Cytokine-based therapy for metastatic renal cell cancer. Urol Clin North Am, 2003, 30(3):589-600.
    19. Fyfe G, Fisher RI, Rosenberg SA, et al. Results of treatment of 255 patients with metastatic renal cell carcinoma who receive high-dose recombinant IL-2 therapy. J Clin Oncol, 1995, 13(3): 688-696.
    20. Fisher RI, Rosenberg SA, Sznol M et al. High-dose aldesleukin in renal cell carcinoma: long-term survival update. Cancer J Sci Am, 1997, 3 Suppl 1: S70-72.
    21. Libra M, Talamini R, Crivellari D, et al. Long-term survival in patients with metastatic renal cell carcinoma treated with continuous intra-venous infusion of recombinant interleukin-2: the experience of a single institution. Tumori, 2003, 89(4): 400-404.
    22. Yang J.C., SHERRY R.M, Steinberg, et al. Randomized study of high-dose and low-dose IL-2 in patients with metastatic renal cell cancer. J Clin Oncol, 2003, 21(16): 3127-3132.
    23. McDermott DF, Regan MM, Clark JI, Flaherty LE, Weiss GR, Logan TF,Kirkwood JM, Gordon MS, Sosman JA, Ernstoff MS, Tretter CP, Urba WJ, Smith JW, Margolin KA, Mier JW, Gollob JA, Dutcher JP, Atkins MB. Randomized phase III trial of high-dose interleukin-2 versus subcutaneous interleukin-2 and interferon in patients with metastatic renal cell carcinoma. J Clin Oncol, 2005, 23(1):133-141.
    24. Mekhail T, Wood L, Bukowski R. Interleukin-2 in cancer therapy: use and optimum management of adverse effects. Biodrugs, 2000, 14(5):299-318.
    25. Gotoh A, Shirakawa T, Hinata N, Wada Y, Hara I, Fujisawa M, Kawabata G, Okada H, Arakawa S, Kamidono S. Long-term outcome of postoperative interferon-alpha adjuvant therapy for non-metastatic renal cell carcinoma. Int J Urol, 2004, 11(5):257-263.
    26. Donskov F, Bennedsgaard KM, Hokland M, et al. Leukocyte orchestration in blood and tumour tissue following interleukin-2 based immunotherapy in metastatic renal cell carcinoma. Cancer Immunol Immunother, 2004, 53(8):729-739.
    27. Tourani JM, Pfister C, Tubiana N, Ouldkaci M, Prevot G, Lucas V, Oudard S, Malet M, Cottu P, Ferrero JM, Mayeur D, Rixe O, Sun XS, Bernard O, Andre T, Tournigand C, Muracciole X, Guilhot J; Subcutaneous Administration Propeukin Program Cooperative Group. Subcutaneous interleukin-2 and interferon alfa administration in patients with metastatic renal cell carcinoma: final results of SCAPP III, a large, multicenter, phase II, nonrandomized study with sequential analysis design--the Subcutaneous Administration Propeukin Program Cooperative Group. J Clin Oncol, 2003, 21(21): 3987-3994.
    28. Atzpodien J, Kirchner H, Jonas U, Bergmann L, Schott H, Heynemann H, Fornara P, Loening SA, Roigas J, Müller SC, Bodenstein H, Pomer S, Metzner B, Rebmann U, Oberneder R, Siebels M, Wandert T, Puchberger T, Reitz M; Prospectively Randomized Trial of the German Cooperative Renal Carcinoma Chemoimmunotherapy Group (DGCIN). Interleukin-2- and interferon alfa-2a-based immunochemotherapy in advanced renal cell carcinoma: a Prospectively Randomized Trial of the German CooperativeRenal Carcinoma Chemoimmunotherapy Group (DGCIN). J Clin Oncol, 2004, 22(7): 1188-1194.
    29. Ravaud A, Trufflandier N, Ferriere JM, et al. Subcutaneous interleukin-2,interferon-alpha-2b and 5-fluorouracil in metastatic renal cell carcinoma as second-line treatment after failure of previous immunotherapy: a phase II trial. Br J Cancer, 2003, 89(12): 2213-2218.
    30. Kato Y, Yoshimura K, Shin T, Verheul H, Hammers H, Sanni TB, Salumbides BC, Van Erp K, Schulick R, Pili R. Synergistic in vivo antitumor effect of the histone deacetylase inhibitor MS-275 in combination with interleukin 2 in a murine model of renal cell carcinoma. Clin Cancer Res. 2007, 13(15 Pt 1): 4538-4546.
    31. Maruoka M, Fujimura M, Kawamura K, Suzuki S, Hamano M, Nishikawa Y, Nagayama T. Multi-modal treatment of primarily using continuous subcutaneous interferon-alpha injection in combination with surgery and/or radiotherapy. Int J Urol. 2005, 12(5): 442-448.
    32. Motzer R J, Bukowski R M. Targeted therapy for metastatic renal cell carcinoma. J Clin Oncol, 2006, 24(35): 5601-5608.
    33. Jho D, Mehta D, Ahmmed G, et al. Angiopoietin-1 opposes VEGF-induced increase in endothelial permeability by inhibiting TRPCI-dependent Ca2+ influx. Cire Res, 2005, 96(12): 1282-1290.
    34. Ranieri G, Patruno R, Ruggieri E, et al. Vascular endothelial growth factor (VEGF) as a target of bevacizumab in cancer: from the biology to the clinic. Curr Med Chem, 2006, 13 (16): 1845-1857.
    35. Yang J C, Haworth L, Sherry R M, et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med, 2003, 349 (5): 427-434.
    36. Van Spronsen D J, Mulders P F, De Mulder P H. Novel treatments for metastatic renal cell carcinoma. Crit Rev Oncol Hematol, 2005, 55 (3): 177-191.
    37. Mendelsohn J, Baselga J. Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J Clin Oncol, 2003,21(14): 2787-2799.
    38. Xu J M, Azzariti A, Colucci G, et al. The effect of gefitinib ( Iressa ,ZD1839) in combination with oxaliplatin is schedule-dependent in colon cancer cell lines. Cancer Chemother Pharmacol, 2003, 52(6): 442 -448.
    39. Xu J M, Azzariti A, Severino M, et al. Characterization of sequence-dependent synergy between ZD1839 (‘Iressa’) and oxaliplatin. Biochem Pharmacol, 2003, 66(4): 551-563.
    40. Sumitomo M, Asano T, Asakuma J, et al. ZD1839 modulates paclitaxel response in renal cancer by blocking paclitaxel-induced activation of the epidermal growth factor recptor-extracelular signal-regulated kinase path way. Clin Cancer Res, 2004, 10(2): 794-801.
    41. Hainsworth J D, Sosman J A, Spigel D R, et al. Treatment of metastatic renal cell carcinoma with a combination of bevacizumab and erlotinib. J Clin Oncol, 2005, 23 (31): 7889-7896.
    42. Moulder S L, Yakes F M, Muthuswaniy S K, et al. Epidermal growth factor receptor ( HER1) tyrosine kinase inhibitor ZD1839 ( Iressa ) inhibit sHER2/ neu (erbB2)-over expressing breast cancer cells in vitro and in vivo. Cancer Res ,61 (24) :8887-8895.
    43. Normanno N, Campigho M, De Luca A, et al. Cooperative inhibitory effect of ZD1839 ( Iressa) in combination with trastuzumab ( Herceptin) on human breast cancer cell growth. Ann Onco1, 2002, 13 (1): 65-72.
    44. Wilhelm S, Carter C, Lynch M, Lowinger T, Dumas J, Smith RA, Schwartz B, Simantov R, Kelley S. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov, 2006, 5 (10): 835-844.
    45. Chang YS, Adnane J, Trail PA, Levy J, Henderson A, Xue D, Bortolon E, Ichetovkin M, Chen C, McNabola A, Wilkie D, Carter CA, Taylor IC, Lynch M, Wilhelm S. Sorafenib (BAY 43-9006) inhibits tumor growth and vascularization and induces tumor apoptosis and hypoxia in RCC xenograft models. Cancer Chemother Pharmacol, 2007, 59(5):561-574.
    46. Ratain M J, Flaherty K T, Stadler W M, et al. Preliminary antitumor activityof BAY43-9006 in metastatic renal cell carcinoma and other advanced refractory solid tumors in a phase Ⅱ randomized discontinuation trial (RDT). ASCO Annual Meeting 2004 Abstract: 4051.
    47. Ratain M J, Eisen T, Stadler W M, et al. Final findings from a Phase Ⅱ placebo-controlled, randomized discontinuation trial (RDT) of sorafenib (BAY43-9006) in patients with advanced renal cell carcinoma (RCC). ASCO Annual Meeting 2005 Abstract: 4544.
    48. EscudierB, Bukowski RM, Eisen T, et al. Final results of the randomized phase Ⅲ trial of sorafenib in advanced renal cell carcinoma: survival and biomarker analysis. N Engl J Med, 2007, 356 (11): 125-134.
    49. Ryan CW, Goldman BH, Lara PN Jr, Mack PC, Beer TM, Tangen CM, Lemmon D, Pan CX, Drabkin HA, Crawford ED; Southwest Oncology Group. Sorafenib with interferon alfa-2b as first-line treatment of advanced renal carcinoma: a phase II study of the Southwest Oncology Group. J Clin Oncol, 2007, 25(22): 3296-3301.
    50. Oosterwijk E, Debruyne FM. Radiolabeled monoclonal antibody G250 in renal-cell carcinoma. World J Urol , 1995, 13(3): 186-190.
    51. Steffens MG, Boerman OC, Oosterwijk-Wakka JC, Oosterhof GO, Witjes JA, Koenders EB, Oyen WJ, Buijs WC, Debruyne FM, Corstens FH, Oosterwijk E. Targeting of renal cell carcinoma with iodine-131-labelled chimeric monoclonal antibody G250. J Clin Oncol , 1997, 15(4): 1529-1537.
    52. Bleumer I, Knuth A, Oosterwijk E, et al. A phase Ⅱ trial of chimeric monoclonal antibody G250 for advanced renal cell carcinoma patients. Br J Cancer, 2004, 90(5): 985-990.
    53. Hemmerlein B, Johanns U, Halbfass J, et al. The balance between MMP-2/ -9 and TIMP-1/ -2 is shifted towards MMP in renal cell carcinomas and can be further disturbed by hydrogen peroxide. Int J Oncol, 2004, 24 (5): 1069-1076.
    54. Takahashi M, Oka N, Naroda T, et al. Prognostic significance of matrix metalloproteinases-2 activation ratio in renal cell carcinoma. Int J Urol, 2002, 9 (10): 531-538.
    55. Cho N H, Shim H S, Rha S Y, et al. Increased expression of matrix metalloproteinase 9 correlates with poor prognostic variables in renal cell carcinoma. Eur Urol, 2003, 44 (5): 560-566.
    56. Dillman. Treatment of kidney cancer with autologous tumor cancer vaccines of short-term cell lines derived from renal cell carcinoma. Cancer Biother Radiopharm, 2001, 16(1): 47-54.
    57. Schwaab T, Heaney J A, Schned A R, et al. A randomized phase Ⅱ trial comparing two different sequence combinations of autologous vaccine and human recombinant interferon gamma and human recombinant interferon alpha2B therapy in patients with metastatic renal cell carcinoma: clinical outcome and analysis of immunological parameters. J Urol, 2000, 163(4): 1322-1327.
    58. Holtl L, Zelle-Rieser C, Gander H, et al. Immunotherapy of metastatic renal cell carcinoma after vaccination with tumor lysate-pulsed autologous dendritic cells. Clin Cancer Res, 2002, 8(11): 3369-3376.
    59. Kugler A, Stuhler G, Walden P, et al. Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids. Nat Med, 2003, 9(9): 1221.
    60. Su Z, Dannull J, Heiser A, et al. Immunological and clinical responses in metastatic renal cancer patients vaccinated with tumor RNA-transfected dendritic cells. Cancer Res, 2003, 63(9): 2127-2133.
    61. Repmann R, Goldschmidt A, Richter A. Adjuvant therapy of renal cell carcinoma patients with an autologous tumor cell lysate vaccine: a 5-year follow-up analysis. Anticancer Res, 2003, 23(2A): 969-974.
    62. Jocham D, Richter A, Hoffmann L, et al. Adjuvant autologous renal tumor cell vaccine and risk of tumor progression in patients with renal-cell carcinoma after radical nephrectomy: phase Ⅲ randomized controlled trial. Lancet, 2004, 363(409): 594-599.
    63. Childs R, Chernoff A, Contentin N, et al. Regression of metastatic renal-cell carcinoma after nonmyeloablative allogeneic peripheral-blood stem-cell transplantation. N Engl J Med, 2003, 102(10): 3820-3836.
    64. Ueno N T, Cheng Y C, Rondon G, et al. Rapid induction of complete donor chimerism by the use of a reduced-intensity conditioning regimen composed of fludarabine and melphalan in allogeneic stem cell transplantation for metastatic solid tumors. Blood, 2003, 102(10): 3829-3836.
    65. Drachenberg D, Childs RW. Allogeneic stem cell transplantation as immunotherapy for renal cell carcinoma: from immune enhancement to immune replacement. Urol Clin North Am, 2003, 30(3): 611-622.
    66. Rosenberg SA, Lotze MT, Muul LM, Leitman S, Chang AE, Ettinghausen SE, Matory YL, Skibber JM, Shiloni E, Vetto JT, et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med, 1985, 313(23): 1485-1492.
    67. Rosenberg SA, Lotze MT, Yang JC, Topalian SL, Chang AE, Schwartzentruber DJ, Aebersold P, Leitman S, Linehan WM, Seipp CA, et al. Prospective randomized trial of high-dose interleukin-2 alone or in conjunction with lymphokine-activated killer cells for the treatment of patients with advanced cancer. J Natl Cancer Inst, 1993, 85(8): 622-632.
    68. Weiss GR, Margolin KA, Aronson FR, Sznol M, Atkins MB, Dutcher JP, Gaynor ER, Boldt DH, Doroshow JH, Bar MH, et al. A randomized phase II trial of continuous infusion interleukin-2 or bolus injection interleukin-2 plus lymphokine-activated killer cells for advanced renal cell carcinoma. J Clin Oncol, 1992, 10(2): 275-281.
    69. Linn YC, Hui KM. Cytokine-induced killer cells: NK-like T cells with cytolytic specificity against leukemia. Leuk Lymphoma, 2003, 44(9): 1457-1462.
    70. Figlin RA, Gitlitz BJ, Franklin J, et al. Long-term survival of patients with metastatic renal cell carcinoma treated with IL-2 based immunotherapy with or without tumor infiltrating lymphocytes: The UCLA kidney cancer program. Prcc Annu Meet Am Scc Clin Oncol, 1996, 15: A399.
    71. Schiltz PM, Beutel LD, Nayak SK, et al. Characterization of tumor-infiltrating lymphocytes derived from human tumors for use asadoptive immunotherapy of cancer. J Immunother, 1997, 20(5): 377-386.
    72. Figlin RA, Thompson JA, Bukowski RM, Vogelzang NJ, Novick AC, Lange P, Steinberg GD, Belldegrun AS. Multicenter, randomized, phase III trial of CD8(+) tumor-infiltrating lymphocytes in combination with recombinant interleukin-2 in metastatic renal cell carcinoma. J Clin Oncol, 1999, 17(8): 2521-2529.
    73. Meidenbauer N, Marienhagen J, Laumer M, et al. Survival and tumor localization of adoptively transferred melan-A-specific T cells in melanoma patients. J Immunol, 2003, 170(4): 2161-2169.
    74. Chang AE, Li Q, J iang G, et al. Phase II trial of autologous tumor vaccination, anti-CD3-activated vaccine-p rimed lymphocytes, and interleukin-2 in stage IV renal cell cancer. J Clin Oncol, 2003, 21(5): 884-890.
    75. Kawai K, Saijo K, Oikawa T, et al. Clinical course and immune response of a renal cell carcinoma patient to adoptive transfer of autologous cytotoxic T lymphocytes. Clin Exp Immunol, 2003, 134(2): 264-269.
    76. Fergelot P, Rioux-Leclercq N, Patard JJ. Molecular pathways of tumour angiogenesis and new targeted therapeutic approaches in renal cancer. Prog Urol, 2005, 15(6): 1021-1029.
    77. Ivanov SV, Kuzmin I, Wei MH, Pack S, Geil L, Johnson BE, Stanbridge EJ, Lerman MI. Down-regulation of transmembrane carbonic anhydrases in renal cell carcinoma cell lines by wild-type von Hippel-Lindau transgenes. Proc Natl Acad Sci U S A, 1998, 95(21):12596-12601.
    78. Harrington JJ, Van Bokkelen G, Mays RW, Gustashaw K, Willard HF. Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nat Genet, 1997, 15(4): 345-355.
    79. Mizutani Y, Bonavida B, Fukumoto M, Yoshida O. Enhanced susceptibility of c-myc antisense oligonucleotide-treated human renal cell carcinoma cells to lysis by peripheral blood lymphocytes. J Immunother Emphasis Tumor Immunol, 1995, 17(2): 78-87.
    80. Uchida T, Gao JP, Wang C, Satoh T, Itoh I, Muramoto M, Hyodo T, Irie A,Akahoshi T, Jiang SX, Kameya T, Baba S. Antitumor effect of bcl-2 antisense phosphorothioate oligodeoxynucleotides on human renal-cell carcinoma cells in vitro and in mice. Mol Urol, 2001, 5(2): 71-78.
    81. Hara I, Hara S, Miyake H, Arakawa S, Kamidono S. Bcl-2 modulates Fas-mediated apoptosis in human renal cell carcinoma cell lines. Int J Oncol, 2001, 18(6): 1181-1185.
    82. Nishitani MA, Sakai T, Ishii K, Zhang M, Nakano Y, Nitta Y, Miyazaki J, Kanayama HO, Kagawa S, Himeno K. A convenient cancer vaccine therapy with in vivo transfer of interleukin 12 expression plasmid using gene gun technology after priming with irradiated carcinoma cells. Cancer Gene Ther, 2002, 9(2): 156-163.
    83. Budryk M, Wilczyńska U, Szary J, Szala S. Direct transfer of IL-12 gene into growing Renca tumors. Acta Biochim Pol, 2000, 47(2): 385-391.
    84. Schendel DJ, Frankenberger B, Jantzer P, Cayeux S, N?betaner E, Willimsky G, Maget B, Pohla H, Blankenstein T. Expression of B7.1 (CD80) in a renal cell carcinoma line allows expansion of tumor-associated cytotoxic T lymphocytes in the presence of an alloresponse. Gene Ther, 2000, 7(23): 2007-2014.
    85. Szary J, Szala S. Intra-tumoral administration of naked plasmid DNA encoding mouse endostatin inhibits renal carcinoma growth. Int J Cancer, 2001, 91(6): 835-839.
    86. Fukumori T, Nishitani M, Naroda T, Onishi T, Oka N, Kanayama H, Kagawa S. Expression of angiostatin cDNA in a murine renal cell carcinoma suppresses tumor growth in vivo. Urology, 2002, 59(6): 973-977.
    87. Smith K, Gunaratnam L, Morley M, Franovic A, Mekhail K, Lee S. Silencing of epidermal growth factor receptor suppresses hypoxia-inducible factor-2-driven VHL-/- renal cancer. Cancer Res, 2005, 65(12): 5221-5230.
    88. Yin JQ, Gao J, Shao R, Tian WN, Wang J, Wan Y. siRNA agents inhibit oncogene expression and attenuate human tumor cell growth. J Exp Ther Oncol, 2003, 3(4): 194-204.
    89. Tani K, Azuma M, Nakazaki Y, Oyaizu N, Hase H, Ohata J, Takahashi K,OiwaMonna M, Hanazawa K, Wakumoto Y, Kawai K, Noguchi M, Soda Y, Kunisaki R, Watari K, Takahashi S, Machida U, Satoh N, Tojo A, Maekawa T, Eriguchi M, Tomikawa S, Tahara H, Inoue Y, Yoshikawa H, Yamada Y, Iwamoto A, Hamada H, Yamashita N, Okumura K, Kakizoe T, Akaza H, Fujime M, Clift S, Ando D, Mulligan R, Asano S. Phase I study of autologous tumor vaccines transduced with the GM-CSF gene in four patients with stage IV renal cell cancer in Japan: clinical and immunological findings. Mol Ther, 2004, 10(4): 799-816.
    90. Antonia SJ, Seigne J, Diaz J, Muro-Cacho C, Extermann M, Farmelo MJ, Friberg M, Alsarraj M, Mahany JJ, Pow-Sang J, Cantor A, Janssen W. Phase I trial of a B7-1 (CD80) gene modified autologous tumor cell vaccine in combination with systemic interleukin-2 in patients with metastatic renal cell carcinoma. J Urol, 2002, 167(5): 1995-2000.
    91. Pulkkanen KJ, Parkkinen JJ, Laukkanen JM, Kettunen MI, Tyynela K, Kauppinen RA, Ala-Opas MY, Yla-Herttuala S. HSV-tk gene therapy for human renal cell carcinoma in nude mice. Cancer Gene Ther, 2001, 8(7): 529-536.
    92. Uckert W, Kammert?ns T, Haack K, Qin Z, Gebert J, Schendel DJ, Blankenstein T. Double suicide gene (cytosine deaminase and herpes simplex virus thymidine kinase) but not single gene transfer allows reliable elimination of tumor cells in vivo. Hum Gene Ther, 1998, 9(6): 855-865.
    93. Roberts AB, Lamb LC, Newton DL, Sporn MB, De Larco JE, Todaro GJ. Transforming growth factors: isolation of polypeptides from virally and chemically transformed cells by acid/ethanol extraction. Proc. Natl. Acad. Sci. U. S. A., 1980, 77(6): 3494–3498.
    94. Moses HL, Branum EL, Proper JA, Robinson RA. Transforming growth factor production by chemically transformed cells. Cancer Res, 1981, 41(7): 2842–2848.
    95. Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease. N Engl J Med 2000, 342(18): 1350-1358.
    96. Chatzaki E, Kouimtzoglou E, Margioris AN, Gravanis A. Transforminggrowth factor beta1 exerts an autocrine regulatory effect on human endometrial stromal cell apoptosis, involving the FasL and Bcl-2 apoptotic pathways. Mol Hum Reprod, 2003, 9(2): 91-95.
    97. Zhu S, Goldschmidt-Clermont PJ, Dong C. Transforming growth factor-beta-induced inhibition of myogenesis is mediated through Smad pathway and is modulated by microtubule dynamic stability. Circ Res, 2004, 94(5): 617-625.
    98. Suzuki H, Yagi K, Kondo M, Kato M, Miyazono K, Miyazawa K. c-Ski inhibits the TGF-beta signaling pathway through stabilization of inactive Smad complexes on Smad-binding elements. Oncogene, 2004, 23(29): 5068-5076.
    99. Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell, 2003, 113(6): 685-700.
    100. Liu C, Gaca MD, Swenson ES, Vellucci VF, Reiss M, Wells RG. Smads 2 and 3 are differentially activated by transforming growth factor-beta (TGF-beta ) in quiescent and activated hepatic stellate cells. Constitutive nuclear localization of Smads in activated cells is TGF-beta-independent. J Biol Chem, 2003, 278(13): 11721-11728.
    101. Chen HB, Rud JG, Lin K, Xu L. Nuclear targeting of transforming growth factor-beta-activated Smad complexes. J Biol Chem, 2005, 280(22): 21329-21336.
    102. Kurisaki A, Kose S, Yoneda Y, Heldin CH, Moustakas A. Transforming growth factor-beta induces nuclear import of Smad3 in an importin-beta1 and Ran-dependent manner. Mol Biol Cell, 2001, 12(4): 1079-1091.
    103. Cordenonsi M, Dupont S, Maretto S, Insinga A, Imbriano C, Piccolo S. Links between tumor suppressors: p53 is required for TGF-beta gene responses by cooperating with Smads. Cell, 2003, 113(3): 301-314.
    104. Qing J, Liu C, Choy L, Wu RY, Pagano JS, Derynck R. Transforming growth factor beta/Smad3 signaling regulates IRF-7 function and transcriptional activation of the beta interferon promoter. Mol Cell Biol, 2004, 24(3): 1411-1425.
    105. Moustakas A, Heldin CH. Non-Smad TGF-beta signals. J Cell Sci, 2005, 118(Pt 16): 3573-3584.
    106. Edlund S, Landstrom M, Heldin CH, Aspenstrom P. Transforming growth factor-beta-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA. Mol Biol Cell, 2002, 13(3): 902-914.
    107. Bhowmick NA, Ghiassi M, Bakin A, Aakre M, Lundquist CA, Engel ME, et al. Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell, 2001, 12(1): 27-36.
    108. Ravitz MJ, Wenner CE. Cyclin-dependent kinase regulation during G1 phase and cell cycle regulation by TGF-β. Adv Cancer Res, 1997, 71: 165-207.
    109. Massague J. The transforming growth factor-β family. Annu Rev Cell Biol, 1990, 6: 597-641.
    110. Maehara Y, Kakeji Y, Kabashima A, et al. Role of transforming growth factor-β1 in invasion and metastasis in gastric carcinoma. J Clin Oncol, 1999, 17(2): 607-614.
    111. Pepper MS. Transforming growth factor-b: vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev, 1997, 8(1): 21-43.
    112. Dickson MC, Martin JS, Cousins FM, Kulkarni AB, Karlsson S, Akhurst RJ. Defective haematopoiesis and vasculogenesis in transforming growth factor-β1 knock out mice. Development, 1995, 121(6): 1845-1854.
    113. Oshima M, Oshima H, Taketo MM. TGF-β receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Dev Biol, 1996, 179(1): 297-302.
    114. Burrows FJ, Derbyshire EJ, Tazzari PL, et al. Up-regulation of endoglin on vascular endothelial cells in human solid tumors: implications for diagnosis and therapy. Clin Cancer Res, 1995, 1(12): 1623-1634.
    115. Breier G, Blum S, Peli J, Groot M, Wild C, Risau W, Reichmann E. Transforming growth factor-beta and Ras regulate the VEGF/VEGF-receptor system during tumor angiogenesis. Int J Cancer, 2002, 97(2): 142-148.
    116. Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA. Transforminggrowth factor-β regulation of immune responses. Annu. Rev. Immunol, 2006, 24: 99–146.
    117. Tsunawaki S, Sporn M, Ding A, Nathan C. Deactivation of macrophages by transforming growth factor-β, Nature, 1988, 334(6179): 260–262.
    118. Bodmer S, Strommer K, Frei K, Siepl C, de Tribolet N, Heid I, Fontana A. Immunosuppression and transforming growth factor-β in glioblastoma. Preferential production of transforming growth factor-β 2. J Immunol. 1989. 143(10): 3222-3229.
    119. von Bernstorff W, Voss M, Freichel S, Schmid A, Vogel I, J?hnk C, Henne-Bruns D, Kremer B, Kalthoff H. Systemic and local immunosuppression in pancreatic cancer patients. Clin Cancer Res, 200, 7(3 Suppl): 925s-932s.
    120. Torre-Amione G, Beauchamp RD, Koeppen H, Park BH, Schreiber H, Moses HL, Rowley DA. A highly immunogenic tumor transfected with a murine transforming growth factor type β 1 cDNA escapes immune surveillance. Proc Natl Acad Sci U S A, 1990, 87(4):1486-1490.
    121. Gorelik L, Flavell RA. Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T cells. Nat Med, 2001, 7(10): 1118-1122.
    122. Becker C, Fantini MC, Schramm C, Lehr HA, Wirtz S, Nikolaev A, Burg J, Strand S, Kiesslich R, Huber S, Ito H, Nishimoto N, Yoshizaki K, Kishimoto T, Galle PR, Blessing M, Rose-John S, Neurath MF. TGF-β suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity, 2004, 21(4): 491-501.
    123. Chen ML, Pittet MJ, Gorelik L, Flavell RA, Weissleder R, von Boehmer H, Khazaie K. Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-β signals in vivo. Proc. Natl. Acad. Sci. U. S. A, 2005, 102 (2): 419–424.
    124. Huber S, Schramm C, Lehr HA, Mann A, Schmitt S, Becker C, Protschka M, Galle PR, Neurath MF, Blessing M. Cutting edge: TGF-β signaling is required for the in vivo expansion and immunosuppressive capacity ofregulatory CD4+CD25+T cells. J Immunol, 2004, 173(11): 6526-6531.
    125. Letterio JJ, Roberts AB. Regulation of immune responses by TGF-β. Annu Rev Immunol, 1998, 16: 137-161.
    126. Shull MM, Ormsby I, Kier AB, et al. Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature, 1992, 359(6397): 693-699.
    127. Yang X, Letterio JJ, Lechleider RJ, et al. Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-β. EMBO J, 1999, 18(5): 1280-1291.
    128. Lin CM, Wang FH, Lee PK. Activated human CD4+ T cells induced by dendritic cell stimulation are most sensitive to transforming growth factor-beta: implications for dendritic cell immunization against cancer. Clin Immunol, 2002, 102(1): 96-105.
    129. Villanueva A, Garcia C, Paules AB, et al. Disruption of the antiproliferative TGF-β signaling pathways in human pancreatic cancer cells. Oncogene, 1998, 17(15): 1969-1978.
    130. Grady WM, Myeroff LL, Swinler SE, et al. Mutational inactivation of transforming growth factor β receptor type II in microsatellite stable colon cancers. Cancer Res, 1999, 59(2): 320-324.
    131. Markowitz S, Wang J, Myeroff L, et al. Inactivation of the type II TGF-β receptor in colon cancer cells with microsatellite instability. Science, 1995, 268(5215): 1336-1338.
    132. Myeroff LL, Parsons R, Kim SJ, et al. A transforming growth factor β receptor type II gene mutation common in colon and gastric but rare in endometrial cancers with microsatellite instability. Cancer Res, 1995, 55(23): 5545-5547.
    133. Knaus PI, Lindemann D, DeCoteau FJ, et al. A dominant inhibitory mutant of the type II transforming growth factor β receptor in the malignant progression of a cutaneous T-cell lymphoma. Mol Cell Biol, 1996, 16(7): 3480-3489.
    134. Sun L, Wu G, Willson JK, et al. Expression of transforming growth factor βtype II receptor leads to reduced malignancy in human breast cancer MCF-7 cells. J Biol Chem, 1994, 269(42): 26449-26455.
    135. Hahn SA, Schutte M, Hoque AT, et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science, 1996, 271(5247): 350-353.
    136. Thiagalingam S, Lengauer C, Leach FS, et al. Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers. Nat Genet, 1996, 13(3): 343-346.
    137. Howe JR, Roth S, Ringold JC, et al. Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science, 1998, 280(5366): 1086-1088.
    138. Ewen ME, Oliver CJ, Sluss HK, Miller SJ, Peeper DS. p53-Dependent repression of CDK4 translation in TGF-β-induced G1 cell-cycle arrest. Genes Dev, 1995, 9(2): 204-217.
    139. Alexandrow MG, Kawabata M, Aakre M, Moses HL. Overexpression of the c-Myc oncoprotein blocks the growth-inhibitory response but is required for the mitogenic effects of transforming growth factor β1. Proc Natl Acad Sci U S A, 1995, 92(8): 3239-3243.
    140. Datto MB, Hu PP, Kowalik TF, Yingling J, Wang XF. The viral oncoprotein E1A blocks transforming growth factor β-mediated induction of p21/WAF1/Cip1 and p15/INK4B. Mol Cell Biol, 1997, 17(4): 2030-2037.
    141. Kretzschmar M, Doody J, Timokhina I, Massague J. A mechanism of repression of TGFβ/Smad signaling by oncogenic Ras. Genes Dev, 1999, 13(7): 804-816.
    142. Vogel G. A new blocker for the TGF-β pathway. Science, 1999, 286(5440): 665.
    143. Hojo M, Morimoto T, Maluccio M, et al. Cyclosporine induces cancer progression by a cell-autonomous mechanism. Nature, 1999, 397(6719): 530-534.
    144. Picon A, Gold LI, Wang J, Cohen A, Friedman E. A subset of metastatic human colon cancers expresses elevated levels of transforming growth factor β1. Cancer Epidemiol Biomarkers Prev, 1998, 7(6): 497-504.
    145. Wettergreen MA, Hunniford JW, Crawford JM, Adami GR. An adenoviralsystem for tetracycline-regulated TGF-beta expression mediates a reversible cell cycle arrest. Eur J Oral Sci, 2001, 109(6): 415-421.
    146. Shariat SF, Kim JH, Andrews B, Kattan MW, Wheeler TM, Kim IY, Lerner SP, Slawin KM. Preoperative plasma levels of transforming growth factor beta(1) strongly predict clinical outcome in patients with bladder carcinoma. Cancer, 2001, 92(12): 2985-2992.
    147. Turco A, Scarpa S, Coppa A, Baccheschi G, Palumbo C, Leonetti C, et al. Increased TGF beta type II receptor expression suppresses the malignant phenotype and induces differentiation of human neuroblastoma cells. Exp Cell Res, 2000, 255(1): 77-85.
    148. Bandyopadhyay A, Zhu Y, Cibull ML, Bao L, Chen C, Sun L. A soluble transforming growth factor beta type III receptor suppresses tumorigenicity and metastasis of human breast cancer MDA-MB-231 cells. Cancer Res, 1999, 59(19): 5041-5046.
    149. Gomella L G, Sargent ER , Linehan WM , et al . Transforming growth factor-beta inhibits the growth of renal cell carcinoma in vitro. J Urol, 1989, 141(5): 1240-1244.
    150. TOMOYUKI SHIMABUKURO, YASUKAZU OHMOTO, KATSUSUKE NAITO. Transforming growth factor-β1 and renal cell cancer: cell growth, mRNA expression and protein production of cytokines. J Urol, 2003, 169(5): 1865-1869.
    151. Engel JD , Kundu SD , Yang T , et al . Transforming growth factor-beta type II receptor confers tumor suppressor activity inmurine renal carcinoma (Renca) cells. Urology, 1999, 54(1): 164-170.
    152. Kundu SD , Kim IY, Zelner D ,et al . Absence of expression of transforming growth factor-beta type II receptor is associated with an aggressive growth pattern in a murine renal carcinoma cell line , Renca. J Urol, 1998, 160(5): 1883-1888.
    153. Miyajima A , Asano T , Hayakawa M. Captopril restores transforming growth factor-beta type II receptor and sensitivity to transforming growth factor-beta in murine renal cell cancer cells. J Urol, 2001, 165(2): 616-620.
    154. Wunderlich H , Steiner T , Kosmehl H , et al . Increased transforming growth factor beta1 plasma level in patient s with renal cell carcinoma: a tumor-specific marker? Urol Int, 1998, 60(4): 205-207.
    155. Yagasaki H, Kawata N, Takimoto Y, Nemoto N. Histopathological analysis of angiogenic factors in renal cell carcinoma. Int J Urol, 2003, 10(4): 220-227.
    156. Kominsky SL, Doucet M, Brady K, Weber KL. TGF-beta promotes the establishment of renal cell carcinoma bone metastasis. J Bone Miner Res, 2007, 22(1): 37-44.
    157. Moodley R, Snyman C, Odhav B, Bhoola KD. Visualisation of transforming growth factor-beta 1, tissue kallikrein, and kinin and transforming growth factor-beta receptors on human clear-cell renal carcinoma cells. Biol Chem, 2005, 386(4): 375-382.
    158. Bachman KE, Park BH. Duel nature of TGF-beta signaling: tumor suppressor vs. tumor promoter. Curr Opin Oncol, 2005, 17(1): 49-54.
    159. Hegele A, Varga Z, von Knobloch R, Heidenreich A, Kropf J, Hofmann R. TGF-beta1 in patients with renal cell carcinoma. Urol Res, 2002, 30(2): 126-129.
    160. Miyajima A , Asano T , Seta K, et al . Loss of expression of transforming growth factor-beta receptor as a prognostic factor in patients with renal cell carcinoma. Urology, 2003, 61(5): 1072-1077.
    161. Inge TH, Hoover SK, Susskind BM, et al. Inhibition of tumor-specific cytotoxic T-lymphocyte responses by transforming growth factor beta 1.Cancer Res, 1992, 52(6): 1386-1392.
    162. Zhang Q, Yang X, Pins M, Javonovic B, Kuzel T, Kim SJ, Parijs LV, Greenberg NM, Liu V, Guo Y, Lee C. Adoptive transfer of tumor-reactive transforming growth factor-beta-insensitive CD8+ T cells: eradication of autologous mouse prostate cancer, Cancer. Res, 2005, 65(5): 1761-1769.
    163. Sui G, Soohoo C, Affar E, Gay F, Shi Y, Forrester W, Shi Y. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci USA, 2002, 99(8): 5515-5520.
    164. Mizuguchi Y, Yokomuro S, Mishima T, Arima Y, Shimizu T, Kawahigashi Y, Kanda T, Yoshida H, Takizawa T, Tajiri T. Short hairpin RNA modulates transforming growth factor beta signaling in life-threatening liver failure in mice. Gastroenterology, 2005, 129(5): 1654-1662.
    165. Pardali K, Moustakas A. Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta, 2007, 1775(1):21-62.
    166. Hannon GJ. RNA interference. Nature, 2002, 418(6894): 244-251
    167. Tobias CA, Shumsky JS, Shibata M, Tuszynski MH, Fischer I, Tessler A, et al. Delayed grafting of BDNF and NT-3 producing fibroblasts into the injured spinal cord stimulates sprouting, partially rescues axotomized red nucleus neurons from loss and atrophy, and provides limited regeneration. Exp Neurol, 2003, 184(1): 97-113.
    168. Ferrer I, Krupinski J, Goutan E, Marti E, Ambrosio S, Arenas E. Brain-derived neurotrophic factor reduces cortical cell death by ischemia after middle cerebral artery occlusion in the rat. Acta Neuropathol (Berl), 2001, 101(3): 229-38.
    169. Shah AH, Tabayoyong WB, Kimm SY, Kim SJ, Van Parijs L, Lee C. Reconstitution of lethally irradiated adult mice with dominant negative TGF-beta type II receptor-transduced bone marrow leads to myeloid expansion and inflammatory disease. J Immunol, 2002, 169(7): 3485-3491.
    170. Shah AH, Tabayoyong WB, Kundu SD, Kim SJ, Van Parijs L, Liu VC, et al. Suppression of tumor metastasis by blockade of transforming growth factor beta signaling in bone marrow cells through a retroviral-mediated gene therapy in mice. Cancer Res, 2002, 62(24): 7135-7138.
    171. Zhang Q, Jang TL, Yang X, Park I, Meyer RE, Kundu S, Pins M, Javonovic B, Kuzel T, Kim SJ, Van Parijs L, Smith N, Wong L, Greenberg NM, Guo YL. Infiltration of tumor-reactive transforming growth factor-beta insensitive CD8+ T cells into the tumor parenchyma is associated with apoptosis and rejection of tumor cells. Prostate, 2006, 66(3): 235-247.
    172. Zhang Q, Yang XJ, Kundu SD, Pins M, Javonovic B, Meyer R, Kim SJ,Greenberg NM, Kuzel T, Meagher R, Guo Y, Lee C. Blockade of transforming growth factor-{beta} signaling in tumor-reactive CD8(+) T cells activates the antitumor immune response cycle. Mol Cancer Ther, 2006, 5(7): 1733-1743.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700