硅改性水性光固化树脂的制备及其涂膜性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,传统溶剂型涂料中含有的有害有机挥发物(VOC)会对人身健康和大气产生危害,使人类的生态环境遭到严重破坏,以发达国家为首的许多国家对传统溶剂型涂料的限制越来越严格,从而使水性涂料获得了广泛的研究和应用。因此,用水作为溶剂代替有毒溶剂的水性涂料已经成为涂料发展的主要方向之一尽管如此,目前水性涂料由于应用条件苛刻存在一些困难和问题,如水的高蒸发热和高表面张力,容易产生霉菌等问题都限制了水性涂料的应用。而且,水性涂料涂膜的耐化学性、耐热性和力学性能等方面还不能与传统溶剂型的涂膜性能相媲美。
     尽管如此,水性涂料逐渐代替溶剂型涂料是势在必行。水性涂料和紫外光固化涂料被认为是最有希望实现环境友好涂料目标的技术,而如果将水性技术和紫外光固化技术有机地结合起来,开发新型水性紫外光固化涂料,将会在降低对环境的危害方面取得突飞猛进的进展。
     水性光固化涂料的优点突出,然而其浸润性差、易引起涂布不均,涂膜耐热性、耐冲击性、耐开裂性和耐湿热性较差等缺点,在很大程度上限制了它在某些高技术领域的应用,因此需要通过改性改善水性光固化涂料的性能。多年来硅化合物一直用来改性有机树脂,以此提高性能。因此,一个改善水性光固化涂料性能的有效途径就是在高聚物中引入硅化合物。通过硅改性的水性光固化涂料将会具有更好的浸润性、耐热性和力学性能。
     因此本论文研究的内容主要是通过适当的方法将纳米二氧化硅/有机硅引入到水性光固化树脂中,然后制备出含有纳米二氧化硅/有机硅改性的具有较好涂膜性能的水性光固化涂料。
     (1)在水性光固化聚氨酯乳液合成过程中引入纳米二氧化硅水溶胶,利用纳米二氧化硅与聚氨酯分子的氢键作用制备聚氨酯纳米复合乳液,详细研究了纳米二氧化硅对涂膜耐热性、耐水性和力学性能的影响。结果表明纳米二氧化硅的存在提高了膜的耐水性,当纳米二氧化硅质量分数达到6%时,聚合物膜的吸水率稳定在10.28%,显示出良好的拒水性能;纳米二氧化硅能有效地实的实现对膜的硬度、抗冲击力、附着力和柔韧性等力学性能的提升;热重分析证明纳米二氧化硅的引入改善了固化涂膜的热稳定性。本方法制备的纳米二氧化硅复合涂层在耐磨木器、耐高刮伤、塑胶等表面涂层领域有很好的应用前景。
     (2)将KH550引入聚氨酯大分子链段末端,得到一系列KH550改性水性光固化聚氨酯乳液,用FT-IR对产物结构进行了表征,说明有机硅烷已被引入到聚氨酯骨架中。研究结果结果表明硅氧链段的引入提高了膜的耐水性;涂膜性能测试表明涂膜附着力、柔韧性等力学性能均有所提高;热重分析证明有机硅的引入改善了固化涂膜的热稳定性。当KH550质量分数大于3.433%时,膜的力学性能没有明显提升,聚合物膜可以在达到良好表面拒水性的同时保持较好的附着力、柔韧性。由实验得出的最佳KH550添加量和反应物配比可以为水性光固化聚氨酯的改性研究和实际生产应用提供参考。
     (3)将KH560引入水性环氧丙烯酸大分子链段末端,得到一系列零VOC的KH560改性水性光固化环氧丙烯酸水分散体,对产物结构进行表征,并测试了所得聚合物膜的耐水性、力学性能和热稳定性能。涂膜性能测试表明涂膜耐水性、附着力、柔韧性等均随着有机硅的引入有所提高;热重分析证明有机硅的引入改善了固化涂膜的热稳定性。本实验为水性光固化有机硅树脂改性环氧丙烯酸树脂性能的深入研究提供了方法指导。
Recently, waterborne coatings have gained increasing attention due to strict environmental regulations on the emission of volatile organic compounds (VOC) from solvent-borne coatings. VOC in paints and coatings is of particular interest due to their adverse effects on the environment. Using water instead of hazardous solvent is the rational behind waterborne coatings which aims for total reduction of toxicity without compromising environmental concerns. At present, however, waterborne coatings are considered unsatisfactory as the application conditions are often critical; they are difficult to apply because of their rheological behavior and poor wetting, temperature and humidity have to be strictly controlled for correct curing conditions, etc. Moreover, once applied, their performances are usually inferior to the traditional coatings.
     The use of waterborne coatings in combination with the UV-curing technique is also very attractive since the UV-curing process offers many advantages too.
     The advantages of UV-curable waterborne coatings are obvious, however, their poor wetting, thermal and mechanical properties have limited their applications, so they need some modifications. For many years silicon intermediates have been used to modify organic resins to increase their properties. Therefore, one possibility to get higher performance materials is incorporating silicon in the polymer network. UV-curable waterborne coatings modified with silicon can be used to formulate coatings having high hardness with excellent flexibility, thermal stability and better wetting.
     Here, we synthesized a series of nano SiO2/functionalized siloxane modified UV-curable waterborne coatings by incorporating the nano SiO2/functionalized siloxane into the organic resins. The films of the nano SiO2/functionalized siloxane modified UV-curable waterborne coatings show excellent properties such as surface hardness, water resistance, heat resistance, flexibility and mechanical properties owing to the excellent bond strength of the Si-O-Si.
     In this study, we synthesized a series of nano SiO2 modified UV-curable waterborne polyurethane emulsions (SiO2-PUs) by the effect of hydrogen bonds between nano SiO2 and polyurethane chains. A detailed study of the effect of nano SiO2 on the heat stability, water resistance and mechanical properties of the films was carried on. It was found that incorporating of nano SiO2 can improve the water resistance of the films. When the nano SiO2 content was 6%, the water absorption of the films was stable at 10.28%. It was also found that incorporating of nano SiO2 can improve the thermal stability and many mechanical properties of the films. The coating thus formed can serve as a good scratch, abrasion, water resistant and heat resistant coating and can find applications in various practical situations.
     Here, we synthesized a series of KH550 modified UV-curable waterborne polyurethane emulsions (Si-PUs) by incorporating the KH550 into the end of the PUs chains. The Si-PUs was characterized by using FTIR spectroscopy and the results showed that the KH550 had been successfully introduced into the polyurethane chains. It was found that incorporating of KH550 can improve the thermal stability, water resistance, and many mechanical properties of the films. It can be seen that when the KH550 content was greater than 3.433%, the mechanical properties of the films did not significantly improve while maintaining good water resistance. The best content of KH550 and the ratio of reactants for the modification obtained by the experiment can provide information to the research of modifying UV-curable waterborne polyurethane and practical application.
     In this study, we synthesized a series of 0 VOC KH560 modified UV-curable waterborne epoxy acrylic dispersions (Si-EAs) by incorporating the Tetrahydrophthalic anhydride and the KH560 into the end of the epoxy acrylate chains. The Si-EAs was characterized by using FTIR spectroscopy and the results showed that the KH560 had been successfully introduced into the epoxy acrylate chains. It was found that incorporating of KH560 can improve the thermal stability, water resistance, and many mechanical properties of the films. The experiment can provide methodological guidance to the research of modifying UV-curable waterborne epoxy acrylic resin.
引文
[1]李晓勇,游长江等.紫外光固化涂料及其发展状况[J].广州化学.2007,32(2):66-72.
    [2]赵红振,齐暑华等.紫外光固化涂料的研究进展[J].化学与黏合.2006,28(5):352-356.
    [3]刘海波.紫外光固化涂料的现状和发展方向[J].技术创新与应用.2007,6(6):23-25.
    [4]何金花,高延敏等.紫外光固化涂料的发展及应用[J].上海涂料.2007,45(4):21-24.
    [5]吴宗南,刘红波等.紫外光固化涂料的研究进展[J].广东化工.2009,36(2):52-55.
    [6]许岩,何德良等.紫外光固化涂料的发展及应用[J].电镀与涂饰.2000,19(1):47-51.
    [7]Hong, J.W., Kim, H.K., YU, J.A., et al. Characterization of UV-curable reactive diluent containing quaternary ammonium salts for antistatic coating [J]. Journal of Applied Polymer Science.2002,84(1):132-137.
    [8]Qi, Y.S., Yang, J.W., Zeng Z.H., et al. Novel reactive diluents for UV/moisture dual-curable coatings [J]. Applied Polymer Science.2005,98(4):1500-1504.
    [9]徐超,王德海.紫外光固化水性体系研究进展[J].轻工机械.2010,28(1):14.
    [10]张高文,褚衡等.水性紫外光固化涂料的研究进展[J].现代涂料与涂装.2008,11(1):16-19.
    [11]吕君亮.水性紫外光固化树脂基料的合成与性能以及应用研究[硕士论文].广东:华南师范大学.2007.
    [12]陈尊,侯有军等.水性紫外光固化树脂的研究进展[J].离子交换与吸附.2009,25(4):377-384.
    [13]焦泽鹏.水性紫外光固化树脂的合成以及结构与性能研究[硕士论文].广东:暨南大学.2010.
    [14]罗雪方,赵秀丽等.水性光固化树脂的研究进展[J].化工新型材料.2009,37(3):9-11.
    [15]韩飞雁,杨小毛等.紫外光固化水性涂料[J].胶体与聚合物.2001,19(2):23-26.
    [16]陈用烈,曾兆华等.辐射固化材料及其应用[M].北京:化学工业出版社,2003.
    [17]韩仕甸,金养智.UV固化水性树脂的研究等[J].信息纪录材料.2001,2(2):31-34.
    [18]杨建文,曾兆华等.紫外光固化水性涂料的发展[J].信息记录材料.2001,2(1):32-35.
    [19]苏正林,罗凯等.水性超支化聚酯的光固化性能[J].辐射固化通讯.2004,(3):18-19.
    [20]Jan, S.J. Water soluble, self-emulsifying polyester resins [J]. ECJ European Coatings Journal. 1996, (11):810-812.
    [21]许饶坤.碱溶性光聚合物和它的抗蚀剂[c].全国丙烯酸行业第一次技术交流会论文集,1989,北京:52-56.
    [22]Dvorchak, M.J., Riberi, B.H. UV curing of pigmented high build wood coatings based on non-air inhibited unsaturated polyesters [J]. Journal of Coatings Technology.1995,64 (842): 49-54.
    [23]Bai, C.Y., Zhang, X.Y., Dai, J.B., et al. A new UV curable waterborne polyurethane:Effect of C=C content on the film properties [J]. Progress in Organic Coatings.2006,55(3):291-295.
    [24]Yang, J.W., Wang, Z.M., Zeng, Z.H. Chain-Extended Polyurethane-Acrylate Ionomer for UV-Curable Waterborne Coatings [J]. Journal of Applied Polymer Science.2002,84(10): 1818-1831.
    [25]Asif, A., Huang, C.Y., Shi, W.F. Photopolymerization of waterborne polyurethane acrylate dispersions based on hyperbranched aliphatic polyester and properties of the cured films [J]. Colloid and Polymer Science.2005,283(7):721-730.
    [26]Asif, A., Shi, W.F., Shen, X.F., et al. Physical and thermal properties of UV curable waterborne polyurethane dispersions incorporating hyperbranched aliphatic polyester of varying generation number [J]. Polymer.2005,46 (24):11066-11078.
    [27]Athawale, V.D., Kulkarni, M.A. Synthesis, characterization, and comparison of polyurethane dispersions based on highly versatile anionomer, ATBS, and conventional DMPA [J]. Journal of Coatings Technology and Research.2010,7(2):189-199.
    [28]白湘云.钟慧等.UV固化水性环氧丙烯酸树脂的研制[J].信息记录材料.2000,1(3):17-19.
    [29]张洁,张可达.紫外光固化水性聚酯丙烯酸酯的合成与感光性能[J].苏州大学学报(自然科学版).2000,16(2):66-71.
    [30]Cernot, W., Calen, D.S. Microring Lasing from dye-doped silica/block copolymer nano-composites [J]. Chemistry of materials.2000,12(9):2525-2527.
    [31]陈国新,赵石林.纳米Si02/丙烯酸UV屏蔽透明涂料的制备及性能研究[J].涂料工业.2003,33(10):7-10.
    [32]徐国财,邢宏龙等.纳米Si02在紫外光固化涂料中的应用[J].涂料工业,1999,(7):3-5.
    [33]Mehnert, R. UV/EB crosslinked polyacrylate nanocomposites and their applications [J]. Chimia.2003,57(1-2):2-3.
    [34]王智宇,林旭添等.原位生成法制备纳米TiO2改性聚丙烯酸酯涂料[J].涂料工业.2006,36(8):28-31.
    [35]孙芳,黄毓礼等.有机硅聚氨酯丙烯酸酯预聚物的合成、表征及感光性[J].高分子材料科学与工程.2002,18(5):58-62.
    [36]Wu, S.B., Sears, M.T., Soucek, M.D. Siloxane modified cycloaliphatic epoxide UV coatings [J]. Progress in organic coatings.1999,36(1-2):89-101.
    [37]Gianni, A.D., Bongiovanni, R., Turri, S., et al. UV-cured coatings based on waterborne resins and SiO2 nanoparticles [J]. Journal of Coating Technology.2009,6 (2):177-185.
    [38]王宏新.纳米Si02改性水性光固化树脂涂料[硕士论文].江苏:南京理工大学.2004.
    [39]刘辉,罗英武等.溶胶-凝胶法制备紫外光固化纳米复合涂料[J].高校化学工程学报.2004,18(3):329-333.
    [40]Bai, C.Y., Zhang, X.Y., Dai, J.B. Synthesis and characterization of PDMS modified UV-curable waterborne polyurethane dispersions for soft tact layers [J]. Progress in Organic Coatings.2007,60(1):63-68.
    [41]Bai, C.Y., Zhang, X.Y., Dai, J.B., et al. Synthesis of UV crosslinkable waterborne siloxane-polyurethane dispersion PDMS-PEDA-PU and the properties of the films [J]. Journal of Coating Technology.2008,5 (2):251-257.
    [42]郭云飞,鲍利红等.有机硅改性聚氨酯的合成及其性能[J].纺织学报.2009,30(10):85-89.
    [43]Subramani, S., Lee, J.M., Cheong, I.W., et al. Synthesis and characterization of water-borne crosslinked silylated polyurethane dispersions [J]. Journal of Applied Polymer Science.2005, 98(2):620-631.
    [44]Lewandowski, K., Krepski, L.R., Mickus, D.E. Synthesis and properties of waterborne self-crosslinkable sulfo-urethane silaol dispersions [J]. Journal of Polymer Science Part A: Polymer Chemistry.2002,40(17):3037-3045.
    [45]杨玉玮.有机硅改性丙烯酸树脂的研究[硕士论文].陕西:西北工业大学.2007.
    [46]刘文艳,孙建中等.有机硅改性水性环氧树脂的合成与表征[J].高校化学工程学报.2007,21(6):1044-1048.
    [1]李晓勇,游长江等.紫外光固化涂料及其发展状况[J].广州化学.2007,32(2):66-72.
    [2]赵红振,齐暑华等.紫外光固化涂料的研究进展[J].化学与黏合.2006,28(5):352-356.
    [3]刘海波.紫外光固化涂料的现状和发展方向[J].技术创新与应用.2007,6(6):23-25.
    [4]何金花,高延敏等.紫外光固化涂料的发展及应用[J].上海涂料.2007,45(4):21-24.
    [5]吴宗南,刘红波等.紫外光固化涂料的研究进展[J].广东化工.2009,36(2):52-55.
    [6]许岩,何德良等.紫外光固化涂料的发展及应用[J].电镀与涂饰.2000,19(1):47-51.
    [7]罗雪方,赵秀丽等.水性光敏聚氨酯丙烯酸酯的合成与性能研究[J].中国涂料.2008,23(12):43-46.
    [8]万成龙,贺建芸.水性紫外光固化聚氨酯丙烯酸酯树脂的合成[J].北京化工大学学报(自然科学版).2010,37(5):93-97.
    [9]金雪玲,孙道兴等.水性光固化聚氨酯改性环氧丙烯酸树脂的研究[J].现代涂料与涂装.2007,10(10):8-9.
    [10]王浩,唐黎明等.水性端丙烯酸酯基聚氨酯的合成与紫外光固化[J].清华大学学报(自然科学版).2007,47(6):867-869.
    [11]魏燕彦,罗英武等.乳液型紫外光固化聚氨酯丙烯酸酯的涂膜性能及其影响因素[J].涂料工业.2007,37(5):30-33.
    [12]魏丹,叶代勇等.多重交联紫外光固化水性聚氨酯涂料[J].涂料工业.2008,38(5):4-7.
    [13]Bai, C.Y., Zhang, X.Y., Dai, J.B., et al. A new UV curable waterborne polyurethane:Effect of C=C content on the film properties [J]. Progress in Organic Coatings.2006,55(3):291-295.
    [14]潘霞倩.紫外光固化有机无机杂化涂层的制备与性能研究[硕士论文].吉林:吉林大学.2008.
    [15]霍丽霞,叶凤英等.原位聚合制备纳米Si02/聚丙烯酸酯复合树脂及其氨基烤漆性能的研究[J].涂料工业.2009,39(3):22-27.
    [16]马建中,刘凌云等.纳米二氧化硅改性丙烯酸树脂的研究[J].中国皮革.2004,33(9):31-35.
    [17]陈鹏,朱传方.纳米SiO2/水性丙烯酸树脂复合材料的制备及工艺研究[J].现代涂料与涂装.2008,11(3):1-10.
    [18]刘辉,罗英武等.溶胶-凝胶法制备紫外光固化纳米复合涂料[J].高校化学工程学报.2004,18(3):329-333.
    [19]王宏新.纳米Si02改性水性光固化树脂涂料[硕士论文].江苏:南京理工大学.2004.
    [20]李克克.纳米二氧化硅在紫外光固化涂料中的应用[硕士论文].河南:河南大学.2010.
    [21]徐国财,马家举等.原位分散紫外光固化Si02纳米复合材料的性质[J].应用化学.2000,17(4):450-452.
    [22]Kim, H.K., Mathur, M. Thermally stable ZnO films deposited on GaAs substrates with a SiO2 thin buffer layer [J]. Applied Physics Letters.1992,61(21):2524-2526.
    [23]张志华,吴广明等.革用聚氨酯/Si02纳米复合材料的制备与物性研究[J].材料科学与工程学报.2003,21(4):498-502.
    [24]Cao, Y.M., Qing, X.S., Sun, J., et al. Graft copolymerization of acrylamide onto carboxymethyl starch [J]. European Polymer Journal.2002,38(9):1922-1924.
    [25]Yang, J.W., Wang, Z.M., Zeng. Z.H. Chain-Extended Polyurethane-Acrylate Ionomer for UV-Curable Waterborne Coatings [J]. Journal of Applied Polymer Science.2002,84(10): 1818-1831.
    [26]Bai, C.Y., Zhang, X.Y., Dai, J.B., et al. Synthesis of UV crosslinkable waterborne siloxane-polyurethane dispersion PDMS-PEDA-PU and the properties of the films [J]. Journal of Coating Technology.2008,5 (2):251-257.
    [27]Marcos-Fernandez, A., Abraham, G.A., Valentin, J.L., et al. Synthesis and characterization of biodegradable non-toxic poly(ester-urethane-urea)s based on poly(e-caprolactone) and amino acid derivatives [J]. Polymer.2006,47(3):785-798.
    [28]Petrovic, Z.S., Zavargo, Z., Flynn, J.H., et al. Thermal degradation of segmented polyurethanes [J]. Journal of Applied Polymer Science.1994,51(6):1087-1095.
    [29]Lee, M.H., Choi, H.Y., Jeong, K.Y., et al. High performance UV cured polyurethane dispersion [J]. Polymer Degradation and Stability.2007,92(9):1677-1681.
    [30]Chattopadhyay, D.K., Mishra, A.K., Sreedhar, B., et al. Thermal and viscoelastic properties of polyurethane-imide/clay hybrid coatings [J]. Polymer Degradation and Stability.2006, 91(8):1837-1849.
    [31]Jeon, H.T., Jang, M.K., Kim, B.K., et al. Synthesis and characterizations of waterborne polyurethane-silica hybrids using sol-gel process [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects.2007,302(1-3):559-567.
    [1]徐超,王德海.紫外光固化水性体系研究进展[J].轻工机械.2010,28(1):1-4.
    [2]张高文,褚衡等.水性紫外光固化涂料的研究进展[J].现代涂料与涂装.2008,11(1):16-19.
    [3]吕君亮.水性紫外光固化树脂基料的合成与性能以及应用研究[硕士论文].广东:华南师范大学.2007.
    [4]陈尊,侯有军等.水性紫外光固化树脂的研究进展[J].离子交换与吸附.2009,25(4):377-384.
    [5]焦泽鹏.水性紫外光固化树脂的合成以及结构与性能研究[硕士论文].广东:暨南大学.2010.
    [6]罗雪方,赵秀丽等.水性光固化树脂的研究进展[J].化工新型材料.2009,37(3):9-11.
    [7]Yang, J.W., Wang, Z.M., Zeng, Z.H. Chain-Extended Polyurethane-Acrylate Ionomer for UV-Curable Waterborne Coatings [J]. Journal of Applied Polymer Science.2002,84(10): 1818-1831.
    [8]傅明源,孙酣经.聚氨酯弹性体及其应用[M].北京:化学工业出版社.2006.
    [9]Waterman, B.T., Daehna, B., Sievers, S., et al. Bioassays and selected chemical analysis of biocide-freantfouling coatings [J]. Chemosphere.2005,60(11):1530-1541.
    [10]丛丽晓.有机硅改性水性聚氨酯的研究[硕士论文].山东:山东大学.2008.
    [11]郭云飞,鲍利红等.有机硅改性聚氨酯的合成及其性能[J].纺织学报.2009,30(10):85-89.
    [12]Pathak, S.S., Khanna, A.S. Investigation of anti-corrosion behavior of waterborne organosilane-polyester coatings for AA6011 aluminum alloy [J]. Progress in Organic Coatings.2009,65(2):288-294.
    [13]Easton, T., Poultney, S. Waterborne silicone-organic hybrid coatings for exterior applications [J]. Journal of Coating Technology.2007,4 (2):187-190.
    [14]Dhoke, S.K., Bhandari, R., Khanna, A.S. Khanna. Effect of nano-ZnO addition on the silicone-modified alkyd-based waterborne coatings on its mechanical and heat-resistance properties [J]. Progress in Organic Coatings.2009,64(1):39-46.
    [15]Cao, Y.M., Qing, X.S., Sun, J., et al. Graft copolymerization of acrylamide onto carboxymethyl starch [J]. European Polymer Journal.2002,38(9):1922-1924.
    [16][16] Li, C.H., Wilkes, G.L. Wilkes. Silicone/Amine Resin Hybrid Materials as Abrasion Resistant Coatings [J]. Chemistry of materials.2001,13(10):3663-3668.
    [17]Bai, C.Y., Zhang, X.Y., Dai, J.B., et al. Synthesis of UV crosslinkable waterborne siloxane-polyurethane dispersion PDMS-PEDA-PU and the properties of the films [J]. Journal of Coating Technology.2008,5 (2):251-257.
    [18]Marcos-Fernandez, A., Abraham, G.A., Valentin, J.L., et al. Synthesis and characterization of biodegradable non-toxic poly(ester-urethane-urea)s based on poly(e-caprolactone) and amino acid derivatives [J]. Polymer.2006,47(3):785-798.
    [19]Petrovic, Z.S., Zavargo, Z., Flynn, J.H., et al. Thermal degradation of segmented polyurethanes [J]. Journal of Applied Polymer Science.1994,51(6):1087-1095.
    [20]Lee, M.H., Choi, H.Y., Jeong, K.Y., et al. High performance UV cured polyurethane dispersion [J]. Polymer Degradation and Stability.2007,92(9):1677-1681.
    [21]Chattopadhyay, D.K., Mishra, A.K., Sreedhar, B., et al. Thermal and viscoelastic properties of polyurethane-imide/clay hybrid coatings [J]. Polymer Degradation and Stability.2006, 91 (8):1837-1849.
    [22]Karatas, S., Hosgor, Z., Menceloglu, Y., et al. Synthesis and characterization of flame retarding UV-curable organic-inorganic hybrid coatings [J]. Journal of Applied Polymer Science.2006,102(2):1906-1914.
    [1]陈平,刘胜平.环氧树脂[M].北京:化学工业出版社.1999.
    [2]宋连珍.浅谈环氧树脂需求现状及发展趋势[J].热固性树脂.2001,16(4):34.
    [3]于德中.环氧树脂生产与应用[M].北京:化学工业出版社.2001.
    [4]Chen, C.G., Tolle, T.B. Fully exfoliated layered silicate epoxy nanocomposites [J]. Journal of Ploymer Science, part B:Polymer Physics.2004,42(21):3981-3986.
    [5]张琳琳,莫健华等.一种新型脂环族环氧树脂丙烯酸酯的紫外光固化[J].高分子材料科学与工程.2005,21(6):243-246.
    [6]牛古丹,王丽娟等.紫外光固化丙烯酸环氧树脂的合成及表征[J].化学与黏合.2007,29(2):101-104.
    [7]廖峰,赖学军等.紫外光固化环氧丙烯酸酯的研究进展[J].化学与黏合.2010,32(3):46-50.
    [8]陈奎,曹秀鸽等.紫外光固化环氧丙烯酸酯涂料的制备研究[J].化工新型材料.2010,38(7):123-125.
    [9]吕君亮,张力.紫外光固化水性环氧丙烯酸酯的研究[J].广东化工.2008,35(1):38-40.
    [10]梁宗军,史宜望.用于紫外光固化涂料的羧基化环氧丙烯酸酯水分散性研究[J].上海大学学报(自然科学版),2005,11(3):303-306.
    [11]刘蕤.水性光固化环氧树脂乳液的制备及性能研究[J].涂料工业.2009,39(1):62-65.
    [12]陈尊,侯有军等.高固低黏水性紫外光固化环氧丙烯酸酯的合成及性能[J].化工新型材料.2010,38(2):104-107.
    [13]庄宏清,肖华.UV同化水性环氧树脂的合成研究[J].热固性树脂.2008,23(3):14-18.
    [14]Waterman, B.T., Daehna, B., Sievers, S., et al. Bioassays and selected chemical analysis of biocide-freantfouling coatings [J]. Chemosphere.2005,60(11):1530-1541.
    [15]Bayramoglu, G., Kahraman, M.V., Kayaman-Apohan, N., et al. Synthesis and characterization of UV-curable dual hybrid oligomers based on epoxy acrylate containing pendant alkoxysilane groups [J]. Progress in Organic Coatings.2006,57(l):50-55.
    [16]李照磊,高延敏.混杂聚合有机硅改性环氧丙烯酸酯的研究[J].电镀与涂饰.2008,28(2):50-52.
    [17]何敏,张炜等.有机硅改性环氧丙烯酸酯的紫外固化研究[J].固体火箭技术.2002,25(1):65-68.
    [18]郭云飞,鲍利红等.有机硅改性聚氨酯的合成及其性能[J].纺织学报.2009,30(10):85-89.
    [19]Arthur, H.L. Handbook of Plastics Flammability and Combustion Toxicology [M]. New Jersey:Noyes Publication.1983.
    [20]Karatas, S., Hosgor, Z., Menceloglu, Y., et al. Synthesis and characterization of flame retarding UV-curable organic-inorganic hybrid coatings [J]. Journal of Applied Polymer Science.2006,102(2):1906-1914.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700