BDNF对高糖状态下视网膜神经元保护作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:建立高糖状态下视网膜神经元细胞模型,探讨外源性脑源性神经营养因子(BDNF)对高糖状态下视网膜神经元凋亡的保护效应,及可能的细胞内信号传递机制。同时建立糖尿病大鼠动物模型,探讨其视网膜组织病理学变化,以及与视网膜BDNF、酪氨酸激酶受体B (TrkB)、细胞外信号调节蛋白激酶(ERK)、胶质原纤维酸性蛋白(GFAP)表达变化的关系,为BDNF潜在的临床应用价值提供理论依据。
     方法:本研究分两大部分进行。第一部分:1、以0、5.5、15、25、35mmol/L不同浓度葡萄糖分别作用于原代培养的Wistar大鼠视网膜神经元24、48、72h,采用四甲基偶氮唑蓝(MTT)法及流式细胞仪分析检测神经元的存活率、凋亡率,确定葡萄糖最适干预浓度及时间,建立原代培养的大鼠视网膜神经元的高糖模型。2、予以75、100、125ng/mL不同浓度BDNF干预高糖状态下视网膜神经元96h后,采用MTT法及流式细胞仪分析检测神经元的存活率、凋亡率的变化,采用免疫细胞化学染色法观察BDNF受体TrkB的蛋白表达变化,确定BDNF最适干预浓度及时间。3、采用Western Blot法及逆转录-聚合酶链反应(RT-PCR)法检测4个不同组(正常对照组,正常对照+BDNF组,高糖模型组,高糖+BDNF组)的TrkB、ERK的蛋白及mRNA, PTrkB、PERK蛋白的表达水平,分析BDNF对高糖状态下视网膜神经元中TrkB、ERK磷酸化的影响。第二部分:1、建立糖尿病大鼠动物模型,以正常大鼠为对照,分别于糖尿病成模后4、12、24W,采用苏木素/伊红(HE)染色观察大鼠后极部视网膜总厚度、视网膜神经节细胞(RGCs)计数以及视网膜组织形态学变化,透射电镜观察糖尿病24W大鼠视网膜各层组织细胞的超微结构变化。2、于糖尿病4、12、24W,采用免疫组织荧光化学法、免疫组织化学法、Western blot方法分别检测糖尿病组与正常对照组大鼠视网膜GFAP、TrkB及ERK、BDNF蛋白的表达,采用RT-PCR法检测两组大鼠视网膜TrkB、ERK、BDNFmRNA的表达。
     结果:第一部分:1、随葡萄糖浓度的增加及时间的延长,视网膜神经元的存活率下降、凋亡率增多,以35mmol/L葡萄糖干预72h的神经元存活率(OD值:0.0268±0.0116)下降、凋亡率(40.123±7.576%)增加最为显著(p<0.01)。2、随着BDNF浓度的增加,高糖状态下视网膜神经元存活率增加、凋亡率下降,伴随着BDNF受体TrkB蛋白表达增高,以100ng/mlBDNF干预96h组凋亡率(3.458±1.531%)下降及TrkB蛋白表达增高最为显著(p<0.05)。3、TrkB蛋白及mRNA在其它各组的表达均较正常对照组增加(p<0.05),高糖+BDNF组比较高糖组TrkB表达亦增加(p<0.05);ERK蛋白及mRNA表达水平在各组之间无差异(p>0.05); PERK, PTrkB蛋白在高糖组的表达与正常对照组比较无差异(p>0.05),正常对照+BDNF组与高糖+BDNF组比较其它2组PERK、PTrkB表达显著增加(p<0.05),高糖+BDNF组比较其它各组PERK、PTrkB表达显著增加(p<0.05)。第二部分:1、糖尿病组在12、24W两个时间点与正常组相比较,后极部视网膜总厚度明显变薄(60.26±4.33.52.11±5.23μm), RGCs细胞数减少(67.57±2.59、54.93±2.02个),差异有统计学意义(p<0.05)。糖尿病24W透射电镜观察显示:视网膜RGCs及神经胶质细胞有凋亡征象。2、免疫组织荧光化学法检测显示:随病程增加,GFAP蛋白在糖尿病大鼠视网膜的表达依次增强。免疫组织化学法及RT-PCR法检测显示:在病程4W时糖尿病大鼠视网膜的TrkB蛋白及mRNA表达比较正常组明显增加(p<0.05),12W时表达比较正常组明显下降,24W时下降更明显(p<0.01);病程4、12、24W时糖尿病大鼠视网膜的ERK蛋白及1mRNA的表达均较正常组增加,差异有统计学意义(p<0.05),但糖尿病各组之间比较无差异(p>0.05)。Western blot法及RT-PCR法检测显示:随病程增加,糖尿病大鼠视网膜BDNF蛋白及mRNA表达依次下降,比较正常组差异有统计学意义(p<0.05),且糖尿病各组之间也有统计学差异(p<0.05)。
     结论:1、体外高糖水平可诱导视网膜神经元的凋亡。2、外源性BDNF对高糖诱导的视网膜神经元的凋亡具有保护作用,并能有效上调神经元细胞内TrkB蛋白及mRNA、PERK蛋白、PTrkB蛋白的表达,从而可能通过细胞外信号调节激酶/丝裂原活化蛋白激酶(ERK/MAPK)信号转导途径调控视网膜神经元的凋亡。3、早期糖尿病大鼠动物模型存在神经视网膜的改变(RGCs及神经胶质细胞的凋亡),可能是研究早期糖尿病神经元病变有价值的模型。4、早期糖尿病大鼠神经视网膜病变可能与BDNF、TrkB蛋白及mRNA水平降低,GFAP蛋白、ERK蛋白及mRNA水平增高有关。
Objective:The study takes hyperglycemia retinal neurons models as subjects to explore the protective effects of exogenous brain derived neurotrophic factor (BDNF) on the apoptosis process of hyperglycemia retinal neurons and the possible intracellular signal transmission mechanism of protective function of hyperglycemia retinal neurons. Meanwhile, the study will set up the hyperglycemia rat models and deal with investigating pathological changes of retinal tissue of these rat and the allaxis rule of BDNF, Tyrosine kinase B(TrkB), extracellular signal-regulated kinase(ERK) and glial fibrillary acidic protein(GFAP),and the relationship between them which will provide evidence for potential clinical values of BDNF.
     Methods:This study consists of two parts. Section One:1. Put glucose with different concentrations (0、5.5、15、25、35mmol/L)on primary culture retinal neurons of wistar rat for different time(24、48、72h), and detect the surviaval rate and cellular apoptosis rate of neurons by MTT and FCM respectively to identify the most suitable glucose concentration and time,Building hyperglycemia model of primary culture retinal neurons of wistar rat; 2. Put BDNF with different concentrations (75、100、125ng/mL) on hyperglycemia retina neurons for 96 hours, after that, the survival rate and cellular apoptosis of neurons are tested by MTT and FCM respectively, in addition, the immunocytochemistry chromosome method will be employed to oberserve the changes of TrkB protein of BDNF receptor to identify the most suitable concentration and time; 3. Western Blot and reverse transcriptase-polymerase chain reaction(RT-PCR) will be used to detect the protein expression levels of ERK, mRNA protein, PERK and PTrkB of four different groups(control group, hyperglycemia model group, hyperglycemia+ BDNF group and control+BDNFgroup) to analyze the effects of BDNF on phosphorylation of ERK and TrkB in hyperglycemia retinal neurons.
     Section two:1. Build diabetes rat models and take the normal rat as the control group. HE dying method will be utilized to observe the thickness of retina, celluar numbers of retinal ganglion cells(RGCs) and histomorphological changes of rat's retina at the time of 4、12、24 weeks respectively after models building. Use the transmission electron microscope to observe ultramicro structural changes of bistiocytes of rat's retina at the time of 24 weeks; 2. Utilize immunity fluorescence histochemical method to detect expression of GFAP protein in diabetes group and control group. Immune histochemical method will be employed to detect expression of TrkB and ERK protein. Adopt western blot method to test expression of BDNF protein. Employ RT-PCR to detect expression of BDNF, TrkB and ERK mRNA in retinal tissue of rat in two groups at the time of 4、12、24 weeks.
     Results:Section One:1、The survival rate of retinal neuron decreases with augmentation of glucose concentration and time while the apoptosis rate of retinal neutron increases. The survival rate of retinal neuron decreases(OD value:0.0268±0.0116) and the apoptosis of neutron increases (40.123±7.576%) most remarkbly with 35 mmol/L glucose concentration for 96 hours(p<0.01).2、The survival rate of retinal neuron increases and the apoptosis of neutron decreases with the increase of BDNF concentration. The apoptosis of neutron decreases (3.458±1.531%) and the expression of TrkB protein increases with the increase of BDNF receptor TrkB protein most markedly after putting 100ng/ml BDNF on retina neurons for 96 hours (p<0.01).3、Expression of TrkB protein and mRNA in other groups increases compared with control group (p<0.05), and compared with hyperglycemia group, hyperglycemia +BDNF group has increase of TrkB expression(p<0.05); There were no differences among four groups in terms of ERK protein and mRNA expression level; There is no difference between hyperglycemia group and control group in terms of PERK and PTrkB protein expression level, comparing other two groups,control+BDNF group and hyperglycemia +BDNF group have remarkable increase of PERK and PTrkB protein (p<0.05), Compared with other groups, hyperglycemia+ BDNF group have remarkable increase of PERK and PTrkB protein (p<0.05). Section two:1、Compared with control group, thickness of retina (60.26±4.33、52.11±5.23μm) in diabetes group becomes thin in evidence (p<0.05), numbers of RGC cells (67.57±2.59、54.93±2.02) decreases with statistical significance (p<0.05) at the time of 12 weeks and 24 weeks. It shows that there are apoptosis signs of neuroganglion cells and neuroglia cells in diabetes group for 24 weeks via transmission electron microscope.2、Immunohistochemical fluorescent method indicates the expression of GFAP protein in retinal tissue increases with augmentation of course of disease. Immunohisto-chemical method and RT-PCR demonstrate that the expression level of TrkB protein and mRNA in retinal tissue of diabetes rat increases remarkably compared with control group (p<0.05) in 4-week course of disease. In 12-week course of disease, the expression level of TrkB protein and mRNA decreases. In 24-week course of disease, it decreases obviously. The expression of ERK protein and mRNA increases differently (p<0.05) compared with control group while there is no difference (p>0.05) among the diabetes group. The results detected by Western Blot and RT-PCR show that expression of BDNF protein and mRNA decreases in turn and that statistical significance exists compared with control group and there are differences among the diabetes group (p<0.05).
     Conclusions:
     1、Hyperglycemia can induce apoptosis of retinal neurons.
     2、Exogenous BDNF can conserve the apoptosis of hyperglycemia retina neurons and increase expression of mRNA and protein in TrkB, PERK protein and PTrkB protein, thus controling apoptosis of retinal neurons by ERK/mitogen activated protein kinase (MAPK) signals pathway.
     3、The early diabetes rat models set up in the study have neuron retina changes (apoptosis of RGCs and neuroglia cells). Therefore these models are valuable for studying pathological changes of diabetes neurons.
     4、The pathological changes of amphiblestrodes of the early diabetes rat are related to the decreasing level of mRNA and protein in BDNF and TrkB, and increasing level of protein in GFAP and mRNA and protein in ERK.
引文
[1]马丽丽,匡洪字.糖尿病视网膜病变的细胞机制.国外医学内科学分册,2006,33(9):397-400
    [2]Barber AJ,A new view of diabetic retinopathy:a neurodegenerative disease of the eye.Progress in neuropsychopharmacology and biological psychiatry,2003,27(6): 283-290
    [3]Leith E, Barber AJ, Xu B, et al.Glial reaetivity and impaired lutame metabolism in shortterm experimental diabetic retinopathy.Diabetes,1998,47 (5):815-20
    [4]管怀进.眼的神经生物学研究进展.中国实用眼科杂志,2002,20(9):651-655
    [5]卢艳,赵志炜,吴航等.App-17肽对糖尿病大鼠神经网膜的保护作用.眼科研究,2002,20(4):289-293
    [6]Femyhough P,Huang T J,Verkhratsky A.Mechanism of Mitochonorial dysfunction diabetic sensory neuropathy.J Peripher Nerv Syst,2003,8(4):227-235
    [7]Seigel GM, Chiu L, Paxhia A.Inhibition of neuroretinal cell death by insulinlike growth factorl and its analogs.Mol Vis,2000,31(6):157-163
    [8]Hammes HP,Federoff HT,Brownlee M,Nerve growth factor prevents both neuroretinal programmed cell death and capillary pathology in experimental diabetes. Mol Med,1995, 1(5):527-534
    [9]蔡春梅,孙葆忱.脑源性神经营养因子对视网膜保护作用的研究进展.国外医学眼科学分册.2004,8(4):268-271
    [10]Yuen EC. The role of neurotrophic factors in disorders of peripheral nerves and motor neurons. Phys Med Rehabil Clin N Am,2001,12(2):293-306
    [11]Barde YA. Trophic factors and neuronal survival. Neuron 1989; 2 (6): 1525-1534
    [12]Song XY,Li F,Zhang FH,et al. Peripherally-derived BDNF promotes regeneration of ascending sensory neurons after spinal cord injury. PLoS ONE, 2008,3(3):1707-1709
    [13]Baird A. Basic fibroblast growth factor activities and significance of non-neurotrophin neurotrophicfactor. Curr Opin Neurobiol,1994,4(9):78-86
    [14]Mansour-Robaey S, Clarke DB, Wang YC, et al. Effects of ocular injury and adminstration of brain-derived neurotrophic factor on survival and regrowth of axotomized retinal ganglion cells. Proc Natl Acad Sci USA,1994,91 (8):1632-1636
    [15]Mey J, Thanos S. Intravitreal injections of neurotrophic factors support the survival of axotomized retinal ganglion cells in adult tats in vivo.Brain Res,1993,602 (5):304-317
    [16]Peinado-Ramon P, Salvador M.Villegas-Perez MP, et al. Effects of axotomy and intraocular administration ofNT-4, NT-3 and brain-derived neurotrophic factor on the survival of adult rat retinal ganglion cells.Invest Ophthalmol Vis Sci,1996, 37:489-500
    [17]Pinzon-Duarte G, Arango-Gonzalez B, Guenther E,et al.Effects of brain-derived neurotrophic factor on cell survival, differentiation and patterning of neuronal connections and Muller glia cells in the developing retina. Eur J Neurosci,2004,19(6):1475-1484
    [18]Marshak S,Nikolakopoulou AM,Dirks R, et al.Cell-autonomous TrkB signaling in presynaptic retinal ganglion cells mediates axon arbor growth and synapse maturation during the establishment of retinotectal synaptic connectivity.J Neurosci,2007,27(10):2444-2456
    [19]李冠华,冯泽国,周建平等.脑源性神经营养因子对离子通道的调节作用.中国临床药理学与治疗学,2008,13(4):463-467
    [20]Miiller A,Hauk TG,Fischer D.Astrocyte-derived CNTF switches mature RGCs to a regenerative state following inflammatory stimulation.Brain,2007,130 (12):3308-3320
    [21]Murphy JA,Franklin TB,Rafuse VF,et al.The neural cell adhesion molecule is necessary for normal adult retinal ganglion cell number and survival.Mol Vis, 2007,36(5):280-292
    [22]Liu X,Clark AF,Wordinger RJ.Expression of ciliary neurotrophic factor(CNTF) and its tripartite receptor complex by cells of the human optic nerve head.Mol Vis,2007,13(6):758-763
    [23]刘薇,孙小妹,周晖.脑源性神经营养因子对缺氧神经元保护与细胞外信号调节激酶的关系.中国组织工程研究与临床康复,2008,20(2):3884-3888
    [24]Almeida RD,Manadas BJ,Melo CV, et al.Neuroprotection by BDNF against glutamate-Induced apoptotic cell death is mediated by ERK and P13-kinase pathways. Cell Death Differ,2005,12(10):1329-1343
    [25]Hmetman M, Kanning K, Cavanaugh JE, et al. Neuroprotection by Brain-derived Neurotrophic Factor is mediated by extracellular signal-regulated kinase and phosphatidylinositol 3-kinase.J Biol Chem,1999,274(32):22569-22580
    [26]Han BH,Holtzman DM. BDNF protects the neonatal brain from hypoxic-ischemic injury in vivo via the ERK pathway. JNeurosci,2000,20 (15):5775-5780
    [27]Jin K, Mao XO, Zhu Y, et al. MEK and ERK protect hypoxic cortical neurons viaphosphorylation of Bad. Neurochen,2002,80 (1):119-127
    [28]Bonni A, Brunet A, West AE, et al.Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependentand-independent mechan-isms. Science,1999,286(9):1358-1364
    [29]Satoha T, Nakatsuka D, Watanabe Y, etal. Neuroprotection by MAPK/ ERK kinase inhibition with U0126 against oxidative stress in a mouse neuronal cell line and rat primary cultured cortical neurons. Neuroscience Letters,2000,288(7): 163-168
    [30]Song XY,Li F,Zhang FH,et al. Peripherally-derived BDNF promotes regeneration of ascending sensory neurons after spinal cord injury. PLoS ONE,2008, 3(3):1707
    [31]Almeida RD,Manadas BJ,Melo CV,et al. Neuroprotection by BDNF against glutamate-induced apoptotic cell death is mediated by ERK and PI3-kinase pathways. Cell Death Diffe,2005,12(10):1329-1343
    [32]Meng M,Zhiling W,Hui Z,et al. Cellular levels of TrkB and MAPK in the neuroprotective role of BDNF for embryonic rat cortical neurons against hypoxia in vitro. Int J Dev Neurosci,2005,23(6):515-521
    [33]刘夫玲,牛膺筠,王建波等.新生大鼠视网膜神经元的原代培养与观察.山东大学学报(医学版).2006,44(7):684-688
    [34]张亚洁,许红霞,曾凯宏.牛磺酸对高糖培养下视网膜Muller细胞GFAP和TAUT表达的影响.现代生物医学进展,2007,7(5):649-652
    [35]郑志竑,林玲.神经细胞培养理论与实践.北京:科学出版社2002:77-79
    [36]Schwalb JM, BoulisNM, GuMF. Two factors secreted by the goldfish optic nerve induce retinalganglion cells to regenerate axons in culture. J Neurosci 1995,18 (8):5514-5523
    [37]LeakRK, MooreRY. Identification of retinal ganglion cells projecting to the lateralhypothalamic area of the ra.t BrainRes,1997; 770 (1-2):105-114
    [38]Takahashi N,Cummins D,Caprioli J.Rat retinal ganglion cells in cultures. Exp Eye Res,1991,53(2):565-572
    [39]Montague PR,Friedlander MJ.Expression of an intrinsic growth strategy by mammalian retinal neurons.Proc Natl Acad Sci USA,1989,86(7):7223-7227
    [40]周明华,赵丽萍.中脑顶盖提取液对不同支持物的初生大鼠视网膜神经细胞生长的影响.解剖学报,1991,22(3):195-198
    [41]Brocco MA,Panzetta P.Survival and process regrowth of purified chick retinal ganglion cells cultured in a growth factor lacking medium at low density: Modulation by extracellular matrix proteins.Dev Brain Res,1999,118 (1-2):23-32
    [42]BergDK, FischbachGD. Enrichmentof spinal cord cell cultureswith motoneurons. JcellBiol,1978,77(3):83-98
    [43]Graham JM. Isolation ofratand human hippocampalneuron fractions in a discontinuous density gradien.t SciWorld J,2002,2(6):1634-1637
    [44]丁爱石,王福庄.新生大鼠海马神经元在无血清培养液中的生长特征.细胞生物学杂志,1993;15(2):89-92
    [45]Julien JP, Mushynski WE. Neurofilaments in health and disease. Prog Nucleic Acid Res Mol Biol,1998,61(1):1-23
    [46]Kikuchi M, Kashii S, Honda Y, et al. Protective effects of methylcobalamin, a vitamin B12 analog, against gluta-mate-induced neurotoxicity in retinal cell culture. In-vest Ophthalmol Vis Sci,1997,38(5):848-854
    [47]Guo L, Moss SE, Alexander RA, et al. Retinal ganglion cell apoptosis in glaucoma is related to intraocular pressure and IOP-induced effects on extracellular matrix. Invest Ophthalmol Vis Sci,2005,46(2):175-182
    [48]Spalding KL, Rush RA, Harvey AR.Target—derived and locally derived neurotrophins support retinal ganglion cell survival in the neonatal rat retina. J neurobi01,2004,60(4):319-327
    [49]Layton CJ, Wood JP, Chidlow G, et al. Neuronal death in primary retinal cultures is related to nitric oxide production, and is inhibited by erythropoietin in a glucose-sensitive manner. J Neurochem,2005,92(3):487-493
    [50]姚静,徐格致.视网膜RGCs的保护和修复.眼科研究,2004,22(6):662-665
    [51]杨坷,刘金华.视网膜RGCs凋亡的信号传导与基因调控.眼科研究,2002,20(6):552-556
    [52]卢艳,盛树立,吴航.大鼠视网膜神经网膜上神经营养因子的表达.眼科新进展,2002,22(1):21-22
    [53]Brubaker RF. Delayed functional loss glaucoma L11 Edward Jackson memorial lecture.AmJophthalmol,1996,12(3):473-483
    [54]Formowitz FB,Viola MV,Chao S,et al.Ras p21 expression of breast cancer Hum Pathol,1987:18:1268-1275
    [55]Guo L, Moss SE, Alexander RA, et al. Retinal ganglion cell apoptosis in glaucoma is related to intraocular pressure and IOP-induced effects on extracellular matrix. Invest Ophthalmol Vis Sci,2005,46(9):175-182
    [56]汪志凌,毛萌,周晖等.脑源性神经营养因子对缺氧胚脑神经元保护作用的信号传递途径初探.四川大学医学报,2007,38(60):934-937
    [57]李海燕,赵家良,张华.腺伴随病毒介导的脑源性神经因子对体外培养的鼠视网膜RGCs转染及生长特性的影响.中华眼科杂志,2008,44(4):354-359
    [58]罗晓丽,毛萌,周晖等.脑源性神经营养因子对体外培养大鼠胚脑皮质神经元缺氧的保护作用.四川大学医学报,2006,37(3):373-377
    [59]Peinado-Ramon P, Salvador M, Villegas P, et al. Effects of axotomy and intraocular administration of NT-4, NT-3, and brain-derived neurotrophic factor on the survival of adult rat retinal ganglion cells. A quantitative in vivo study.Invest ophthalmol Vis Sci,1996,37(4):489-500
    [60]黄菊芳,蒋丽珠,童建斌等.脑源性神经营养因子预处理后急性高眼压下大鼠视网膜TrkB的表达变化.解剖学杂志,2006,29(6):734-740
    [61]蒋丽珠,黄菊芳,童建斌等.外源性脑源性神经营养因子对急性高眼压后大鼠视网膜磷酸化TrkB表达的影响.解剖学杂志,2008,31(3):368-371
    [62]Hieks RR,MartinVB,Zhang L,et al. Mild experimental brain injury differentially alters the expression of neurotrophin and neurotrophin receptor mRNAs in the hippocampus.Exp Neurol,1999,160(2):469-478
    [63]Cui Q,Tang LS,Hu B,et al. Expression of trkA, trkB, and trkC ininjured and
    regenerating retinal ganglion cells of adult rats.Invest Ophthalmol Vis Sci,2002, 43(6):1954-1964
    [64]赵秀鹤,迟兆富MAPK信号转导途径及其在神经系统疾病中作用的研究进展.国外医学神经病学神经外科学分册,2005,32(3):248-251
    [65]王慧,陈旦,伍校琼等proBDNF对培养的海马神经元存活的影响及其机制.中南大学学报医学版,2007,32(5):800-805
    [66]klocker N,Kermer P,Weishaupt JH,et al.Brain-derived neurotrophic factor-mediated neuroprotection of adult rat retinal ganglion cells in vivo does not exclusively depend on phosphatidyl-inositol-3'-kinase/protein kinase B signaling. J Neurosci,2000,20(18):6962-6967
    [67]Yuan Z, Feng W, Hong J, et al. Ge Y. p38MAPK and ERK promote nitric oxide production in cultured human retinal pigmented epithelial cells induced by high concentration glucose. Nitric Oxide,2009,20 (1):9-15
    [68]McBain VA, Robertson M, Muckersie E, et al. High glucose concentration decreases insulin-like growth factor type 1-mediated mitogen-activated protein kinase activation in bovine retinal endothelial cells. Metabolism,2003,52 (5):547-551
    [69]Du ZJ, Kamei M, Suzuki M, et al. Coordinated expression of Ets-1, pERK1/2, and VEGF in retina of streptozotocin-induced diabetic rats. Ophthalmic Res,2007,39(4):224-231
    [70]彭慧,洪苏玲,李平华等.高糖促进人脐静脉内皮细胞p38MAPK和TGF β2的表达.基础医学与临床杂志,2007,27(2):169-173
    [71]季红斌,翟琦巍,刘新垣等.bcl-2基因的转录调控.生物化学与生物物理学报,2000,32(2):95-99
    [72]Liu YZ,Boxer LM,Latchman DS.Activation of the Bcl-2promoter by nerve growth factor is mediate by the p42/p44MAPK cascade.Nucleic Acids Res,1999,27 (10):2086-2090
    [73]吴苗琴,王竞.原癌基因bcl-2在眼科领域的研究进展.眼科研究,1999,17(6):409-410
    [74]Reme CE,Grimm C,Hafezi F,Marti A,Wenzel A.Apoptot-ic cell death in retinal degenerations.Prog Retin Eye Res,1998,17(4):443-464
    [75]刘文文,徐萍,黄倩.神经营养因子和生长因子等对培养的成人视网膜神经细胞的影响.中华眼科杂志,2003,39(9):545-549
    [76]Kim YH, Kim YS, Park CH, Chung IY, Yoo JM, Kim JG, Lee BJ, Kang SS, Cho GJ, Choi WS. Protein kinase C-delta mediates neuronal apoptosis in the retinas of diabetic rats via the Akt signaling pathway. Diabetes.2008,57(8):2181-2190
    [77]Abu El-Asrar AM, Dralands L, Missotten L, Geboes K. Expression of antiapoptotic and proapoptotic molecules in diabetic retinas.Eye.2007,21(2):238-245
    [78]Abu E1A srarAM, DralandsL, Missotten L, et al. Invest Ophthalmol Vis Sci, 2004,45 (8):2760-2766
    [79]A.R. Santiago,A.J. Cristovao, P.F. Santos, C.M. Carvalho, and A.F. Ambrosio High glucose induces caspase-independent cell death in retinal neural cells.Neurobiology of Disease,2007,25 (4):464-472
    [80]Li YH, Zhuo YH, Lu L, Chen LY, Huang XH, Zhang JL, Li SY, Wang XG. Caspase-dependent retinal ganglion cell apoptosis in the rat model of acute diabetes Chin Med J (Engl),2008,20;121(24):2566-2571
    [81]Oshitari T, Yamamoto S, Hata N,et al. Mitochondria-and caspase-dependent cell death pathway involved in neuronal degeneration in diabetic retinopathy. Br J Ophthalmol,2008,92(4):552-556
    [82]Omori K,Naruishi K,Nishimura F,et al.High Glucose Enhances Interleukin-6-induced Vascular Endothelial Growth Factor 165 Expression via Activation of Gpl30-mediated p44/42 MAPK-CCAAT/Enhancer Binding Protein Signaling in Gingival Fibroblasts.J Biol Chem,2004,279(8):6643-6649
    [83]Leung GP,Man RY,Tse CM.D-Glucose upregulates adenosine transport in cultured human aortic smooth muscle cells.Am J Physiol Heart Circ Physiol,2005, 288(6):2756-2762
    [84]Park SH,Woo CH,Kim JH,et al.High glucose down-regulates angiotensin Ⅱ binding via the PKC-MAPK-cPLA2 signal cascade in renal proximal tubule cells.Kidney Int,2002,61 (3):913-919
    [85]Kang MJ,Wu X,Ly H,et al.Effect of glucose on stress-activated protein kinase activity in mesangial cells and diabetic glomeruli. Kidney Int,1999,55(6): 2203-2214
    [86]Purves T,Middlemas A,Agthong S,et al.A role for mitogen-activated protein kinases in the etiology of diabetic neuropathy.FASEB J,2001,15(13):2508-2514
    [87]Hutchings H,Maitre-Boube M,Tombran-Tink J,et al.Pigment epithelium-derived factor exerts opposite effects on endothelial cells of different phenotypes. Biochem Biophys Res Commun,2002,294(4):764-769
    [88]Nicotra A,Lupo G.,Giurdanella G,et al.MAPKs mediate the activation of cytosolic phospholipase A2 by amyloidP(25-35) peptide in bovine retina pericytes. Biochim Biophys Acta,2005,1733(2-3):172-186
    [89]Kawano Y,Ryder JW,Rincon J,et al.Evidence against high glucose as a mediator of ERK1/2 or p38 MAPK phosphorylation in rat skeletal muscle.Am J Physiol EndocrinolMetab,2001,281 (6):1255-1259
    [90]Bonnet D, Garcia M, Vecino E, Lorentz JG, Sahel J, Hicks D.Brain-derived neurotrophic factor signalling in adult pig retinal ganglion cell neurite regeneration in vitro. Brain Res,2004,8 (1-2):142-151
    [91]Nakazawa T, Tamai M, Mori N. Brain-derived neurotrophic factor prevents axotomized retinal ganglion cell death through MAPK and PI3K signaling pathways. Invest Ophthalmol Vis Sci,2002,43(10):3319-26
    [92]李才锐,姜德咏.糖尿病视网膜病变动物模型.国外医学眼科学分册,2005,29(1):44-47
    [93]Su EN,Yu DY,Alder VA,Yu PK,Cringle SJ.Altered vasoactivity in the early diabetic eye:measured in the isolated perfused rat eye.Exp Eye Res,1995,61(6): 699-711
    [94]Yu PK,Yu DY,Alder VA,Su EN,Cringle SJ.Intracellular structures of retinal vascular endothelium in normal and early diabetic rats.Aust N Z J Ophthalmol,1998, 26(1):53-55
    [95]Cringle SJ,Yu DY,Alder VA,et al.Retinal blood flow by hydrogen clearance polarography in the streptozotocin-induced diabetic rat.Invest Ophthalmol Vis Sci,1993,34(5):1716-1721
    [96]Timothy S.Kern,Alistair J Barber.Retinal ganglion cells in diabetes.J Physio, 2008,18(7):4401-4408
    [97]李明新.早期大鼠实验性糖尿病视网膜病变模型的建立及观察.徐州医学院学报,2005,25(5):436-439
    [98]黄波,刘学政,庞东渤.不同途径注射链脲佐菌素致大鼠糖尿病模型的研究.锦州医学院学报,2003,24(1):19-21
    [99]Barber AJ. A new view of diabetic retinopathy:a neurodegenerative disease of the eye. Prog Neuropsychopharmacol Biol Psychiatry,2003,27(2):283-290
    [100]Lieth ETW, Barber AJ, Antonetti DA. Retinal neurodegeneration:early pathology in diabetes[J].Clin Exp Ophthalmol,2000,28(1):3-8
    [101]宋鄂,董宇,石博等.STZ糖尿病大鼠视网膜病变模型的评价.眼科研究,2004,22(2):124-127
    [102]庞东渤,符丽娟,刘学政.链脲佐菌素-糖尿病大鼠视网膜微血管病理改变.眼视光学杂志,2005,7(1):47-49
    [103]Murata T,Nakagawa K,Khalil A,et al.The relation between expression of vascular endothelial growth factor and breakdown of the blood-retinal barrier in diabetic rat retinas.Lab Invest,1996,74 (4):819-825
    [104]Barber AJ, Antonetti DA, Kern TS,et al.Gardner TW & Bronson SK. The Ins2Akita mouse as a model of early retinal complications in diabetes. Invest Ophthalmol Vis Sci,2005,46(4),2210-2218
    [105]Martin PM, Roon P, Van Ells TK,et al. Death of retinal neurons in streptozotocin-induced diabetic rat. Invest Ophthalmol Vis Sci,2004,(45): 3330-3336
    [106]Zheng L, Du Y, Miller C,et al.Critical role of inducible nitric oxide synthase in degeneration of retinal capillaries in rat with streptozotocin-induced diabetes. Diabetologia,.2007,50(6):1987-1996
    [107]Feit-Leichman RA, Kinouchi R, Takeda M, et al.Vascular damage in a mouse model of diabetic retinopathy:relation to neuronal and glial changes.Invest Ophthalmol Vis Sci,2005,46(4):4281-4287
    [108]Joussen AM,Poulaki V,Le ML,et al.A central role for inflammation in the pathogenesis of diabetic retinopathy.FASEBJ,2004,18(5):1450-1467
    [109]Adamis AP.Is diabetic retinopathy an inflammatory disease? Br J Ophthalmol,2002,86(1):363-365
    [110]江红,匡洪宇.炎症因子与糖尿病视网膜病变.国际内分泌代谢杂志,2007,27(1):31-33
    [111]Masaaki Seki, Takayuki Tanaka, Hiroyuki Nawa, et al. Therapeutic Potential of Brain-Derived Neurotrophic Factor for Dopaminergic Amacrine Cells. Diabetes,2004,53(9):2412-2419
    [112]万超,陈蕾.脑源性神经营养因子对糖尿病大鼠早期神经视网膜病变的影响.国际眼科杂志,2007(1):61-63
    [113]Tom linson DR.Mitogen activated protein kinases as glucose transducers for diabetic complications.D iabet-dogia,1999,42 (2):1271-1281
    [114]Abu El-Asrar AM, Dralands L, Missotten L,et al.Expression of antiapoptotic and proapoptotic molecules in diabetic retinas. Eye,2007,21(2): 238-245
    [115]Lieth E,Barber AJ,Xu B,et al.Glial reactivity and impaired glutamate metabolism in shortterm experimental diabetic retinopathy.Penn State Retina Research Group. Diabetes,1998;47:815-820
    [116]Rungger-Brandle E,Dosso AA,Leuenberger PM.Glial reactivity,an early feature of diabetic retinopathy.Invest Ophthalmol Vis Sci,2000,41(9):1971-1980
    [117]Barber AJ,Antonetti DA,Gardner TW.Altered expression of retinal occludin and glial fibrillary acidic protein in experimental diabetes.The Penn State Retina Research Group.Invest Ophthalmol Vis Sci,2000,41(7):3561-35
    [1]蔡春梅,孙葆忱.脑源性神经营养因子对视网膜保护作用的研究进展.国外医学眼科学分册,2004,8(4):268-271
    [2]Paskowitz DM,Donohue-Rolfe KM,Yang H, et al.Neurotrophic factors minimize the retinal toxicity of verteporfin photody-namic therapy.Invest Ophthalmol Vis Sic,2007,48(1):430-437
    [3]Azadi S, Johnson LE, Paquet-Durand F, et al.CNTF+BDNF treatment and neuroprotective pathways in the rd1 mouse retina.Brain Res.2007,1129 (1):116-129
    [4]GauthierR, JolyS,Pernet V, et al.Brain-derived neurotrophic factor gene delivery to Muller glia preserves structure and function of light-damaged photo-receptors. Invest Ophthalmol Vis Sci,2005,46(9):3383-3392
    [5]Marshak S,Nikolakopoulou AM,Dirks R, et al. Cell autoom-ous TrkB signaling in presynaptic retinal ganglion cells mediates axon arbor growth and synapse maturation during the establishment of retinotectal synaptic connectivity J Neurosci,2007,27(10):2444-2456
    [6]Fan W,Agarwal N,Cooper.NGF The role of CaMKII in BDNF-mediated neuroprotection of retinal ganglion cells (RGC-5).Brain Res.2006,1067(1):48-57
    [7]Fan W,Li X,Cooper NGF. CaMKIIalphaB mediates a survival response in retinal ganglion cells subjected to a glutamate stimulus.Vis Neurosci,2007,24 (2): 127-139
    [8]Bonnet D, Garcia M, Vecino E, et al. Brain-derived neurotrophic factor signalling in adult pig retinal ganglion cell neurite regeneration in vitro. Brain Res, 2004,1007(1-2):142-151
    [9]Nakazawa T, Tamai M, Mori N. Brain-derived neurotrophic factor prevents axotomized retinal ganglion cell death through MAPK and PI3K signaling pathways. Invest Ophthalmol Vis Sci,2002,43(10):3319-3326
    [10]Krueger-Naug AM,Emsley JG,Myers TL,et al. Administration of brain-derived neurotrophic factor suppresses the expression of heat shock protein 27 in rat retinal ganglion cells following axotomy.Neuroscience,2003,116(1):49-58
    [11]Caleo M,Medini P,Von Bartheld CS,et al.Provision of brain-derived neurotrophic factor via anterograde transport from the eye preserves the physiological responses of axotomized geniculate neurons.J Neurosci,2003,23(1):287-296
    [12]Duprey-Diaz MV,Soto I,Blagbum JM,et al.Changes in brain-derived neurotrophic factor and trkB receptor in the adult Rana pipiens retina and optic tectum after optic nerve injury.J Comp Neurol,2002,454 (4):456-469
    [13]Ota T,Hara H,Miyawaki N.Brain-derived neurotrophic factor inhibits changes in soma-size of retinal ganglion cells following optic nerve axotomy in rats.J Ocul Pharmacol Ther,2002,18(3):241-249
    [14]Cheng L,Sapieha P,Kittlerova P,et al.TrkB gene transfer protects retinal ganglion cells from axotomy-induced death in vivo.J Neurosci,2002,22 (10):3977-3986
    [15]Lee EL,Song MC,Kim HJ,et al. Brain-derived neurotrophic factor modulates the dopaminergic network in the rat retina after axotomy.Cell Tissue Res, 2005,2(5):1-9
    [16]Spalding KL,Rush RA,Harvey RA.Target-derived and locally derived neurotrophins support retinal ganglion cell survival in the neonatal rat retina.J Neurobiol,2004,60(3):319-327
    [17]Zhang CW,Lu Q,You SW,et al.CNTF and BDNF have similar effects on retinal ganglion cell survival but differential effects on nitric oxide synthase expression soon after optic nerve injury.Invest Ophthalmol Vis Sci,2005,46 (4): 1497-1503
    [18]Soto I,Rosenthal JJ,Blagburn JM,et al.Fibroblast growth factor 2 applied to the optic nerve after axotomy up-regulates BDNF and TrkB in ganglion cells by activating the ERK and PKA signaling pathways.J Neurochem,2006,96(1):82-96
    [19]Chidlow QCasson R,Sobrado-Calvo P,et al.Measurement of retinal injury in the rat after optic nerve transactions RT-PCR srudy,Mol Vis.2005,11:387-396
    [20]Sobrado-Calvo P,Vidal-Sanz M,Villegas-Perez MP.Rat retinal microglial cells under normal conditions,after optic nerve section,and after optic nerve section and intravitreal injection of trophic factors or macrophage inhibitory factor.J Comp Neurol,2007,501 (6):866-878
    [21]Fischer AJ,Schmidt M,Omar G,et al.BMP4 and CNTF are neuroprtective and Suppress damage-induced proliferation of Muller glia in the retina. Mol Cell Neurosci,2004,27(4):531-542
    [22]Ladewig T,Fellner S,Zrenner E,et al.BDNF regulates NMDA receptor activity in developing retinal ganglion cells. Neurorepot,2004,15(16):2495-2499
    [23]Chen H,Weber AJ. Brain-derived neurotrophic factor reduces TrkB protein and mRNA in the normal retina and following optic nerve crush in adult rats.Brain Res,2004,1011(1):99-10640
    [24]Seki M,Tanaka T,Sakai Y,et al.Muller Cells as a Source of Brain-derived Neurotrophic Factor in the Retina:Noradrenaline Upregulates Brain-derived Neurotrophic Factor Levels in Cultured Rat Muller Cells.Neurochem Res,2005, 30(9):1163-1170
    [25]Mo X,Yokoyama A, Oshitari T,et al.Rescue of axotomized retinal ganglion cells by BDNF dene electroporation in adult rats. Invest Ophthalmol Vis Sci,2002,43 (7):2401-2405
    [26]Awenagha O,Campbell G,Bird MM.Distribution of GAP-43,beta-Ⅲ tubulin and F-actin in developing and regenerating axons and their growth cones in vitro,following neurotropin treatment.J Neurocytol,2003,32(9):1077-1089
    [27]Awenagha O,Campbell QBird MM.The outgrowth response of the developing and regenerating rat retinal ganglion cells in vitro to neurotrophin treatment.J Neurocytol,2003,32(9):1055-1075
    [28]Kerrision JB,Lewis RN,Otteson DC,et al.Bone morphogenetic promote neurite outgrowth in retinal ganglion cells.Mol Vis,2005,11:208-215
    [29]Cohen-Cory S,Lom B.Neurotrophic regulation of retinal ganglion cell synaptic connectivity:from axons and dendrites to synapses.Int J Dev Biol,2004, 48(8-9):947-956
    [30]Sango K,takano M,Ajiki,et al.Impaired neurite outgrowth in the retina of a murine model of Sandhoff disease,Invest Ophthalmol Vis Sci,2005,46 (9):3420-3425
    [31]Menna E,Cenni MC,Naska S,et al.The anterogradely transported BDNF promotes retinal axon remodeling during eye specific segregation within the LGN.Mol Cell Neurosci,2003,24(4):972-983
    [32]Rudzinski M,Wong TP,Saragovi HU.Changes in retinal expression neurotrophins and neurotrophin receptors induced by ocular hypertension.J Neurobiol, 2004,58 (3):341-354
    [33]Quigley HA,Mckinnon SJ,Zack DJ,et al.Retrograde axonal transport of BDNF in retinal ganglion cells is blocked by acute IOP elevation in rats. Invest Ophthalmol Vis Sci,2000,41(11):3460-3466
    [34]Pease ME,Mckinnon SJ,Quigley HA,et al.Obstructed axonal transport of BDNF and its receptor TrkB in experimental glaucoma.Invest Ophthalmol Vis Sci,2000,41(3):764-774
    [35]Martin KR,Quigley HA,Zack DJ,et al.Gene therapy with brain-derived neurotrophic factor as a protection:retinal ganglion cells in a rat glaucoma model. Invest Ophthalmol Vis Sci,2003,44(10):4357-4365
    [36]Wang N,Zeng M,Ruan Y,et al.Protection of retinal ganglion cells against glaucomatous neuropathy by neurotrophin-producing,genetically modified neural progenitor cells in a rat model.Chin Med J(Engl),2002,115(9):1394-1400
    [37]Watanabe M,Fukuda Y. Survival and axonal regeneration of retinal ganglion cells in adult cats.Prog Retin Eye Res,2002,21(6):529-553
    [38]Kurokawa T,Katai N,Shibuki H,et al.BDNF diminishes caspase-2 but not c-Jun immunoreactivity of neurons in retinal ganglion cell layer after transient ischemia.Invest Ophthalmol Vis Sci,1999,40(12):3006-3011
    [39]Lambert WS,Clark AF,Wordinger RJ.Neurotrophin and Trk expression by cells of the human lamina cribrosa following oxygen-glucose deprivation. BMC Neurosci,2004,5(1):51-54
    [40]Thanos C,Emerich D.Delivery of neurotrophic factor and therapeutic proteins for retinal diseases.Expert Opin Biol Ther,2005,5(11):1443-1452.
    [41]Gauthier R,Joly S,Pernet V,et al. Brain-derived neurotrophic factor gene delivery to muller glia preserves structure and function of light-damaged photoreceptors. Invest Ophthalmol Vis Sci,2005,46(9):3383-3392
    [42]Ikeda K,Tanihara H,Tatsuno T,et al. Brain-derived neurotrophic factor shows a protective effect and improves recovery of the ERG b-wave response in light-damage.JNeurochem,2003,87(2):290-296
    [43]Turner BA,Sparrow J,Cai B,et al.TrkB/BDNF signaling regulates photoreceptor progenitor cell fate decisions.Dev Biol,2006,299(2):455-465
    [44]Hojo M,Abe T,Sugano E,et al.Photoreceptor protection by iris pigment epithelial transplantation transduced with AAV-mediadted brain-derived neurotrophic factor gene.Invest Ophthalmol Vis Sci,2004,45(10):3721-3726
    [45]卢艳,赵志炜,吴航.App-17肽对糖尿病大鼠神经网膜的保护作用.眼科研究,2002,20(4):289-293
    [46]Li YH, Zhuo YH, Lii L,et al. Caspase-dependent retinal ganglion cell apoptosis in the rat model of acute diabetes. Chin Med J (Engl),2008,121 (24): 2566-2571
    [47]Abu-El-Asrar AM,Dralands L,Missotten L,et al.Expression of apoptosis markers in the retinas of human subjects with diabetes. Invest Ophthalmol Vis Sci,2004,45 (8):2760-2766
    [48]Femyhough P,Huang T J,Verkhratsky A.Mechanism of Mitochonorial dysfunction diabetic sensory neuropathy.J Peripher Nerv Syst,2003; 8(4):227-235.
    [49]刘文文,徐萍,黄倩.神经营养因子和生长因子等对培养的成人视网膜神经细胞的影响.中华眼科杂志,2003,39(9):545-549
    [50]Masaaki Seki, Takayuki Tanaka, Hiroyuki Nawa, et al. Therapeutic Potential of Brain-Derived Neurotrophic Factor for Dopaminergic Amacrine Cells. Diabetes, 2004,53(9):2412-2419
    [51]Takei N, Tanaka O, Endo Y, et al.BDNF and NT-3 but not CNTF counteract the Ca2+ ionophore-induced apoptosis of cultured cortical neurons:involvement of dual pathways. Neuropharmacology,1999,38(4):283-288
    [52]Kaplan DR, Miller FD. Neurotrophin signal transduction in the nervous system. Curr Opin Neurobio,2000,10 (1):381-391
    [53]klocker N,Kermer P,Weishaupt JH,et al.Brain-derived neurotrophic factor-mediated neuroprotection of adult rat retinal ganglion cells in vivo does not exclusively depend on phosphatidyl-inositol-3'-kinase/protein kinase B signaling. J Neurosci,2000,20(18):6962-6967

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700