火腿许水蚤的繁殖生物学研究和在三丁基氧化锡毒性评价中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三丁基锡(Tributyltin TBT)是毒性最大、污染最严重的有机锡污染物之一,对多种海洋生物具有长期有效的杀生效果,同时也影响许多非靶生物,对经济水产和海洋生态环境构成了严重的威胁。桡足类作为海洋生态系统中承上启下的关键种类,研究其个体和种群对环境污染物的响应情况,对污染物的生态效应评价具有重要意义。本论文以火腿许水蚤为实验动物,建立了用于实验室内生态毒理学研究的多世代培养体系,在进行桡足类生物学研究的基础上,以毒性最大的三丁基锡种类-三丁基氧化锡(TBTO)为污染物,研究了火腿许水蚤个体和种群的响应情况。主要的研究结论如下:
     1.为了尽可能地节约成本和空间,获得高数量、营养和遗传具有一致性且发育同步的桡足类用于生态毒理学实验,需要筛选高效的饵料种类和饵料浓度,并且对火腿许水蚤的生殖节律进行控制。在本实验选取的4种单胞藻中,金藻是最高效的种类。在桡足类的多世代培养过程中,为了提高饵料多样性、防止饵料过度增殖,建议采用金藻和三角褐指藻混合投喂(投喂比例倾向于金藻),建议饵料浓度为5×104 cells ml-1。另外,可以通过短期禁食(48 h)后恢复投饵和定时收集(第5天、第8天和第10天)的方法控制火腿许水蚤的生殖节律。
     2.本实验通过组织学研究方法和个体生活史实验研究了火腿许水蚤的繁殖生物学特征。火腿许水蚤雌体采取怀卵囊、周期性的生殖方式,生殖系统主要包括卵巢和输卵管两个部分,生殖周期可分为4个阶段,其间卵巢的形态基本没有改变,而输卵管的形态发生变化。环境中的盐度和温度对桡足类发育和生殖参数都有显著影响:随着盐度的升高,存活率升高,雌体的发育减缓,生殖量减少;而随着温度的升高,存活率降低,雌体发育加快。因此,在火腿许水蚤应用于生态毒理学暴露实验时,应确定环境条件,以提高实验的可重复性和数据的可比性。
     3. TBTO的急性暴露实验结果表明,火腿许水蚤对有毒污染物非常敏感,雌体96h-LC50值仅为0.42μg l~(-1),而雌雄个体的敏感性并无显著差异。另外,环境因素对火腿许水蚤的敏感性有较大的影响,其中温度的影响最为明显,随着温度的升高,桡足类的敏感性显著提高;而盐度的影响相对较小,影响情况比较复杂;投喂饵料的实验组桡足类死亡率比不投饵的实验组显著较低,可见TBTO对火腿许水蚤主要的毒性作用途径更多的是水体中TBTO的影响。另外,桡足类密度对TBTO的毒性效应也有一定影响。因此,在设计相关的暴露实验时,应该综合考虑实验的可行性和实际的环境因素,选择合适的温度、盐度、饵料浓度和实验动物密度等条件。
     4.桡足类的世代暴露实验是评价环境污染物生态效应的必要方法。随着TBTO暴露浓度的升高和暴露时间的延长,火腿许水蚤的存活、发育和生殖都受到了显著影响。如火腿许水蚤幼体在5 ngTBTO l-1暴露环境中发育到成体的存活率即显著下降,其中无节幼虫期的敏感性比桡足幼体期更高。TBTO对火腿许水蚤性别比的影响主要体现在F1和F2世代,而且仅表现在20 ngTBTO l-1实验组中,这可能和TBTO的遗传毒性有关。在本实验的暴露浓度下,雌体的生殖量和世代时间并没有受到显著影响,但是在较高的暴露浓度组(40 ngTBTO l-1和60 ngTBTO l-1)出现了较大数量不能产生卵囊或流产的雌性个体。切片染色观察结果表明,暴露雌体不能产生卵囊可能是由于输卵管的末端堵塞导致卵母细胞不能排出引起的。TBTO对火腿许水蚤性别比率和卵囊产生的作用机制还需要进一步研究。
     5.本研究在传统Euler-Lotka方程的基础上,针对桡足类等有性生殖的种类进行改进,结合火腿许水蚤的世代暴露实验结果,预测了TBTO对火腿许水蚤种群的影响。结果表明,在20 ngTBTO l-1以上暴露浓度下,火腿许水蚤的种群内禀增长率显著降低。虽然与生活史参数相比,种群内禀增长率并不是最敏感的评价指标,但是具有更大的生态学意义。另外,本研究还通过群体培养实验对理论预测的结果进行了验证,得到了基本一致的结果。这说明,通过对桡足类个体水平存活和生殖参数的影响研究,结合理论模型分析,能够较好地预测污染物对桡足类种群的影响。
     通过以上实验结果,我们认为火腿许水蚤对TBTO等环境污染物有较高的敏感性,适合作为低浓度持久性污染物生态效应评价的模式生物;通过多世代暴露实验和编制生命表的研究方法能够较好地预测环境污染物对桡足类种群的影响。
Tributyltin(TBT) is one of the most toxic organotin type and has been used extensively. Tributyltin is so effective as a biocide and its toxicity is non-specific. It has a high bioaccumulation factor and a persistence that poses a great problem to the marine environment. Crustacean zooplankton such as copepods form the keystone link between primary producers and fish stocks, making it critical to understand their responses to toxic pollutants in marine. In this paper, we established a multi-generation cultivation system for colanoid copepod Schmackeria poplesia, and investigated the responses of S. poplesia to bis(tributyltin) oxide (TBTO). The main conclusions as follows:
     1. To produce copepods in large quantity and nutritional, developmental and genetic uniformity, experiments were carried out to manipulate and control egg production in females. Results showed that Isochrysis galbana was a more efficacious diet, and a 2:1 mixed diet of I. galbana and Phaeodactylum tricornutum in a density of 5×104 cells ml-1 was recommended in multi-generation culturing system and life-cycle toxicity tests. In addition, by starvation and reintroduction of food as well as timed collection, the production of copepods can be well controlled.
     2. The female reproductive system of S. poplesia consists of a single ovary with two diverticula, and we established a classification system of four ganad maturation stages. During a spawning cycle, distinct modifications of the gonad morphology were observed, while the ovary did not change, neither in size nor in cytological composition. Environmental factors such as temperature and salinity can significantly affect the development and reproduction of S. poplesia. At higher salinities, the survival increased, and the development was delayed. While at higher temperatures, the survival decreased and the development was advanced. So we should make invariable conditions in the exposed tests for reproducible work.
     3. The acute exposure test revealed that S. poplesia was very sensitive for TBTO exposure. The 96h-LC50 value for females was 0.42μgTBTO l-1, and no sex-specific differences were observed. The effects of temperature, salinity, food concentration and copepod density were detected for TBTO exposures. The results shows that increase in temperature increased the toxicity of TBTO, but the effect of salinity was more complex. Low salinity and high salinity increased mortality of S. poplesia. In addition, food concentration and copepod density have significant effects on the mortality of copepods. Therefore, the eco-toxicity tests should be conducted at a range of environmentally realistic regimes, as this will enhance the sensitivity of the test and improve the safety margin in line with the precautionary principle.
     4. Life-cycle exposure tests are essential method for risk assessment. The survival, development and reproduction of S. poplesia are affected when exposed to TBTO for three generations. The results indicate that nauplii are more sensitive than copepodites, and the survival of copepods exposed to 5 ngTBTO l-1 was decrease. The female-to-male ratio in F1 and F2 generations exposed to 20 ngTBTO l-1 concentration were significantly reduced. The first egg sac for females and the fecundity was not affected, while in higher TBTO concentration treatments, there were some females couldn’t produce egg sacs or aborted. Histological examinations suggest that the exposure to TBTO block the posterior end of the diverticula and inhibit the production of egg sacs. A full explanation of the effect of TBTO on copepods requires further investigation.
     5. A modified Euler-Lotka equation was used to calculate a population-level endpoint, the intrinsic rate of natural increase, from individual life-table endpoints, i.e. mortality rate, time of release of first brood, sex ratio, the fraction of ovigerous females among all females as well as the number of nauplii per ovigerous female. The intrinsic rate of natural increase of S. poplesia was significantly decrease when expose to TBTO concentrations higher than 20 ngTBTO l-1. Compared with individual life-table endpoints, the population effects the relatively weak. While a more sensitive end-point does not necessary have to be more ecologically relevant than a less sensitive endpoint. The results of colony exposure tests reveal a similar phenomenon that the population exposed to higher than 20 ngTBTO l-1 concentrations decline. The results from the present study demonstrate that ecologically relevant toxicity data on population dynamics can be gained from a relatively short and cost-effective full life-cycle toxicity test, which can improve the assessment of ecosystem risk of chemicals.
     These results show that the colanoid copepod Schmackeria poplesia is sensible for toxic pollutants such as TBTO, and is a promising species for use in ecotoxicology test. The full life-cycle toxicity test combined with the study of population growth rate structure can indicate the toxicity of pollutants more effectively.
引文
[1]阿那尼,陈叙龙,张毓琪.氯化三丁基锡对鲤鱼味蕾的影响.南开大学学报:自然科学版,1996,29(2):83~88.
    [2]陈珂.三种海洋桡足类摄食、生殖和发育的研究:[硕士学位论文].青岛:中国海洋大学,2004.
    [3]陈甫华,张相如,张仁江.海洋环境中三丁基锡的降解.环境科学进展,1994,2(2):19~26.
    [4]陈世杰.厦门港尖额真猛水蚤室内培养的研究.水产学报,1988,12(4):339~345.
    [5]陈硕,薛大明,赵雅芝等.有机锡污染物在海洋沉积物中的迁移和转化.海洋环境科学, 1995, 14(4): 21~26.
    [6]陈志琼,张斌.三丁基锡在河口微宇宙中的环境行为研究.环境污染与防治,2001,23(5):224~226.
    [7]储昭霞,席贻龙,徐晓平,葛雅丽,董丽丽,陈芳.除草剂草甘膦对萼花臂尾轮虫生活史特征的影响.应用生态学报,2005,16(6):1142~1145.
    [8]戴树桂,孙红文,黄国兰等.河口水及藻类对三丁基锡的降解作用.中国环境科学,1997,17(2):146~150.
    [9]高俊敏,胡建英,郑泽根.海洋生物的有机锡化合物污染.海洋科学,2006,30(5):65~70.
    [10]高尚德,吴以平,赵心玉.有机锡对海洋微藻的生理效应:Ⅰ三苯基锡和三丁基锡对光合色素的影响.海洋与湖沼,1994a,25(3):259~265.
    [11]高尚德,吴以平,赵心玉.有机锡对海洋微藻的生理效应:Ⅱ三苯基锡和三丁基锡对扁藻和金藻光合作用的影响.海洋与湖沼,1994b,25(4):362~367.
    [12]高尚德,吴以平.有机锡对海洋微藻的生理效应:Ⅲ三苯基锡和三丁基锡对扁藻和金藻呼吸作用的影响.海洋学报,1995,17(4):112~117.
    [13]韩雅莉,管云燕,李兴暖.三丁基锡(TBT)对牡蛎细胞基因组DNA影响的RAPD分析.海洋科学,2005,29(5):29~32.
    [14]韩雅莉,周小朋,李兴暖.三丁基锡致软体动物性畸变机制.上海水产大学学报,2003,12(2):174~178.
    [15]黄长江,李兴暖,韩雅莉等.三丁基锡对牡蛎超氧化物歧化酶的影响.台湾海峡,2002,21(4):439~444.
    [16]黄加祺,黄辉洋,许振祖.火腿许水蚤培养条件的初步研究.台湾海峡,1998,17:44~48.
    [17]黄加祺,黄辉洋.几种单胞藻对婆罗异剑水蚤群体增殖的影响.海洋科学,1999,17:47~50.
    [18]黄加祺,郑重.温度和盐度对厦门港几种桡足类存活率的影响.海洋与湖沼,1986,17(2):161~167.
    [19]黄加祺,郑重,1994.九龙江口桡足类和盐度关系的初步研究.厦门大学学报(自然科学版),1984,23(4):498~505.
    [20]黄周英,陈奕欣,赵扬等.三丁基锡对文蚶鳃酸性磷酸酶、碱性磷酸酶和Na +、K+ 2ATP酶活性的影响.海洋环境科学,2005,24(3):56~59.
    [21]李超伦.莱州湾夏季浮游桡足类的摄食研究.海洋与湖沼,2000,31(1):15~22.
    [22]李捷.高浓度硅藻对桡足类繁殖、生长的影响:[硕士学位论文].青岛:中科院海洋研究所,2006.
    [23]李琪,尾定诚,森胜义等.三丁基氧化锡(TBTO)对太平洋牡蛎性成熟的影响.中国海洋大学学报:自然科学版,2001,31(5):701~706.
    [24]李少菁,陈峰.厦门海区浮游桡足类卵形态与孵化率的研究.厦门大学学报(自然科学版),1989,28(5):538~543.
    [25]李松.锥形宽水蚤幼体发育研究.厦门大学学报(自然科学版),1983,1:96~101.
    [26]李松,方金钏.汤氏长足水蚤幼体发育的研究.厦门大学学报(自然科学版),1984,23(3):391~397.
    [27]林利民,许峰,林君.盐度对刺尾纺锤水蚤生长发育的影响.台湾海峡,1998,17(增刊):53~55.
    [28]林元烧,李松.厦门港中华哲水蚤产卵量的初步研究.厦门大学学报自然科学版,1986,25(1):107~111.
    [29]林森杰,李松.真刺唇角水蚤体长和温度对生殖率的影响.厦门大学学报,1988,28(6):689~693.
    [30]林霞.温度、盐度和饵料对象山港两种优势桡足类摄食与存活的影响:[硕士学位论文].青岛:中国海洋大学,2003.
    [31]林元烧,李松.厦门港中华哲水蚤产卵量的初步研究.厦门大学学报自然科学版,1986,25(1):107~111.
    [32]刘光兴,李松.厦门港瘦尾胸刺水蚤体长、体重与摄食率季节变化.海洋学报,1998,20(3):104~109.
    [33]刘光兴,徐东晖,邱旭春,黄瑛,崔建丽,朱丽岩.火腿许水蚤对牙鲆仔稚鱼成活、生长及脂肪酸组成的影响.中国海洋大学学报,2007,37(2):259~265.
    [34]刘卓.桡足类的培养利用.海洋科学,1989,6:65~66.
    [35]陆贤昆,李静,王臻等.几种海洋微藻对水中三丁基锡化合物的迁移和转化作用.环境科学学报,1994,14(3):341~348.
    [36]孟紫强.生态毒理学.北京:中国环境科学出版,2003.
    [37]商栩,王桂忠,李少菁.福建九龙江口火腿许水蚤各发育期耐盐能力与生态分布的关系.台湾海峡,2005,24(3):330~338.
    [38]施华宏,黄长江.海产腹足类性畸变现象的形态特征.台湾海峡,2001,20(4):552~556.
    [39]宋志慧,陈天乙,刘如冰.三丁基锡对摇蚊幼虫的毒性作用.环境科学,1998,19(2): 87~88.
    [40]孙儒泳,李庆芬,牛翠娟,娄安如.基础生态学.北京:高等教育出版社,2003.101~103.
    [41]孙松等.90年代胶州湾浮游植物种类组成和数量分布特征.海洋与湖沼,浮游动物研究专辑,2002:37~44.
    [42]肖湘,韩雅莉,徐淑暖等.氯化三丁基锡对牡蛎抗氧化作用的影响.食品科学,2003,24 (5):137~139.
    [43]肖湘,韩雅莉,袁惠春等.氯化三丁基锡对泥蚶SOD的影响.中国海洋药物,2004,23 (4):28~30.
    [44]熊振湖,黄国兰.内分泌干扰物三丁基锡诱导的腹足纲动物性畸变现象.环境科学研究,2002,15(3):56~60.
    [45]徐东晖.海洋伪镖水蚤(Pseudodiaptomus marinus Sato)培养及应用的初步研究:[硕士学位论文].青岛:中国海洋大学,2006.
    [46]徐晓白,戴树桂,黄玉瑶.典型化学污染物在环境中的变化及生态效应.北京:科学出版社,1998.99.
    [47]徐兆礼,王云龙,陈亚瞿等.长江口最大浑浊带区浮游动物的生态研究.中国水产科学,1995,2(1):39~48.
    [48]郁昂,王重刚,陈荣等.暴露于三丁基锡的杂色鲍血液中总锡含量及生物富集作用.厦门大学学报:自然科学版,2004,43(4):563~566.
    [49]袁晓倩,许晓路,申秀英.三丁基锡对水生生物毒理学影响的研究进展.浙江师范大学学报(自然科学版),2007,30(3):326~330.
    [50]张清敏,陈素平,张毓琪等.氯化三丁基锡对鲤鱼肝胰脏线粒体DNA的影响.南开大学学报:自然科学版,1999,32(4):54~57.
    [51]张康生,刘双进,赵忠宪.有机锡污染调控对策初步分析.中国环境科学,1996,16(4):293~296.
    [52]张芳,孙松,王新刚.温度和饵料对中华哲水蚤生长影响的初步研究.海洋与湖沼,2002,5:19~25.
    [53]张武昌,王荣.海洋微型浮游动物对浮游植物和初级生产力的摄食压力.生态学报,2001,21(8):1360~1368.
    [54]张其永,吴慧端.婆罗异剑水蚤的培养实验.水产科学,1988,12(4):339~345.
    [55]张朝红,臧树良,苏欣等.三丁基锡化合物与DNA相互作用的光谱研究.光谱实验室,2005a,22(4):819~823.
    [56]张朝红,臧树良,方禹之等.丁基锡系列化合物与脱氧核糖核酸的相互作用.分析化学, 2005b,33(9):1235~1238.
    [57]张宝东,张毓琪,陈叙龙.氯化三丁基锡对鲤鱼的急性毒性.交通环保,1994a,16(1):18~19.
    [58]张宝东,张毓琪,陈叙龙.氯化三丁基锡对鲤鱼肝胰脏线粒体的影响.交通环保,1994b,16(2):28~29.
    [59]赵文,董双林.盐碱池塘细巧华哲水蚤对浮游植物的摄食生态研究.生态学报,2002,22(5):682~687.
    [60]郑重,李少菁,连光山.海洋桡足类生物学.厦门:厦门大学出版社,1992.
    [61]郑重.海洋浮游生物培养的研究.自然杂志,1980,3:134~138.
    [62]郑榕辉,王重刚,李岩等.三丁基锡暴露对褐菖鲉碱性磷酸酶活性的影响.厦门大学学报:自然科学版,2005,44(增刊):203~206.
    [63]周名江,李正炎,颜天等.海洋环境的有机锡及其对海洋生物的影响.环境科学进展,1994,2 (4):67~76.
    [64]朱长寿.闽江口浮游桡足类生态研究.台湾海峡,1997,16(1):75~79.
    [65] Alzieu C.. Environmental problems caused by TBT in France: assessment, regulations, prospects. Mar. Environ. Res.,1991, 32: 7~17.
    [66] Annemarie P., van Wezel P., van Vlaardingen. Environmental risk limits for antifouling substances. Aquat. Toxicol. , 2004, 66: 427~444.
    [67] Arnaud J., Brunet M., Mazza J.. Etude de lóvogenèse chez Centropages typicus (Copepoda, Calanoida). Reprod. Nutr. Develop., 1982, 22: 537~555.
    [68] Baldwin W.S., Bailey R., Long K.E., Klaine, S.. Incomplete ecdysis as an indicator of ecdysteroid exposure in Daphnia magna. Environ. Toxicol. Chem., 2001, 20: 1564~1569.
    [69] Ban S., Burns C., et al.. The paradox of diatom-copepod interaction. Mar. Ecol. Prog. Ser., 1997, 157: 287~293.
    [70] Barata C., Baird D.J.. Determining the ecotoxicological mode of action of chemicals from measurements made on individuals: results from instar-based tests with Daphnia magna Straus. Aquat. Toxicol. , 2000, 48: 195~209.
    [71] Barata C., Baird D.J., Soares A.M.V.M., Guilhermino L.. Biochemical factors contributing toxicity differences among resistant and sensitive clones of Daphnia magna Straus to ethyl parathion. Ecotoxicol. Environ. Safe., 2001, 49: 155~163.
    [72] Barata C., Baird D.J., Medina M., Albalat A., Soares A.M.V.M.. Determining the ecotoxicological mode of action of toxic chemicals in meiobenthic marine organisms: stage-specific short tests with Tisbe battagliai. Mar. Ecol. Prog. Ser., 2002a, 43: 373~378.
    [73] Barata C., Medina M., Telfer T., Baird D.J.. Determining demographic effects of cypermethrin in the marine copepod Acartia tonsa: stage specific short tests versus life-table tests. Arch. Environ. Contam. Toxicol., 2002b, 43: 373~378.
    [74] Barata C., Baird D.J., Soares A.M.V.M.. Food supply on density-dependent effects on demographic responses of the cladoceran Moinodaphnia macleayi to heavy metal exposure. Ecol. Appl., 2002c, 12: 552~64.
    [75] Barata C., Porte C., Baird, D.J.. Experimental Designs to Assess Endocrine Disrupting Effects in Invertebrates A Review. Ecotoxicology, 2004, 13: 511~517.
    [76] Barnthouse L.W.. Population-level effects. Ecological Risk Assessment. Lewis Publishers,1993.
    [77] Blackmore G.. Impesex in Thais clavigera (Neogastropoda) as an indicator of TBT ( Tributyltin) bioavaility in coastal waters of Hung Kong. J. Moll. Stud., 2000, 66: 128.
    [78] Blades-Eckelbarger P.I., Youngbluth M.J.. The ultrastructure of oogenesis and yolk formation in Labidocera aestiva (Crustacea: Copepoda). J. Morphol., 1984, 179: 33~46.
    [79] Breitholtz M., Wollenberger L.. Effects of three PBDEs on development, reproduction and population growth rate of the harpacticoid copepod Nitocra spinipes. Aquat. Toxicol., 2003, 64: 85~96.
    [80] Breitholtz M., Wollenberger L., Dinan L.. Effects of four synthetic musks on the life cycle of the harpacticoid copepod Nitocra spinipes. Aquat. Toxicol., 2003, 63: 103~118.
    [81] Bryan G.W., Langston W.J.. Bioavailability, accumulation, and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review. Environ. Pollut., 1992, 76: 89~131.
    [82] Bushong L.W., Hall Jr., Hall W.S., Johnson W.E., Herman R.L..Acute toxicity of tributyltin to selected Chesapeake Bay fish and invertebrates. Water Res., 1988, 22: 1027~1032.
    [83] Cahoon L.B.. Reproductive response of Acartia tonsa to variation in food ration and quality. Deep sea Res., 1981, 28: 1251~1221.
    [84] Calow P., Sibly R.M.. A physiological basis of population processes: ecotoxicological implications. Funct. Ecol., 1990, 4: 283~288.
    [85] Campbell R.G., Wagner M.M., Teegarden G.J., Boudreau C., Durbin E.G.. Growth and development rates of the copepod Calanus finmarchicus reared in the laboratory. Mar. Ecol. Prog. Ser., 2001, 221: 161~183.
    [86] Carman K.R., Todaro M.A.. Influence of polycyclic aromatic hydrocarbons on the meiobenthic-copepod community of a Louisiana sasl marsh. J. Exp. Mar. Biol.Ecol., 1996, 198: 37~54.
    [87] Cervetto G., Gaudy R., Pagano M.. Influence of Salinity on the distribution of Acartia tonsa (Copepoda, Calanoida). J. Exp. Mar. Biol.Ecol., 1999, 239(1): 33~45.
    [88] Chang E.S., O’Connor J.D.. In vitro secretion and hydroxylation of a-ecdysone as a function of the crustacean molt cycle. Gen. Comp. Endocrinol., 1978, 36: 151~160.
    [89] Chaudron Y., Poulet S.A., et al.. Is hatching success of copepod eggs diatom density- dependent?Mar. Ecol. Pro. Ser., 1996, 144(1-3): 185~193.
    [90] Checkley D.M.. The egg production of a marine Planktonic copepod in relation to its food supply: laboratory studies. Limnol. Ocean., 1980, 25 (3): 430~446.
    [91] Colin S.P., Dam H.G.. Effects of the toxic dinoflageliate Alexandrium fundyense on the copepod Acartia Hudsonica: A test of the mechanicsms that reduce ingestion rates. Mar. Ecol. Pro. Ser., 2003, 248: 55~65.
    [92] Corkett C.J, Zilloux E J.. Studies on the effect of temperature on the egg laying of three species of calanoid copepods in the laboratory (Acartia tonsa, Temora longicornis and pseudocalanus elongatus). Bull. Plan. Soc. Japan, 1975, 21: 77~85.
    [93] Corkett C.J., McLaren I.A .. The biology of Pseudocalanus. Adv. Mar. Biol., 1978, 1:1~231.
    [94] Cosmita G.W., Cosmita J.J.. Egg production in Tigriopus brevicornis, pp.171~185.In Some Contemporary Studies in Marine Science (ed.H.Barnes). London: George Allen & Unwin, 1966.
    [95] Daniels R.E., Allen J.D.. Life table evaluation of chronic exposure to a pesticide. Can. J. Fish Aquat. Sci., 1981, 38 (5): 485~494.
    [96] Davis C.S.. Laboratory rearing of marine Calanoid copepods, with special reference to dimorphic males. Journal of Experimental Marine Biology and Ecology, 1983, 71(2): 119~133.
    [97] Day K.E., Kaushik N.K.. An assessment of the chronic toxicity of the synthetic pyrethroid, fenvalerate, to Daphnia galeata mendotae, using life tables. Environ. Pollut., 1987, 44 (1): 13~26.
    [98] De Angelis D.L., Gross L.J.. Individuals Based Models and Approaches in Ecology: Populations, Communities and Ecosystems. London, UK: Chapman & Hall, 1990.
    [99] Di Pinto M. L., Coull C., Chandler G. T.. Lethal and sublethal eassociated PCB Aroclor 1254 on a meiobenthic copepod. Environ. Toxicol. Chem., 1993, 12: 1909~1918.
    [100] Dimitriou P., Castritsi-Catharios J., Miliou H.. Acute toxicity effects of tributyltin chloride and triphenyltin chloride on gilthead seabream, Sparus aurata L., embryos. Ecotox. Environ. Safe, 2003, 54: 30~35.
    [101] Eisfeld S.. Zur Reproduktionsbiologie des calanoiden Copepode Acartia clausi der Nordsee: Master-Thesis. Germany: University of Bremen, 2002.
    [102] EPA. Environmental ProtectionAgency. Ambient aquatic life water quality criteria fortributyltin (TBT)—Draft; 2002. http://www.epa.gov/waterscience/criteria/tributyltin/tbt.pdf Accessed: 2007. Frost B W. Feeding behaveior of Calanus pacificus in mixtures of food particles. Limnology and Oceanography, 1977, 22: 472~491.
    [103] Fent K.. Ecotoxicology of organotin compounds. Crit. Rev. Toxicol, 1996, 26: 1~117.
    [104] Fent K., Hunn J.. Organotins in freshwater harbors and rivers: temporal distribution, annual trends and fate. Environ. Toxicol. Chem. 1995, 14: 1123~1132.
    [105] Ferrando M.D., Janssen C.R., Andreu E., Persoone G.. Ecotoxicological studies with the freshwater rotifer Brachionus calyciflorusⅡ. An assessment of the chonic toxicity of lindane and 3,4-dichloroaniline using life tables. Hydiobiologia , 1993, 255/256: 33~40.
    [106] Forbes V., Calow P.. Is the per capita rate of increase a good measure of population-level effects in ecotoxicology? Environ. Toxicol. Chem., 1999, 18 (7): 1544~1556.
    [107] Forbes V.E., Calow P., Sibly R.M., 2001. Are current species extrapolation models a good basis for ecological risk assessment? Environ. Toxicol. Chem. 20 (2): 442~447.
    [108] Gaudy R., Cervetto G., Pagano M.. Comparison of the metabolism of Acartia clause and A. tonsa: influence of temperature and salinity. J. Exp. Mar. Biol. Ecol., 2000, 247: 51~65.
    [109] Gibbs P.E., Bryan G.W., Pascoe P.L., et al. The use of the dogwhelk, Nucella lapillus, as an indicator of tributyltin contamination. J. Mar. Biol. Assoc. UK, 1987, 67 (3): 507~523.
    [110] Grasiela L.L. Pedroso, Mariana S., Pinho, Sandra C. Rodrigues, Sandra Silvestre de Souza, Adalto Bianchini. Physiological effects of copper in the euryhaline copepod Acartia tonsa: Waterborne versus waterborne plus dietborne exposure. Aqua. Toxicol., 2007, 84(1): 62~70.
    [111] Guerrero F., Nival S., et al.. Egg production and viability in Centropages typicus: A laboratory study on the effect of food concentration. J. Mar. boil. Assoc. U. K., 1997, 77(1): 257~260.
    [112] Hagopian-Schlekat, T., Chandler, G.T., Shaw, T.J.. Acute toxicity of five sediment-associated metals, individualsly and in a mixture, to the estuarine meiobenthic harpacticoid copepod Amphiascus tenuiremis. Mar. Environ. Res., 2001, 51: 247~264.
    [113] Hakanson J.L.. The long and short term feeding conditions in field-caught Calanus pacificus, as determined from the lipid content. Limnol. Ocean., 1984, 29: 794~804.
    [114] Hall L.W., Bushong S.J., Hall W.S., Johnson W.E.. Acute and chronic toxicity of tributyltin on a Chesapeake Bay copepod. Environ. Toxicol. Chem., 1988, 7: 41~46.
    [115] Hall and Bushong, 1996 L.W. Hall Jr. and S.J. Bushong, A review of acute effects of tributyltincompounds on aquatic biota. In: M.A. Champ and P.F. Seligman, Editors, Organotin, Chapman and Hall, London , 1996. 157~185.
    [116] Hall Jr L.W., Scott M.C., Killen W.D., Unger M.A.. A probabilistic ecological risk assessment of tributyltin in surface waters of the Chesapeake Bay watershed. Hum. Ecol. Risk Assess. 2000: 141~179.
    [117] Hall Jr. L.W., Ziegenfuss M.C., Anderson R.D., Lewis B.L.. The effect of salinity on the acute toxicity of total and free cadmium to a Chesapeake Bay copepod and fish. Mar. Pollut. Bull., 1995, 30: 376~384.
    [118] Haq S.M.. Breeding of Euterpina Acutifrons, a harpacticid copepod , with special reference to dimorphic males. Mar. Biol., 1972, 15: 221~235.
    [119] Harrison K.E.. The role of nutrition in maturation, reproduction and embryonic development of decapod crustaceans: A review. J. Shellfish Res., 1990, 9: 1~28.
    [120] Herbert D.W.M., Shurben D.S.. The susceptibility of salmoid fish to poisons under estuarine conditions: II. Zinc sulphate. Int. J. Air Water Pollut., 1965, 9: 89~91.
    [121] Herbert D.W.M., Wakeford A.C.. The susceptibility of salmoid fish to poisons under estuarine conditions: I. Zinc sulphate. Int. J. Air Water Pollut., 1964, 8: 251~256.
    [122] Hertz W.A., Chang E.S.. Juvenile hormone effects on metamorphosis of lobster (Homarus americanus) larvae. Int. J. Invertebr. Reprod. Dev., 1986, 10: 71~78.
    [123] Hirche H.J., Meyer U., Niehoff B.. Egg production of Calanus finmarchicus: effect of temperature, food and season. Mar. Biol., 1997, 127: 609~620.
    [124] Horiguchi T., Imai T., Cho H.S., Shiraishi H., Shibata Y., Morita M., et al. Acute toxicity of organotin compounds to the larvae of the rock shell, Thais clavigera, the disk abalone, Haliotis discus discus and the giant abalone, Haliotis madaka. Mar. Environ. Res., 1998, 46: 469~473.
    [125] Hutchinson T.H.. Reproductive and development effects of endocrine disrupters in invertebrates: in vitro and in vivo approaches. Toxicol. Lett., 2002, 131: 75~81.
    [126] Irigoien X., Harris R., et al.. Copepod hatching success in marine ecosystems with high diatom concentrations. Nature, 2002, 419(6905): 387~389.
    [127] Iwasaki H.,Kamiya S.. Cultivation of marine copepod, Pseudodiaptomus marinus Sato. Bull. Plankton Soc. Japan., 1977, 24(1): 44~54.
    [128] Jensen L.K., Carroll J., Pedersen G., Hylland K., Dahle S., Bakke T.. A multi-generationCalanus finmarchicus culturing system for use in long-term oil exposure experiments. J. Exp. Mar. Biol. Ecol., 2006, 333: 71~78.
    [129] Jiang G.B., Zhou Q.F., Liu J.Y., Wu D.J.. Occurrence of butyltin compounds in the waters of selected lakes, rivers and coastal environments from China. Environ. Pollut., 2001, 115: 81~87.
    [130] Jonasdottir S.H.. Effects of food quality on the reproductive success of Acartia tonsa and Acartia hudsonica: laboratory observations. Mar. Biol., 1994, 121: 67~81.
    [131] Jonasdottir S.H., Kiorboe T.. Copepod recruitment and. food composition: do diatoms affect hatching success? Mar. Biol., 1996, 125: 743~750
    [132] Kahan D., Uhlig G., et al.. A simple method for cultivating harpacticoid copepod and offering the to fish larvae. Aquaculture, 1982, 26: 303~310.
    [133] Kattner G., Krause M.. Seasonal variations of lipids (wax ester fatty acids and alcohols)in calanoid copepods from the Northsea. Mar. Chem., 1989, 26: 261~275.
    [134] Kavelock R.J.. Research needs for risk assessment of health and environmental effects of endocrine disrupters: a report of the U.S. EPA-Sponsored Workshop. Environ. Health. Perspect., 1996, 104 (4): 715~740.
    [135] Klein Breteler W.C.M.. Continuous breeding of marine pelagic copepods in the presence of heterotrophic dinoflagellates. Mar. Ecol. Prog. Ser., 1980, 2: 229~233.
    [136] Klein Breteler W.C.M., Gonzales S.R., et al.. Development of Pseudocalanus elongates (Copepoda, Calanoida) cultured at different temperature and food conditions. Mar. Ecol. Prog. Ser., 1995, 199(1-3): 99~110.
    [137] Klein Breteler W.C.M., Schogt N.. On the role of food quality in grazing and development of life stages, and genetic changes of body size during cultivation of pelagic copepods. J. Exp. Mar. Biol. Ecol., 1990, 135: 173~189.
    [138] Kleppel G.S.. On the diets of calanoid copepods. Mar. Ecol. Prog. Ser.,1993, 99: 183~195.
    [139] Koski M., Schmidt K.. Calanoid copepods feed and produce eggs in the presence of toxic cyanobacteria Nodularia spumigena. Limnol. Ocean., 2002, 47(3): 878~885.
    [140] Kwok K.W.H., Leung K.M.Y.. Toxicity of antifouling biocides to the intertidal harpacticoid copepod Tigriopus japonicus (Crustacea, Copepoda): Effects of temperature and salinity. Mar. Pollut. Bull., 2005, 51(8-12): 830~837.
    [141] Lacoste A., Poulet S.A., et al.. New evidence of the copepod maternal food effects onreproduction. J. Exp. Mar. Biol. Ecol., 2001, 259: 85~107.
    [142] Langston W.J., Burt G.R.. Bioavailability and effects of sediment-bound TBT in deposit-feeding clams, Scrobicularia-Plana. Mar. Environ. Res., 1991, 32: 61~77.
    [143] Lee W.. Some laboratory cultured crustaceans for marine pollution studies. Mar. Poll. Bull., 1977, 8 (11): 258~259.
    [144] Lee K.W., Park H.G., Lee S.-M., Kang H.-K.. Effects of diets on the growth of the brackish water cyclopoid copepod Paracyclopina nana Smirnov. Aquaculture, 2006, 256(1-4): 346~353.
    [145] Lee C.E., Petersen C.H.. Effects of developmental acclimation on adult salinity tolerance in the Freshwater-Invading copepod Eurytemora affinis. Physiol. Biochem. Zool., 2003, 76 (3): 296~301.
    [146] Leung K.M.Y., Grist E.P.M., Morley N.J., Morritt D., Crane M.. Chronic toxicity of tributyltin to development and reproduction of the European freshwater snail Lymnaea stagnalis (L.). Chemosphere, 2007, 66: 1358~1366.
    [147] Li J., Sun S., Li C.L., Pu X.M., Zhang Z.. The effects of different diets on the survival and development of copepod nauplii. Mar. Sci., 2006, 30(12): 13~20.
    [148] Lignot J.-H., Pannier F., Trilles J.-P., Charmantier G... Effects of tributyltin oxide on survival and osmoregulation of the shrimp Penaeus japonicus (crustacea, decapoda). Aquat. Toxicol., 1998 , 41: 277~299.
    [149] Marcus N.H.. Photoperiodic control of diapause in the marine calanoid copepod, Labidocera aestiva. Biology Bulletin, 1980, 159: 311~318.
    [150] Marcus N.H.. Photoperiodic and temperature regulation of diapause in Labidocera aestiva (Copepoda: Calanoida). Biol. Bull., 1982, 162: 45~52.
    [151] Marcial H.S., Hagiwara A., Snell T.W.. Effect of known and suspected endocrine disrupting chemicals on the demographic parameters of the copepod Tigriopus japonicus. Fish. Sci., 2002, 68 (Suppl. 1): 863~866.
    [152] Marcial H.S., Hagiwara A., Snell T.W.. Estrogenic compounds affect development of harpacticoid copepod Tigriopus japonicus. Environ.Toxicol. Chem., 2003, 22: 3025~3030.
    [153] Marinho R., Fernadez F.. feeding and survival rates of the copepods Euterpina acutifrons Dana Acartia grani Sars on the dinoflagellates Alexandrium minutum Balech and Gyrodinium corsicum Paulmier and the Chryptophyta Rhodomonas baltica Karsten. J. Exp. Mar. Biol. Ecol.,2002, 273: 131~142.
    [154] McAllen R., Taylor A.C., Davenport J.. The effects of temperature and oxygen partial pressure on the rate of oxygen consumption of the high-shore rock pool copepod Tigriopus brevicornis. Compar. Biochem. Physiol. Part A, 1999, 123: 195~202.
    [155] Meador J.P.. Comparative toxicokinetics of tributyltin in five marine species and its utility in predicting bioaccumulation and acute toxicity. Aquat. Toxicol. 1997, 37: 307~326.
    [156] Meador J.P.. Predicting the fate and effects of tributyltin in marine systems. Rev. Environ. Contam. Toxicol., 2000, 166: 1~48.
    [157] Meador J.P., Rice C.A.. Impaired growth in the polychaete Armandia brevis exposed to tributyltin in sediment. Mar. Environ. Res., 2001, 51: 113~129.
    [158] Medina M., Barata C., Telfer T., Baird D.. Assessing the risks to zooplankton grazers of continuous versus pulsed cypermethrin exposures from marine cage aquaculture. Arch. Environ. Contam. Toxicol., 2004, 47: 67~73.
    [159] Medina M., Barata C.. Static-renewal culture of Acartia tonsa (Copepoda: Calanoida) for ecotoxicological testing. Aquaculture, 2004, 229: 203~213.
    [160] Miralto A., Barone G., et al.. The insidious effect of diatoms on copepod reproduction. Nature, 1999, 402(6758): 171~176.
    [161] Mullin M.M., et al.. Laboratory culture, Growth rate, and feeding behavior of a planktonic marine copepod. Limnol. Ocean., 1967, 12: 657~666.
    [162] Naess T.. Ontogenetic and sex dependent rotenone tolerance of a marine copepod, Acartia clausi Giesbrecht. Sarsia, 1991, 76: 29~32.
    [163] Niehoff B.. The gonad morphology and maturation in Arctic Calanus species. J. Mar. Sys., 1988, 15: 53~59.
    [164] Niehoff B.. Gonad morphology and oocyte development in Pseudocalanus spp. in relation to spawning activity. Mar. Biol., 2003, 143: 759~768.
    [165] Niehoff B.. The effect of food limitation on gonad development and egg production of the planktonic copepod Calanus finmarchicus. J. Exp. Mar. Biol. Ecol., 2004, 307: 237~259.
    [166] Niehoff B., Hirche H.J.. Oogenesis and gonad maturation in the copepod Calanus finmarchicus and the prediction of egg production from preserved samples. Polar. Biol., 1996, 16: 601~612.
    [167] Niehoff B., Hirche H.J.. The reproduction of Calanus finmarchicus in the Norwegian Sea inspring. Sarsia, 2000, 85: 15~22.
    [168] Norsker N.H., St?ttrup J.G... The importance of dietary HUFAs for fecundity and HUFA content in the harpacticoid (Tisbe holothuriae Humes). Aquaculture, 1994, 125: 155~166.
    [169] OECD, 2006. Detailed Review Paper on Aquatic Arthropods in Life Cycle Toxicity Tests with an Emphasis on Developmental, Reproductive and Endocrine Disruptive Effects. OECD Series on Testing and Assessment, Number 55, ENV/JM/MONO(2006)22 Environment Directorate. Organisation for Economic Co-operation and Development, Paris, p. 125.
    [170] Oehlmann J., Bettin C.. TBT-induced imposex and the role of sterokds in marine snails. Malacol. Rew. Suppl., 1996, 6 (2): 157~161.
    [171] Ohji M., Arai T., Miyazaki N.. Chronic effects of tributyltin on the caprellid amphipod Caprella danilevskii. Mar. Pollut. Bull., 2003, 46: 1263~1272.
    [172] Ohji M., Arai T., Miyazaki N.. Acute toxicity of tributyltin to the Caprellidea (Crustacea: Amphipoda). Mar. Environ. Res., 2005, 59: 197~201.
    [173] Ohji M., Takeuchi I., Takahashi S., Tanabe S., Miyazaki N.. Differences in the acute toxicities of tributyltin between the Caprellidea and the Gammaridea (Crustacea: Amphipoda). Mar. Pollut. Bull., 2002, 44: 16~24.
    [174] Park T.S.. The biology of a calanoid copepod Epilabidocera amphitrites McMurrich. Cellule, 1966, 66: 129~251.
    [175] Parrish K., Wilson D.. Fecundity studies on Acartia tonsa (Copepoda: Calanoida) in standardized culture. Mar. Biol., 1978, 46: 65~81.
    [176] Payne M.F, Rippingale R.J.. Rearing west Australian seahorse, Hippocampus subelongatus, juveniles on copepod nauplii and enriched Artemia. Aquaculture, 2000a, 188: 253~361.
    [177] Payne M.F., Rippingale R.J.. Evaluation of diets for culture of the calanoid copepod Gladioferens imparipes. Aquaculture, 2000b, 187: 85~96.
    [178] Plourde S., Runge J.A.. Reproduction of the planktonic copepod Calanus finmarchicus in the Lower St. Lawrence Estuary: relation to the cycle of phytoplankton production and evidence for a Calanus pump. Mar. Ecol. Prog. Ser., 1993. 102: 217~227.
    [179] Rao T.R., Sarma S.S.S.. Interaction of Chlorella density and DDT concentration on the population dynamics of the rotifer, Brachionus patulus (Rotifera). Indian J. Environ. Health., 1990, 32: 157~160.
    [180] Raisuddin S., Kwok W.H.K., Leung M.Y.K., Schlenk D., Lee J-S.. The copepod Tigriopus: A promising marine model organism for ecotoxicology and environmental genomics. Aquat. Toxicol., 2007, 83: 161~173.
    [181] Rey-Rassat C., Irigoien X., Harris R., Head R., Carlotti F.. Egg production rates of Calanus helgolandicus females reared in the laboratory: variability due to present and past feeding conditions. Mar. Ecol. Prog. Ser., 2002, 238: 139~151.
    [182] Rivera J.A., Cumming S.C., Macys D.A.. In vitro activation of lipophilic tributyltins by superoxide produces tributylstannyl superoxo radicals, proposed initiators of lipid peroxidation: An EPR model study. Chem. Res. Toxicol., 1992, 5(5): 698~705.
    [183] Ronis M.J.,Mason A.Z.. The metabolism of testosterone by the periwinkel (Littorina littorea) in vitro and in vivo: Effects of tributyltin. Mar. Environ. Res., 1996, 42 (1): 161~166.
    [184] Runge J.A., Plourde S.. Fecundity characteristics of Calanus finmarchicus in coastal waters of eastern Canada. Ophelia, 1996, 44: 171~187.
    [185] Sibly R.M., Calow P.. Physiological Ecology of Animals. An Evolutionary Approach. Oxford, UK: Blackwell Scientific Publications, 1986.
    [186] Sibly R.M., Williams T.D., Jones M.B.. How environmental stress affects density dependence and carrying capacity in a marine copepod. J. Appl. Ecol. , 2000, 37: 388~397.
    [187] Smith G.A., Fitzpatrick L.C., Pearson W.D.. Metabolic relations to temperatures in the copepods Diaptomus dorsalis and Mesocyclopes edax from North-Central Texas. Compar. Biochem. Physiol. Part A, 1978, 59: 325~326.
    [188] Sousa A., Génio L., Mendo S., Barrosoi C.. Comparison of the acute toxicity of tributyltin and copper to veliger larvae of Nassarius reticulatus (L.). Appl. Organomet. Chem., 2005, 19: 324~328.
    [189] Sosnowski S., Gentile J.. Toxicological comparison of natural and cultured populations of Acartia tonsa to cadmium, copper, and mercury. J. Fish. Res. Board Can., 1978, 35: 1366~1369.
    [190] Sprague J.B.. Factors that modify toxicity. In: Rand, G.M., Petrocelli, S.R. (Eds.), Fundamentals of Aquatic Toxicology. Washington, USA: Hemisphere Publishing Company, 1985. 124~162.
    [191] Spooner N., Gibbs P.E., Bryan G.W., et al. The effects of tributyltin upon steroid titres in the female dogwhelk, Nucella lapillus, and the development of imposex. Mar. Environ. Res., 1991,32 (1): 37~49.
    [192] Stearns S.C.. The Evolution of Life Histories. New York: Oxford University Press, 1992.
    [193] St?ttrup J.G., Jensen J.. Influence of algal diet on feeding and egg-production of the calanoid copepod Acartia tonsa Dana. J. Mar. Biol. Assoc. U. K. , 1990, 141: 87~105.
    [194] St?ttrup J. G., Richardson K., Kirkegaard E., Pihl N. J.. The cultivation of Acartia tonsa Dana for use as a live food source for marine fish larvae. Aquaculture, 1986, 52: 87~96.
    [195] St?ttrup J.G., Jensen J.. Influence of algal diet on feeding and egg-production of the calanoid copepod Acartia tonsa Dana. J. Experim. Ma. Biol. Ecol., 1990, 106(3): 445~451.
    [196] Thain J.E.. The acute toxicity of bis (tributyltin) oxide to the adults and larvae of some marine organisms. ICES, C.M.E 10, 1983.
    [197] Thompson B.M.. The biology of Pseudocalanus elongatus (Boeck): Ph.D. thesis. Norwich: University of East Anglia , 1976.
    [198] Tillmann M., Schulte-Oehlmann U., Duft M., Markert B., Oehlmann, J.. Effects of endocrine disruptors on prosobranch snails (Mollusca: Gasteropoda) in the laboratory. Part III: cyproterone acetate and vinclozolin as antiandrogens. Ecotoxicology, 2001, 10: 373~388.
    [199] U'ren S.C.. Acute toxicity of bis(tributyltin) oxide to a marine copepod. Mar. Pollut. Bull., 1983, 14: 303~306.
    [200] Uye S., Iwai Y., Kasahara S.. Reproductive biology of pseudodiaptomus marinus (Copepoda: Calanoida) in the Inland Sea of Japan. Bull. Plankton Soc. Japan, 1982, 29: 25~35.
    [201] van Leeuwen C.J.. Ecotoxicological effects. In: van Leeuwen C.J., Hermes J.L.M. (Eds.), Risk Assessment of Chemicals: An Introduction. Kluwer Academic Publishers, Dordrecht, the Netherlands, 1995. 175~237.
    [202] Vogt C., Nowak C., Diogo J.B., Oetken M., Schwenk K., Oehlmann J.. Multigeneration studies with Chironomus riparius—effects of low tributyltin concentrations on life history parameters and genetic diversity. Chemosphere, 2007, 67: 2192~2200.
    [203] Walthall, W.K., Stark, J.D.. A comparison of acute mortality and population growth rate as endpoints of toxicological effect. Ecotoxicol. Environ. Saf., 1997, 37: 45~52.
    [204] Ward G... Saltwater test. In: Rand G. (Ed.), Fundamentals of Aquatic Toxicology. Effects, Environmental Fate and Risk Assessment, 2nd ed. London: Taylor & Francis, 1995. 1125 pp.
    [205] Weis J.S., Weis P., Wang F.. Developmental effects of tributyltin on the fiddler crab, Ucapubilator and the killfish, Fundulus heteroclitus. International organotin symposium: oceans 1987, vol. 4. The Institute of Electrical and Electronics Engineers, Inc; 1987. New York.
    [206] Wheeler J.R., Leung K.M.Y., Morritt D., Sorokin N., Rogers H., Toy R., et al.. Freshwater to saltwater toxicity extrapolation using species sensitivity distributions. Environ. Toxicol. Chem., 2002, 21: 2459~2467.
    [207] Williams T.D., Johns M.B., Effects of temperature and food quantity on the reproduction of Tisbe battagliai (Copepoda: Harpacticoida). J. Experim. Mar. Biol. Ecol., 1999, 236(2): 273~290.
    [208] Xi Y.L., Hu H.Y.. Effect of thiophanate-methyl on the reproduction and survival of the refreshwater rotifer Brachionus calyciflorus pallas. Bull. Environ. Contam. Toxicol., 2003, 71: 722~728.
    [209] Yamada H., Takayanagi K., Tateishi M., et al. Organotin compounds and polychlorinated biphenyls of livers in squid collected from coastral waters and open oceans. Environ. Pollut., 1997, 96 (2): 217~226.
    [210] Yancey P.H., Clark M.E., Hand S.C., et al.. Living with water stress: evolution of osmolyte systems. Science, 1982, 217: 1214~1222.
    [211] Yang R.Q., Zhou Q.F., Liu J.Y., Jiang G.B.. Butyltin compounds in molluscs from Chinese Bohai coastal waters. Food Chemistry, 2006, 97: 637~643.
    [212] Zar, J.H.. Biostatistical Analysis, fourth ed. New Jersey: Prentice-Hall International Press, 1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700