从生化水平的改变探讨三丁基锡诱导人羊膜细胞凋亡的机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三丁基锡(Tributyltin,TBT)是有机锡类化合物中比较重要的一种,可用作木材防腐剂、聚氯乙烯塑料制品的热稳定剂和工业用冷凝水的灭菌剂,但其最重要的用途,是作为杀虫剂添加到涂料中涂于船体及海洋建筑的表面,以防止软体海洋生物的附着。在过去的半个多世纪里,TBT得到了广泛的应用。它的使用可以提高远洋轮船的航行速度,节省轮船燃料,而且还可以延长船舶和海洋建筑的使用寿命,降低了坞修费用。尽管TBT的使用带来了巨大的经济效益,但其对生态环境的危害也逐渐显现出来。TBT已造成世界大多数港口和内陆水域的污染,而且它在对海洋目标生物产生高效杀灭作用的同时,也对其它水生生物造成了极大的危害。更加不容忽视的是TBT可以在水生生物体内富集,这些水生生物被人食用后可能影响到人类健康。
     大量研究表明,TBT的毒性主要表现在以下几个方面:免疫毒性、生殖毒性、神经毒性。它可对哺乳动物的消化系统,呼吸系统,免疫系统,神经系统以及生殖系统造成不同程度的损伤。更加深入的研究表明,TBT可对众多细胞事件产生不同程度的影响,它对细胞的影响也符合高浓度导致细胞死亡、低浓度诱导细胞凋亡的规律,而且诱导细胞发生凋亡是TBT细胞毒性最典型的体现。
     细胞凋亡是一个主动的、高度有序的、基因控制的、一系列酶参与的过程,同时也伴随一系列特定的形态学和生化改变。由于细胞凋亡在保证多细胞生物的健康生存中扮演着关键角色,而且它的紊乱与众多疾病的发生密不可分,因此对细胞凋亡机制的研究一直是生命科学领域的一个热点。
     在过去的20多年里,TBT对细胞凋亡的诱导及机制成为许多研究者广泛探讨的课题,已有大量的文献报道了TBT可诱导细胞凋亡的事实,所用的研究材料也多种多样,在这些报道中,绝大多数都是关注线粒体途径。从已有的研究结果推测,TBT诱导凋亡的主要途径是依赖于线粒体存在的:TBT可导致线粒体的损伤,促使线粒体通透性发生改变,引起线粒体内细胞色素c的释放,细胞色素c释放后可与胞液中的促凋亡因子结合形成凋亡复合体,从而激活caspase最终导致凋亡。但是其中也有一些报道与上述观点不一致,而且到目前为止,TBT诱导细胞凋亡的机制还存在其他许多尚未明了而需要深入探讨的问题。
     本研究采用人羊膜细胞FL,通过检测TBT对FL细胞活力、细胞凋亡、细胞形态、细胞骨架、caspase酶活化、活性氧水平、细胞色素c、DNA损伤、凋亡相关蛋白Bcl-2、Bax及p53的影响,为进一步阐明TBT诱导细胞凋亡的机制提供依据。
     按照实验设计,在FL细胞培养体系中,加入不同浓度的TBT作用不同的时间后进行不同的实验。用MTT法测定细胞活力;用流式细胞术PI/AnnexinⅤ双染色法检测细胞凋亡;用光镜显微镜直接观察TBT染毒后细胞形态的改变;用荧光显微镜-鬼笔环肽染色法观察细胞骨架的变化;用单细胞凝胶电泳法检测细胞核DNA的损伤情况;用DCFH-DA法测定细胞内活性氧水平;用荧光标记的caspase-3抑制剂DEVD-FMK研究细胞内caspase-3的活化;收集细胞提取蛋白后用蛋白印迹法进行细胞色素c以及凋亡相关蛋白Bcl-2,Bax及p53蛋白水平测定。
     实验结果如下:
     1.TBT暴露可导致FL细胞活力的下降,除2μmol/L浓度组外,呈剂量、时间-效应关系。
     2.TBT暴露可诱导FL细胞发生凋亡,且呈剂量-效应关系。
     3.TBT暴露可诱导FL细胞caspase-3酶活化,且呈剂量-效应关系。
     4.TBT暴露可导致FL细胞形态和细胞骨架的改变,且呈剂量、时间-效应关系。
     5.TBT暴露可导致FL细胞胞液中细胞色素c蛋白水平的升高、且呈剂量-效应关系。
     6.TBT暴露可导致FL细胞活性氧水平的升高,除2μmaol/L浓度组外,呈剂量-效应关系。
     7.TBT暴露后,FL细胞中Bcl-2蛋白水平在1、2μmol/L浓度组呈现逐渐上升的趋势,与对照组相比无显著性差异,在3、4μmol/L浓度组呈现逐渐下降的趋势,与对照组相比有显著性差异;Bax蛋白水平呈现逐渐上升的趋势,在4μmol/L浓度组与对照组相比有显著性差异;Bax/Bcl-2比值在1、2μmol/L浓度组相对于对照组无明显变化,3、4μmol/L浓度组Bax/Bcl-2值随浓度增加逐渐加大,且3,4μmol/L浓度组与对照组相比有显著性差异。
     8.TBT暴露后FL细胞中p53蛋白水平无明显变化。
     9.TBT暴露可导致FL细胞核DNA的明显拖尾,尾长和尾相的变化呈现逐渐上升的趋势,有剂量-效应关系。
     结论:
     1.TBT在低浓度短时间内诱发FL细胞发生凋亡,在高浓度长时间时表现出其细胞毒性,导致FL细胞死亡。
     2.TBT可对FL细胞DNA产生明显的损伤作用,同时可引起细胞活性氧水平的升高,且这两者都与凋亡相关。推测TBT使FL细胞产生的氧化应激可能是DNA损伤的一个直接因素,而DNA损伤也可能是凋亡发生的一个诱因。
     3.TBT可导致FL细胞Bcl-2蛋白水平的下降和Bax蛋白水平的上升,而且Bax/Bcl-2比值与凋亡率的上升趋势是吻合的,表明Bcl-2和Bax参与了TBT诱导的FL细胞凋亡。但TBT暴露并不引起FL细胞中p53蛋白水平的改变,表明p53并未参与TBT诱导的FL细胞凋亡。
     4.TBT暴露可导致FL细胞胞液中细胞色素c蛋白水平的升高和caspase-3活化,表明细胞色素c和caspase-3在TBT诱导的FL细胞凋亡中起到了重要作用。推测TBT作用细胞后,产生的ROS引发了一系列后果,包括对线粒体的损伤,从而导致细胞色素c的释放,释放后的细胞色素c与胞液中其他的促凋亡因子组成凋亡复合体,致使caspase-3的活化从而诱导细胞凋亡的发生。
     5.TBT暴露使FL细胞形态和骨架发生明显改变,且与凋亡率的改变有很大相关性,表明骨架改变是细胞形态改变一个重要原因,也表明细胞骨架的改变在TBT诱导的FL细胞凋亡中有重要作用。而且,骨架的改变可能是caspase-3的作用结果。
As an important organotin chemical, TBT (tributyltin), is mainly used in wood preservation, PVC plastic heat-stabilizer and disinfection of industrial circulating waters. Moreover, as antifouling agent in paints used on the vessels and marine to prevent the adhering of the mollusks is the most important using of TBT. The application of TBT expanded rapidly during the last 50 years, which led to the prolonging of the lifetime of vassels and marine buildings and the decreasing of the expense on dock repairing. Although it brought great economic benefit, it cause serious environmental problem. TBT can not only pollute the marine environment, but also can be accumulated in some edible aquatic organisms. Human exposure mostly arises from consumption of those TBT-contaminated products.
    Extensive studies have shown that TBT is toxic to the respiratory system, digestive system, neuronal system, immune system and reproductive system of mammals. Immuntoxicity, reproductive toxicity, neurotoxity are mainly involved in the toxicity of TBT. More detailed studies indicated that TBT had an effect on many cellular events and it could affect cell by a rule that high dose induce cell death, low dose induced apoptosis, which represented the cytotoxicity of TBT.
    Apoptosis is an active, highly regular and gene-directed form of cell death by a finely-established pattern of morphological features and biochemical changes. Apoptosis plays an important role in the control of biological processes such as embryonic development, tissue homeostasis and renewal, and modulation of cell populations. Moreover, turbulence of apoptosis is interrelated with the disease. So that apoptosis is very popular in the life science research.
    In the past 2 decades, many investigators took up with the mechanism of TBT-induced apoptosis and there have been lots of reports showing that TBT can initiate apoptosis in a variety of cell types. The mechanisms responsible for TBT-induced apoptosis mainly involve the damage to the mitochondrial, the increase of the cytosolic free calcium concentration, the production of ROS, the release of cytochrome c from the mitochondrial membrane into the cytosol and the activation of caspase. However, there have been some conflicting point of views and the exact mechanism of TBT-induced apoptosis has not been clarified until now.
    Therefore , the present study was undertaken by using the human amnion cells to investigate the effects of TBT on cell viability, apoptosis, cell shape, cytoskeleton, DNA damage, ROS level, cytochrome c, caspase activation and the level of apoptosis related proteins including Bcl-2, Bax and p53, so that to deepen the mechanism of TBT-induced apoptosis.
    According to the experimental design, the cultured human amnion cells were exposed to different concentration of TBT for different duration. The cell viability was detected by MTT assay. The apoptosis alteration was evaluated by PI/Annexin V-FITC double staining using flow cytometry. The cell shape change was observed directly by light microscope. The cytoskeleton modification was observed by fluorescent microscope after FITC -phalloidin staining. The DNA damage was measured by the single cell gel electrophoresis method. The ROS level was mensurated by DCFH-DA method. The caspase-3 activation was detected by the fluorochrome-labeled inhibitor of caspase-3.
    The level of cytochrome c and Bcl-2, Bax, p53 protein were determined by the western blot.
    The results were shown as below:
    1. TBT exposure induced the decrease of FL cell viability in a dose and time-dependent manner, except the 2 μmol/ group.
    2. TBT exposure induced apoptosis of FL cells in a dose-dependent manner.
    3. TBT exposure induced the increase of caspase-3 activation of FL cells in a dose-dependent manner.
    4. TBT exposure induced the cell shape change and cytoskeleton modification of FL cells in a time and dose-dependent manner.
    5. TBT exposure induced cytochrome c protein level elevation in FL cells cytosol in a dose-dependent manner.
    6. TBT exposure induced the rise of ROS level of FL cells in a dose-dependent manner, except the 2 μmol/ group.
    7. After TBT exposure, the level of Bcl-2 protein of FL cells increased at 1, 2 μ.mol/L group, without significant difference comparing with control. While at 3, 4 μmol/L group, the Bcl-2 protein level was significant decreased. Bax protein level was increased in a dose-dependent manner. As to the Bax/Bcl-2 ratio, there was no obvious change at 1, 2 μmol/L group. But the ratio increased significantly at 3,4 μmol/L group.
    8. The p53 protein level of FL cells did not changed after exposed to TBT.
    9. Comet assay showed that TBT exposure could induce the DNA damage of FL cells. Both tail length and tail moment were increased in a dose-dependent manner.
    Conclusions:
    1. TBT induced apoptosis in FL cells at low doses in short duration. While at high doses in long duration, TBT exposure led to cell death, which represented its cytotxicity.
    2. TBT exposure led to the interrelated changes of DNA damage and the ROS level
    increase, which associated with TBT-induced apoptosis. It could be deduced that TBT-induced DNA damage probably attributed to the oxidative stress, meanwhile, TBT-induced DNA damage might be one reason of the apoptosis.
    3. TBT exposure could down-regulate the protein level of Bcl-2 and up-regulate the protein level of Bax. Moreover, the correlative changes of the ratio of Bax/Bcl-2 and the apoptotic rate revealed the key role of Bcl-2 and Bax in the TBT-induced apoptosis. However, TBT exposure had no effect on the p53 level of FL cell, implying that p53 did not participate in the TBT-induced apoptosis.
    4. The increase of protein level of cytochrome c in the cytosol and the caspase-3 activation of FL cells after TBT exposure demonstrated the important roles that both cytochrome c and caspase-3 played in TBT-induced apoptosis. The result suggested that TBT exposure could induce the cytochrome c release via the mitochondrial pathway, subsequently the apoptosome was formed by the interaction of cytochrome c and other pro-apoptotic factors, which led the caspase-3 activation and the apoptosis.
    5. TBT exposure resulted in the cell shape change and cytoskeleton modification, which associated with the alteration of the apoptotic rate. It hinted that the cell shape change was attributed to the cytoskeleton disruption and cytoskeleton played an important role in the TBT-induced apoptosis. Moreover, the cytoskeleton modification might due to the effect of caspase-3.
引文
曹信孚.(2000)国际海运组织通过三丁基锡管理国际条约.广州环境科学.17,24-24
    江桂斌,周群芳.(2000)我国部分内陆水域有机锡污染现状初探.环境科学学报.20,636-638.
    江桂斌.(2001)国内外有机锡污染研究现状.卫生研究.30,1-3.
    李中阳,周群芳,江桂斌,刘国光.(2003)我国部分城市海产品中丁基锡污染现状.中国环境科学.23,144-147.
    刘慧刚,徐立红.(2005)三丁基锡(TBT)毒性作用生物标记研究进展.中华预防医学杂志.39,288-289.
    朱欣,徐立红.(2005)三丁基锡诱导的细胞凋亡的机制.环境与健康杂志.22,155-158.
    Abel, P. D. (2000). TBT--towards a better way to regulate pollutants. Sci Total Environ 258, 1-4.
    Acehan, D., Jiang, X., Morgan, D. G., Heuser, J. E., Wang, X., and Akey, C. W. (2002). Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell 9, 423-432.
    Adeeko, A., Li, D., Forsyth, D. S., Casey, V., Cooke, G. M., Barthelemy, J., Cyr, D. G., Trasler, J. M., Robaire, B., and Hales, B. F.(2003). Effects of in utero tributyltin chloride exposure in the rat on pregnancy outcome. Toxicol Sci 74, 407-415.
    Aluoch, A. O., Odman-Ghazi, S, O., and Whalen, M. M. (2006). Pattern of MAP kinases p44/42 and JNK activation by non-lethal doses of tributyltin in human natural killer cells. Arch Toxicol.
    Atencia, R., Asumendi, A., and Garcia-Sanz, M. (2000). Role of cytoskeleton in apoptosis. Vitam Horm 58, 267-297.
    Aw, T. Y., Nicotera, P., Manzo, L., and Orrenius, S. (1990). Tributyltin stimulates apoptosis in rat thymocytes. Arch Biochem Biophys 283, 46-50.
    Berg, C. P., Rothbart, A., Lauber, K., Stein, G. M., Engels, I. H., Belka, C., Janicke, R. U., Schulze-Osthoff, K., and Wesselborg, S. (2003). Tributyltin (TBT) induces ultra-rapid caspase activation independent of apoptosome formation in human platelets. Oncogene 22, 775-780.
    Blair, I. A. (2001). Lipid hydroperoxide-mediated DNA damage. Exp Gerontol 36, 1473-1481.
    Borner, C. (2003). The Bcl-2 protein family: sensors and checkpoints for life-or-death decisions. Mol Immunol 39, 615-647.
    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248-254.
    Bretscher, A. (1991). Microfilament structure and function in the cortical cytoskeleton. Annu Rev Cell Biol 7, 337-374.
    Champ, M. A. (2000). A review of organotin regulatory strategies, pending actions, related costs and benefits. Sci Total Environ 258, 21-71.
    Chow, S. C., and Orrenius, S. (1994). Rapid cytoskeleton modification in thymocytes induced by the immunotoxicant tributyltin. Toxicol Appl Pharmacol 127, 19-26.
    Cima, F., and Ballarin, L. (2000). Tributyltin induces cytoskeletal alterations in the colonial ascidian Botryllus schlosseri phagocytes via interaction with calmodulin. Aquatic Toxicol 48, 419-429.
    Cima, F., Ballarin, L., Bressa, G., and Burighel, P. (1998). Cytoskeleton alterations by tributyltin (TBT) in tunicate phagocytes. Ecotoxicol Environ Saf 40, 160-165.
    Costa, L. G. (1985). Inhibition of gamma-[3H]aminobutyric acid uptake by organotin compounds in vitro. Toxicol Appl Pharmacol 79, 471-479.
    Creagh, E. M., Conroy, H., and Martin, S. J. (2003). Caspase-activation pathways in apoptosis and immunity. Immunol Rev 193, 10-21.
    Czarna, M., and Jarrnuszkiewicz, W. (2006). [Role of mitochondria in reactive oxygen species generation and removal; relevance to signaling and programmed cell death]. Postepy Biochem 52, 145-156.
    Devier, M. H., Augagneur, S., Budzinski, H., Mora, P., Narbonne, J. F., and Garrigues, P. (2003). Microcosm tributyltin bioaccumulation and multibiomarker assessment in the blue mussel Mytilus edulis. Environ Toxicol Chem 22, 2679-2687.
    Dudimah, F. D., Odman-Ghazi, S. O., Hatcher, E, and Whalen, M. M. (2007). Effect of tributyltin (TBT) on ATP levels in human natural killer (NK) cells: Relationship to TBT-induced decreases in NK function. J Appl Toxicol 27, 86-94.
    Elsabbagh, H. S., Moussa, S. Z., and El-tawil, O. S. (2002). Neurotoxicologic sequelae of tributyltin intoxication in rats. Pharmacol Res 45, 201-206.
    Ema, M., Itami, T., and Kawasaki, H. (1991a). Behavioral effects of acute exposure to tributyltin chloride in rats. Neurotoxicol Teratol 13, 489-493.
    Ema, M., Itami, T., and Kawasaki, H. (1991b). Changes of spontaneous motor activity of rats after acute exposure to tributyltin chloride. Drug Chem Toxicol 14,161-171.
    Ema, M., Kurosaka, R., Amano, H., and Ogawa, Y. (1995). Further evaluation of the developmental toxicity of tributyltin chloride in rats. Toxicology 96, 195-201.
    
    Fechheimer, M., and Zigmond, S. H. (1993). Focusing on unpolymerized actin. J Cell Biol 123, 1-5.
    Fridman, J. S., and Lowe, S. W. (2003). Control of apoptosis by p53. Oncogene 22,9030-9040.
    Gadd, G M. (2000). Microbial interactions with tributyltin compounds: detoxification, accumulation, and environmental fate. Sci Total Environ 258, 119-127.
    Gardlund, A. T., Archer, T., Danielsson, K., Danielsson, B., Fredriksson, A., Lindqvist, N. G., Lindstrom, H., and Luthman, J. (1991). Effects of prenatal exposure to tributyltin and trihexyltin on behaviour in rats. Neurotoxicol Teratol 13, 99-105.
    Gennari, A., Bol, M., Seinen, W., Penninks, A., and Pieters, R. (2002). Organotin-induced apoptosis occurs in small CD4(+)CD8(+) thymocytes and is accompanied by an increase in RNA synthesis. Toxicology 175,191-200.
    Gennari, A., Viviani, B., Galli, C. L., Marinovich, M., Pieters, R., and Corsini, E. (2000). Organotins induce apoptosis by disturbance of [Ca(2+)](i) and mitochondrial activity, causing oxidative stress and activation of caspases in rat thymocytes. Toxicol Appl Pharmacol 169, 185-190.
    Green, D. R., and Reed, J. C. (1998). Mitochondria and apoptosis. Science 281, 1309-1312.
    Gross, A., McDonnell, J. M., and Korsmeyer, S. J. (1999). BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13, 1899-1911.
    Harris, M. H., and Thompson, C. B. (2000). The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability. Cell Death Differ 7, 1182-1191.
    Heerdt, B. G, Houston, M. A., Anthony, G M., and Augenlicht, L. H. (1999). Initiation of growth arrest and apoptosis of MCF-7 mammary carcinoma cells by tributyrin, a triglyceride analogue of the short-chain fatty acid butyrate, is associated with mitochondrial activity. Cancer Res 59, 1584-1591.
    Horiguchi, T. (2006). Masculinization of female gastropod mollusks induced by organotin compounds, focusing on mechanism of actions of tributyltin and triphenyltin for development of imposex. Environ Sci 13, 77-87.
    Horiguchi, T, Li, Z., Uno, S., Shimizu, M., Shiraishi, H., Morita, M., Thompson, J. A., and Levings, C. D. (2004). Contamination of organotin compounds and imposex in molluscs from Vancouver, Canada. Mar Environ Res 57, 75-88.
    Jurkiewicz, M., Averill-Bates, D. A., Marion, M., and Denizeau, F. (2004). Involvement of mitochondrial and death receptor pathways in tributyltin-induced apoptosis in rat hepatocytes. Biochim Biophys Acta 1693, 15-27.
    Kerr, J. F, Wyllie, A. H., and Currie, A. R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26, 239-257.
    Konishi, A., Shimizu, S., Hirota, J., Takao, T, Fan, Y., Matsuoka, Y., Zhang, L., Yoneda, Y., Fujii, Y., Skoultchi, A. I., and Tsujimoto, Y. (2003). Involvement of histone H1.2 in apoptosis induced by DNA double-strand breaks. Cell 114, 673-688.
    Konstantinou, I. K., and Albanis, T. A. (2004). Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review. Environ Int 30, 235-248.
    Kurita, R., Hayashi, K., Torimitsu, K., and Niwa, O. (2003). Continuous measurement of glutamate and hydrogen peroxide using a microfabricated biosensor for studying the neurotoxicity of tributyltin. Anal Sci 19, 1581-1585.
    Lavastre, V., and Girard, D. (2002). Tributyltin induces human neutrophil apoptosis and selective degradation of cytoskeletal proteins by caspases. J Toxicol Environ Health A 65, 1013-1024.
    Li, H., Kolluri, S. K., Gu, J., Dawson, M. I., Cao, X., Hobbs, P. D., Lin, B., Chen, G, Lu, J., Lin, F, Xie, Z., Fontana, J. A., Reed, J. C, and Zhang, X. (2000). Cytochrome c release and apoptosis induced by mitochondrial targeting of nuclear orphan receptor TR3. Science 289, 1159-1164.
    Li, H. Zhu, H., Xu, C. J., and Yuan, J. (1998). Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94,491-501.
    Li, J. J., Tang, Q., Li, Y., Hu, B. R., Ming, Z. Y, Fu, Q., Qian, J. Q., and Xiang, J. Z. (2006). Role of oxidative stress in the apoptosis of hepatocellular carcinoma induced by combination of arsenic trioxide and ascorbic acid. Acta Pharmacol Sin 27, 1078-1084.
    Liu, H. G, Wang, Y., Lian, L., and Xu, L. H. (2006). Tributyltin induces DNA damage as well as oxidative damage in rats. Environ Toxicol 21, 166-171.
    Liu, X., Kim, C. N., Yang, J., Jemmerson, R., and Wang, X. (1996). Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147-157.
    Loganathan, B. G, Kannan, K., Senthilkumar, K., Sickel, J., and Owen, D. A. (1999). Occurrence of butyltin residues in sediment and mussel tissues from the lower-most Tennessee River and Kentucky Lake, U.S.A. Chemosphere 39, 2401-2408.
    Marinovich, M., Viviani, B., and Galli, C. L. (1990). Reversibility of tributyltin-chloride-induced protein synthesis inhibition after ATP recovery in HEL-30 cells. Toxicol Lett 52, 311-317.
    McVey, M. J., and Cooke, G M. (2003). Inhibition of rat testis microsomal 3beta-hydroxysteroid dehydrogenase activity by tributyltin. J Steroid Biochem Mol Biol 86, 99-105.
    Micic, M., Bihari, N., Labura, Z., Muller, W. E., and Batel, R. (2001). Induction of apoptosis in the blue mussel Mytilus galloprovincialis by tri-n-butyltin chloride. Aquat Toxicol 55, 61-73.
    Milczarek, G J., Martinez, J., and Bowden, G T. (1997). p53 Phosphorylation: biochemical and functional consequences. Life Sci 60, 1-11.
    Mizuhashi, S., Ikegaya, Y, and Matsuki, N. (2000a). Cytotoxicity of tributyltin in rat hippocampal slice cultures. Neurosci Res 38, 35-42.
    Mizuhashi, S., Ikegaya, Y, Nishiyama, N., and Matsuki, N. (2000b). Cortical astrocytes exposed to tributyltin undergo morphological changes in vitro. Jpn J Pharmacol 84, 339-346.
    Moller, P. (2006). The alkaline comet assay: towards validation in biomonitoring of DNA damaging exposures. Basic Clin Pharmacol Toxicol 98, 336-345.
    Nopp, A., Lundahl, J., and Stridh, H. (2002). Caspase activation in the absence of mitochondrial changes in granulocyte apoptosis. Clin Exp Immunol 128, 267-274.
    Oltvai, Z. N., Milliman, C. L., and Korsmeyer, S. J. (1993). Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74, 609-619.
    Omura, M., Ogata, R., Kubo, K., Shimasaki, Y., Aou, S., Oshima, Y., Tanaka, A., Hirata, M., Makita, Y, and Inoue, N. (2001). Two-generation reproductive toxicity study of tributyltin chloride in male rats. Toxicol Sci 64, 224-232.
    Pan, J., She, M., Xu, Z. X., Sun, L., and Yeung, S. C. (2005). Farnesyltransferase inhibitors induce DNA damage via reactive oxygen species in human cancer cells. Cancer Res 65, 3671-3681.
    Pinkney, A. E., Wright, D. A., Jepson, M. A., and Towle, D. W. (1989). Effects of tributyltin compounds on ionic regulation and gill ATPase activity in estuarine fish. Comp Biochem Physiol C 92, 125-129.
    Raffray, M., and Cohen, G M. (1993). Thymocyte apoptosis as a mechanism for tributyltin-induced thymic atrophy in vivo. Arch Toxicol 67, 231-236.
    Rao, R. V., Ellerby, H. M., and Bredesen, D. E. (2004). Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ 11, 372-380.
    Reader, S., Moutardier, V., and Denizeau, F. (1999). Tributyltin triggers apoptosis in trout hepatocytes: the role of Ca2+, protein kinase C and proteases. Biochim Biophys Acta 1448, 473-485.
    
    Reed, J. C. (1998). Bcl-2 family proteins. Oncogene 17, 3225-3236.
    
    Richter, C. (1998). Oxidative stress, mitochondria, and apoptosis. Restor Neurol Neurosci 12, 59-62.
    Rodolfo, C, and Piacentini, M. (2002). Does cytoskeleton 'Akt' in apoptosis? Cell Death Differ 9, 477-478.
    Sanges, D., and Marigo, V. (2006). Cross-talk between two apoptotic pathways activated by endoplasmic reticulum stress: differential contribution of caspase-12 and AIR Apoptosis 11, 1629-1641.
    Sastre, J., Pallardo, F. V., and Vina, J. (2000). Mitochondrial oxidative stress plays a key role in aging and apoptosis. IUBMB Life 49, 427-435.
    Scaffidi, C, Fulda, S., Srinivasan, A., Friesen, C, Li, F., Tomaselli, K. J., Debatin, K. M., Krammer, P. H., and Peter, M. E. (1998). Two CD95 (APO-1/Fas) signaling pathways. Embo J 17, 1675-1687.
    
    Schindl, A., Klosner, G, Honigsmann, H., Jori, G, Calzavara-Pinton, P. C, and Trautinger, F. (1998). Flow cytometric quantification of UV-induced cell death in a human squamous cell carcinoma-derived cell line: dose and kinetic studies. J Photochem Photobiol B 44, 97-106.
    Scrimshaw, M. D., Wahlen, R., Catterick, T., and Lester, J. N. (2005). Butyltin compounds in a sediment core from the old Tilbury basin, London, UK. Mar Pollut Bull 50,1500-1507.
    Smialowicz, R. J., Riddle, M. ML, Rogers, R. R., Luebke, R. W., and Copeland, C. B. (1989). Immunotoxicity of tributyltin oxide in rats exposed as adults or pre-weanlings. Toxicology 57,97-111.
    Snoeij, N. J., Penninks, A. H., and Seinen, W. (1988). Dibutyltin and tributyltin compounds induce thymus atrophy in rats due to a selective action on thymic lymphoblasts. Int J Immunopharmacol 10, 891-899.
    Snoeij, N. J., Punt, P. M., Penninks, A. H., and Seinen, W. (1986). Effects of tri-n-butyltin chloride on energy metabolism, macromolecular synthesis, precursor uptake and cyclic AMP production in isolated rat thymocytes. Biochim Biophys Acta 852, 234-243.
    Stennicke, H. R., and Salvesen, G S. (1998). Properties of the caspases. Biochim Biophys Acta 1387, 17-31.
    Stridh, H., Gigliotti, D., Orrenius, S., and Cotgreave, I. (1999). The role of calcium in pre- and postmitochondrial events in tributyltin-induced T-cell apoptosis. Biochem Biophys Res Commun 266, 460-465.
    Takahashi, S., Tanabe, S., Takeuchi, I.I., and Miyazaki, N. (1999). Distribution and specific bioaccumulation of butyltin compounds in a marine ecosystem. Arch Environ Contam Toxicol 37, 50-61.
    
    Thornberry, N. A., and Lazebnik, Y. (1998). Caspases: enemies within. Science 281, 1312-1316.
    Tice, R. R., and Strauss, G H. (1995). The single cell gel electrophoresis/comet assay: a potential tool for detecting radiation-induced DNA damage in humans. Stem Cells 13 Suppl 1, 207-214.
    Tryphonas, H., Cooke, G, Caldwell, D., Bondy, G, Parenteau, M., Hayward, S., and Pulido, O. (2004). Oral (gavage), in utero and post-natal exposure of Sprague-Dawley rats to low doses of tributyltin chloride. Part II: effects on the immune system. Food Chem Toxicol 42, 221-235.
    Tsukazaki, M., Satsu, H., Mori, A., Sugita-Konishi, Y., and Shimizu, M. (2004). Effects of tributyltin on barrier functions in human intestinal Caco-2 cells. Biochem Biophys Res Commun 315, 991-997.
    
    Vermes, I., Haanen, C, Steffens-Nakken, H., and Reutelingsperger, C. (1995). A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 184, 39-51.
    Yamanoshita, O., Kurasaki, M., Saito, T., Takahasi, K., Sasaki, H., Hosokawa, T., Okabe, M., Mochida, J., and Iwakuma, T. (2000). Diverse effect of tributyltin on apoptosis in PC12 cells. Biochem Biophys Res Commun 272, 557-562.
    Yin, X. M., Oltvai, Z. N., and Korsmeyer, S. J. (1994). BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature 369, 321-323.
    Yu, W. J., Nam, S. Y., Kim, Y. C, Lee, B. J., and Yun, Y. W. (2003). Effects of tributyltin chloride on the reproductive system in pubertal male rats. J Vet Sci 4, 29-34.
    Abel, P. D. (2000). TBT-towards a better way to regulate pollutants. Sci Total Environ 258, 1-4.
    Acehan, D., Jiang, X., Morgan, D. G, Heuser, J. E., Wang, X., and Akey, C. W. (2002). Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell 9,423-432.
    Adeeko, A., Li, D., Forsyth, D. S., Casey, V., Cooke, G M., Barthelemy, J., Cyr, D. G, Trasler, J. M., Robaire, B., and Hales, B. F. (2003). Effects of in utero tributyltin chloride exposure in the rat on pregnancy outcome. Toxicol Sci 74, 407-415.
    Anderson, R. S., Brubacher, L. L., Calvo, L. M., Burreson, E. M., and Unger, M. A. (1997). Effect of in vitro exposure to tributyltin on generation of oxygen metabolites by oyster hemocytes. Environ Res 74, 84-90.
    Aw, T. Y., Nicotera, P., Manzo, L., and Orrenius, S. (1990). Tributyltin stimulates apoptosis in rat thymocytes. Arch Biochem Biophys 283, 46-50.
    Berg, C. P., Rothbart, A., Lauber, K., Stein, G M., Engels, I. H., Belka, C, Janicke, R. U., Schulze-Osthoff, K., and Wesselborg, S. (2003). Tributyltin (TBT) induces ultra-rapid caspase activation independent of apoptosome formation in human platelets. Oncogene 22, 775-780.
    Champ, M. A. (2000). A review of organotin regulatory strategies, pending actions, related costs and benefits. Sci Total Environ 258, 21-71.
    Chow, S. C, Kass, G. E., McCabe, M. J., Jr., and Orrenius, S. (1992). Tributyltin increases Cytosolic free Ca2+ concentration in thymocytes by mobilizing intracellular Ca2+, activating a Ca2+ entry pathway, and inhibiting Ca2+ efflux. Arch Biochem Biophys 298, 143-149.
    Chow, S, C, and Orrenius, S. (1994). Rapid cytoskeleton modification in thymocytes induced by the immunotoxicant tributyltin. Toxicol Appl Pharmacol 127, 19-26.
    Creagh, E. M., Conroy, H., and Martin, S. J. (2003). Caspase-activation pathways in apoptosis and immunity. Immunol Rev 193,10-21.
    Devier, M. H., Augagneur, S., Budzinski, H., Mora, P., Narbonne, J. F, and Garrigues, P. (2003). Microcosm tributyltin bioaccumulation and multibiomarker assessment in the blue mussel Mytilus edulis. Environ Toxicol Chem 22, 2679-2687.
    Ema, M., Kurosaka, R., Amano, H., and Ogawa, Y. (1995). Further evaluation of the developmental toxicity of tributyltin chloride in rats. Toxicology 96,195-201.
    Gadd, G M. (2000). Microbial interactions with tributyltin compounds: detoxification, accumulation, and environmental fate. Sci Total Environ 258, 119-127.
    Gennari, A., Viviani, B., Galli, C. L., Marinovich, M., Pieters, R., and Corsini, E. (2000). Organotins induce apoptosis by disturbance of [Ca(2+)](i) and mitochondrial activity, causing oxidative stress and activation of caspases in rat thymocytes. Toxicol Appl Pharmacol 169, 185-190.
    Gogvadze, V., Robertson, J. D., Zhivotovsky, B., and Orrenius, S. (2001). Cytochrome c release occurs via Ca2+-dependent and Ca2+-independent mechanisms that are regulated by Bax. J Biol Chem 276, 19066-19071.
    Gogvadze, V, Stridh, H., Orrenius, S., and Cotgreave, I. (2002). Tributyltin causes cytochrome C release from isolated mitochondria by two discrete mechanisms. Biochem Biophys Res Commun 292, 904-908.
    Gray, B. H., Porvaznik, M., Flemming, C, and Lee, L. H. (1987). tri-n-Butyltin: a membrane toxicant. Toxicology 47, 35-54.
    Hajnoczky, G, Csordas, G, Das, S., Garcia-Perez, C, Saotome, M., Sinha Roy, S., and Yi, M. (2006). Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium 40,553-560.
    Horiguchi, T. (2006). Masculinization of female gastropod mollusks induced by organotin compounds, focusing on mechanism of actions of tributyltin and triphenyltin for development of imposex. Environ Sci 13, 77-87.
    Horiguchi, T., Li, Z., Uno, S., Shimizu, M., Shiraishi, H., Morita, M., Thompson, J. A., and Levings, C. D. (2004). Contamination of organotin compounds and imposex in molluscs from Vancouver, Canada. Mar Environ Res 57, 75-88.
    Jiang, X., and Wang, X. (2000). Cytochrome c promotes caspase-9 activation by inducing nucleotide binding to Apaf-1. J Biol Chem 275, 31199-31203.
    Jurkiewicz, M, Averill-Bates, D. A., Marion, M., and Denizeau, F. (2004). Involvement of mitochondrial and death receptor pathways in tributyltin-induced apoptosis in rat hepatocytes. Biochim BiophysActa 1693, 15-27.
    Kawanishi, T., Asoh, H., Kato, T., Uneyama, C, Toyoda, K., Teshima, R., Ikebuchi, H., Ohata, H., Momose, K., Hayakawa, T., and Takahashi, M. (1999). Suppression of calcium oscillation by tri-n-butyltin chloride in cultured rat hepatocytes. Toxicol Appl Pharmacol 155, 54-61.
    Kawanishi, T., Kiuchi, T., Asoh, H., Shibayama, R., Kawai, H., Ohata, H., Momose, K., and Hayakawa, T. (2001). Effect of tributyltin chloride on the release of calcium ion from intracellular calcium stores in rat hepatocytes. Biochem Pharmacol 62, 863-872.
    Konstantinou, I. K., and Albanis, T. A. (2004). Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review. Environ Int 30, 235-248.
    Krebs, J. (1998). The role of calcium in apoptosis. Biometals 11, 375-382.
    Liu, X., Kim, C. N., Yang, J., Jemmerson, R., and Wang, X. (1996). Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86,147-157.
    Micic, M., Bihari, N., Jaksic, Z., Muller, W. E., and Batel, R. (2002). DNA damage and apoptosis in the mussel Mytilus galloprovincialis. Mar Environ Res 53,243-262.
    Micic, M., Bihari, N., Labura, Z., Muller, W. E., and Batel, R. (2001). Induction of apoptosis in the blue mussel Mytilus galloprovincialis by tri-n-butyltin chloride. Aquat Toxicol 55, 61-73.
    Nishikimi, A., Kira, Y., Kasahara, E., Sato, E. R, Kanno, T., Utsumi, K., and Inoue, M. (2001). Tributyltin interacts with mitochondria and induces cytochrome c release. Biochem J 356, 621-626.
    Nopp, A., Lundahl, J., and Stridh, H. (2002). Caspase activation in the absence of mitochondrial changes in granulocyte apoptosis. Clin Exp Immunol 128,267-274.
    Omura, M., Ogata, R., Kubo, K., Shimasaki, Y., Aou, S., Oshima, Y., Tanaka, A., Hirata, M., Makita, Y, and Inoue, N. (2001). Two-generation reproductive toxicity study of tributyltin chloride in male rats.. Toxicol Sci 64, 224-232.
    Raffray, M., and Cohen, G. M. (1993). Thymocyte apoptosis as a mechanism for tributyltin-induced thymic atrophy in vivo. Arch Toxicol 67, 231-236.
    Reader, S., Moutardier, V., and Denizeau, F. (1999). Tributyltin triggers apoptosis in trout hepatocytes: the role of Ca2+, protein kinase C and proteases. Biochim Biophys Acta 1448, 473-485.
    Richter, C. (1998). Oxidative stress, mitochondria, and apoptosis. Restor Neurol Neurosci 12, 59-62.
    Saitoh, M., Yanase, T., Morinaga, H., Tanabe, M., Mu, Y. M., Nishi, Y., Nomura, M., Okabe, T., Goto, K., Takayanagi, R., and Nawata, H. (2001). Tributyltin or triphenyltin inhibits aromatase activity in the human granulosa-like tumor cell line KGN. Biochem Biophys Res Commun 289, 198-204.
    Sastre, J., Pallardo, F. V., and Vina, J. (2000). Mitochondrial oxidative stress plays a key role in aging and apoptosis. IUBMB Life 49, 427-435.
    Scrimshaw, M. D., Wahlen, R., Catterick, T., and Lester, J. N. (2005). Butyltin compounds in a sediment core from the old Tilbury basin, London, UK. Mar Pollut Bull 50, 1500-1507.
    Snoeij, N. J., Punt, P. M., Penninks, A. H., and Seinen, W. (1986). Effects of tri-n-butyltin chloride on energy metabolism, macromolecular synthesis, precursor uptake and cyclic AMP production in isolated rat thymocytes. Biochim Biophys Acta 852, 234-243.
    Stennicke, H. R., and Salvesen, G. S. (1998). Properties of the caspases. Biochim Biophys Acta 1387, 17-31.
    Stridh, H., Gigliotti, D., .Orrenius, S., and Cotgreave, I. (1999a). The role of calcium in pre- and postmitochondrial events in tributyltin-induced T-cell apoptosis. Biochem Biophys Res Commun 266, 460-465.
    Stridh, H., Kimland, M., Jones, D. P., Orrenius, S., and Hampton, M. B. (1998). Cytochrome c release and caspase activation in hydrogen peroxide- and tributyltin-induced apoptosis. FEBS Lett 429, 351-355.
    Stridh, H., Orrenius, S., and Hampton, M. B. (1999b). Caspase involvement in the induction of apoptosis by the environmental toxicants tributyltin and triphenyltin. Toxicol Appl Pharmacol 156, 141-146.
    Tiano, L., Fedeli, D., Santoni, G., Davies, I., and Falcioni, G. (2003). Effect of tributyltin on trout blood cells: changes in mitochondrial morphology and functionality. Biochim Biophys Acta 1640, 105-112.
    Viviani, B., Rossi, A. D., Chow, S. C., and Nicotera, P. (1995). Organotin compounds induce calcium overload and apoptosis in PC12 cells. Neurotoxicology 16, 19-25.
    Yallapragada, P. R., Vig, P. J., and Desaiah, D. (1990). Differential effects of triorganotins on calmodulin activity. J Toxicol Environ Health 29, 317-327.
    Yu, W. J., Nam, S. Y., Kim, Y. C., Lee, B. J., and Yun, Y. W. (2003). Effects of tributylfin chloride on the reproductive system in pubertal male rats. J Vet Sci 4, 29-34.
    Abel, P. D. (2000). TBT-towards a better way to regulate pollutants. Sci Total Environ 258, 1 -4.
    Basu, A., and Haldar, S. (1998). Microtubule-damaging drugs triggered bcl2 phosphorylation -requirement of phosphorylation on both serine-70 and serine-87 residues of bcl2 protein. Int J Oncol 13, 659-664.
    Breitenbach, M., Laun, P., and Gimona, M. (2005). The actin cytoskeleton, RAS-cAMP signaling and mitochondrial ROS in yeast apoptosis. Trends Cell Biol 15, 637-639.
    Bretscher, A. (1991). Microfilament structure and function in the cortical cytoskeleton. Annu Rev Cell Biol 7, 337-374.
    
    Cheung, W. Y. (1982). Calmodulin: an overview. Fed Proc 41, 2253-2257.
    
    Cheung, W. Y. (1988). Calmodulin and its activation by cadmium ion. Ann N Y Acad Sci 522, 74-87.
    Chow, S. C, Kass, G. E., McCabe, M. J., Jr., and Orrenius, S. (1992). Tributyltin increases Cytosolic free Ca2+ concentration in thymocytes by mobilizing intracellular Ca2+, activating a Ca2+ entry pathway, and inhibiting Ca2+ efflux. Arch Biochem Biophys 298, 143-149.
    Chow, S. C, and Orrenius, S. (1994). Rapid cytoskeleton modification in thymocytes induced by the immunotoxicant tributyltin. Toxicol Appl Pharmacol 127, 19-26.
    Cima, F., and Ballarin, L. (2000). Tributyltin induces cytoskeletal alterations in the colonial ascidian Botryllus schlosseri phagocytes via interaction with calmodulin. Aquatic Toxicol 48, 419-429.
    Cima, F., Ballarin, L., Bressa, G., and Burighel, P. (1998). Cytoskeleton alterations by tributyltin (TBT) in tunicate phagocytes. Ecotoxicol Environ Saf 40, 160-165.
    
    Fechheimer, M., and Zigmond, S. H. (1993). Focusing on unpolymerized actin. J Cell Biol 123, 1-5.
    Gennari, A., Viviani, B., Galli, C. L., Marinovich, M., Pieters, R., and Corsini, E. (2000). Organotins induce apoptosis by disturbance of [Ca(2+)](i) and mitochondrial activity, causing oxidative stress and activation of caspases in rat thymocytes. Toxicol Appl Pharmacol 169, 185-190.
    Georgatos, S. D., Gounari, F., and Remington, S. (1994). The beaded intermediate filaments and their potential functions in eye lens. Bioessays 16, 413-418.
    Gourlay, C. W., and Ayscough, K. R. (2005a). The actin cytoskeleton in ageing and apoptosis. FEMS Yeast Res 5, 1193-1198.
    Gourlay, C. W., and Ayscough, K. R. (2005b). Identification of an upstream regulatory pathway controlling actin-mediated apoptosis in yeast. J Cell Sci 118, 2119-2132.
    Gray, B. H., Porvaznik, M., Hemming, C., and Lee, L. H. (1987). tri-n-Butyltin: a membrane toxicant. Toxicology 47, 35-54.
    Haldar, S., Basu, A., and Croce, C. M. (1997). Bcl2 is the guardian of microtubule integrity. Cancer Res 57, 229-233.
    Hockenbery, D. (1995). Defining apoptosis. Am J Pathol 146, 16-19.
    Jurkiewicz, M., Averill-Bates, D. A., Marion, M., and Denizeau, F. (2004). Involvement of mitochondrial and death receptor pathways in tributyltin-induced apoptosis in rat hepatocytes. Biochim Biophys Acta 1693, 15-27.
    Kawanishi, T., Kiuchi, T., Asoh, H., Shibayama, R., Kawai, H., Ohata, H., Momose, K., and Hayakawa, T. (2001). Effect of tributyltin chloride on the release of calcium ion from intracellular calcium stores in rat hepatocytes. Biochem Pharmaco162, 863-872.
    Knudsen, K. A., Soler, A. P., Johnson, K. R., and Wheelock, M. J. (1995). Interaction of alpha-actinin with the cadherin/catenin cell-cell adhesion complex via alpha-catenin. J Cell Biol 130, 67-77.
    Kondo, T., Takeuchi, K., Doi, Y., Yonemura, S., Nagata, S., and Tsukita, S. (1997). ERM (ezrin/radixin/moesin)-based molecular mechanism of microvillar breakdown at an early stage of apoptosis. J Cell Biol 139, 749-758.
    Kothakota, S., Azuma, T., Reinhard, C., Klippel, A., Tang, J., Chu, K., McGarry, T. J., Kirschner, M. W., Koths, K., Kwiatkowski, D. J., and Williams, L. T. (1997). Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 278, 294-298.
    Lavastre, V., and Girard, D. (2002). Tributyltin induces human neutrophil apoptosis and selective degradation of cytoskeletal proteins by caspases. J Toxicol Environ Health A 65, 1013-1024.
    Lazebnik, Y. A., Takahashi, A., Moir, R. D., Goldman, R. D., Poirier, G. G., Kaufmann, S. H., and Earnshaw, W. C. (1995). Studies of the lamin Proteinase reveal multiple parallel biochemical pathways during apoptotic execution. Proc Natl Acad Sci U S A 92, 9042-9046.
    Loganathan, B. G., Kannan, K., Senthilkumar, K., Sickel, J., and Owen, D. A. (1999). Occurrence of butyltin residues in sediment and mussel tissues from the lower-most Tennessee River and Kentucky Lake, U.S.A. Chemosphere 39, 2401-2408.
    Machleidt, T., Geller, P., Schwandner, R., Scherer, G., and Kronke, M. (1998). Caspase 7-induced cleavage of kinectin in apoptotic cells. FEBS Lett 436, 51-54.
    Mandelkow, E., and Mandelkow, E. M. (1995). Microtubules and microtubule-associated proteins. Curr Opin Cell Biol 7, 72-81.
    
    Marinovich, M., Viviani, B., and Galli, C. L. (1990). Reversibility of tributyltin-chloride-induced protein synthesis inhibition after ATP recovery in HEL-30 cells. Toxicol Lett 52, 311-317.
    Micic, M., Bihari, N., Jaksic, Z., Muller, W. E., and Batel, R. (2002). DNA damage and apoptosis in the mussel Mytilus galloprovincialis. Mar Environ Res 53, 243-262.
    Omary, M. B., Ku, N. O., Tao, G. Z., Toivola, D. M., and Liao, J. (2006). "Heads and tails" of intermediate filament phosphorylation: multiple sites and functional insights. Trends Biochem Sci 31, 383-394.
    O'Neil, K. T., and DeGrado, W. F. (1990). How calmodulin binds its targets: sequence independent recognition of amphiphilic alpha-helices. Trends Biochem Sci 15, 59-64.
    Puthalakath, H., Huang, D. C, O'Reilly, L. A., King, S. M., and Strasser, A. (1999). The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol Cell 3,287-296.
    Snoeij, N. J., Punt, P. M., Penninks, A. H., and Seinen, W. (1986). Effects of tri-n-butyltin chloride on energy metabolism, macromolecular synthesis, precursor uptake and cyclic AMP production in isolated rat thymocytes. Biochim Biophys Acta 852, 234-243.
    Strasser, A., Puthalakath, H., Bouillet, P., Huang, D. C, O'Connor, L., O'Reilly, L. A., Cullen, L., Cory, S., and Adams, J. M. (2000). The role of bim, a proapoptotic BH3-only member of the Bcl-2 family in cell-death control. Ann N YAcad Sci 917, 541-548.
    Terasaki, M., Chen, L. B., and Fujiwara, K. (1986). Microtubules and the endoplasmic reticulum are highly interdependent structures. J Cell Biol 103, 1557-1568.
    Tiano, L., Fedeli, D., Santoni, G., Davies, I., and Falcioni, G. (2003). Effect of tributyltin on trout blood cells: changes in mitochondrial morphology and functionality. Biochim Biophys Acta 1640, 105-112.
    Tsukazaki, M., Satsu, H., Mori, A., Sugita-Konishi, Y., and Shimizu, M. (2004). Effects of tributyltin on barrier functions in human intestinal Caco-2 cells. Biochem Biophys Res Commun 315, 991-997.
    Tsukita, S., and Yonemura, S. (1997). ERM (ezrin/radixin/moesin) family: from cytoskeleton to signal transduction. Curr Opin Cell Biol 9, 70-75.
    van Goethem, I. D., Adams, P., Chad, J. E., Mather, A. M., Griffiths, B., Lee, A. G., and East, J. M. (1998). Localization of endoplasmic reticulum in living cells using green fluorescent protein chimeras. Biochem Soc Trans 26, S298.
    Vanags, D. M., Porn-Ares, M. I., Coppola, S., Burgess, D. H., and Orrenius, S. (1996). Protease involvement in fodrin cleavage and phosphatidylserine exposure in apoptosis. J Biol Chem 271, 31075-31085.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700