冬小麦麸皮抗冻蛋白结构及其抗冻机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗冻蛋白(AFP,antifreeze protein)是一种可以非依数性降低冰点、抑制体系发生重结晶特性的蛋白质,广泛地分布在鱼类、动物、昆虫、植物以及微生物中,是生命体抵御外界寒冷环境应激性反应所产生的一种蛋白。据报道,AFP具有提高产品质量,提高农作物抗寒能力,提高冷冻体细胞存活率等作用,广泛地应用于食品、生物、临床医学和化工等领域。本文以谷物原料进行筛选,发现冬小麦麸皮中存在AFP,并进一步对冬小麦麸皮抗冻蛋白(TaAFP)进行分离纯化,研究其理化特性、一级结构和二级结构,并以一级结构为基础,探讨TaAFP与冰晶的结合方式,揭示其抗冻机理。
     论文首先研究了AFP的检测方法。文中比较了目前常用AFP的检测方法,发现差热分析仪法(DSC)具有样品用量小、可以精确控制温度、可以获得准确结果等优点,因此确定DSC法为本文AFP抗冻活性(THA)的检测方法。还进一步研究了影响测定结果的各个因素,考察使用DSC法测定THA的稳定性、重复性和精密度,结果显示DSC法测定样品THA具有较高的稳定性、重复性和精密度,其RSD在0.4 %以下,相对标准偏差为3.84 %。具体的测定程序如下:样品溶解于10 mmol/L磷酸盐缓冲液(pH 8.0)达到最终蛋白浓度1.0 mg/mL,将10μL样品在坩埚中平衡15min后,按照1.0oC/min的速度进行升降温,在保留温度Th时,保持体系的冰晶质量含量占体系的10 % - 90 %(质量分数)。
     从多种谷物中筛选AFP,并对其进行分离纯化。筛选结果发现在冬小麦麸皮中存在AFP,进一步分别采用传统的分离法、特异性亲和法和条带切割法对冬小麦麸皮抗冻蛋白(TaAFP)纯化,均获得电泳纯的样品。比较三种纯化方法的优缺点:传统的分离纯化方法在AFP或其它活性物质的筛选中具有普遍适用性;特异性亲和分离纯化法将来可能会适用于AFP大规模的粗分离;电泳条带切割法适用于高精度和高纯度样品的纯化和分析。
     研究了TaAFP的物理与化学性质,结果发现TaAFP中无糖基。氨基酸分析结果推测TaAFP由155个氨基酸残基组成,相对分子质量13085.2。其中,Glycine残基占52.26%(摩尔百分含量),属于富甘氨酸蛋白(GRP)。使用ExPASy数据库检索与TaAFP相关的GRP发现,TaAFP是一种与冷诱导或其它诱导相关的蛋白。TaAFP的变性温度为61.47oC,变性后,THA丧失,属于热不稳定型AFP。TaAFP在微碱性的环境中(pH 7.0-9.0)显示较高的THA,该环境恰好与植物的生理状态环境一致。TaAFP属于Ca2+-dependend AFP,在Ca2+存在的情况下,THA得到增强。TaAFP还具有AFP所应有的亲水性和较高的分配系数(质量分数大于90%)。
     MALDI-TOF-MS分析结果显示TaAFP的相对分子质量为13637.711,与上述SDS-PAGE和氨基酸分析推测获得的结果基本吻合。进一步采用了结合N-末端测定和肽指纹图谱的分析方法测定TaAFP的一级结构,结果表明其一级结构为:MARKVIALAFLLLLTISLSKSNAAR VKYNGGESGGGGGGGGGGGGGGNGSGSGSGYGYNYGKGGGQSGGGQGGGGGGGGGGGSNGSGSGSGYGYGYGQGNGGAQGQGSGGGGGGGGGGGGGGSGQGSGSGYGYGYGKGGGGGGGGGGDGGGGGGGGSAYVGRHE,测定覆盖度达到100 %。TaAFP的二级结构分别
     采用圆二色性光谱、拉曼光谱、红外光谱以及生物信息学的预测方法测定。TaAFP中α-helix的含量为10%-15%;β-sheet的含量为10%-20%,random coil的含量为40%-60%。采用分子力学和量子力学的方法研究了TaAFP和(1121)冰晶面的结合情况。计算结果显示蛋白面M1(Met1、Lys4、Gly47、Asn48、Ser50、Gly51、Gly138、Gly139、Gly141、Gly142、Gly143、Gly161、Arg162、His163和Glu164)与冰晶面具有最强的结合能力。其中,静电作用和范德华作用大大超过了氢键的作用。另一方面,运用半经验量子力学的方法AM1和PM3进一步获得了TaAFP与冰晶面的微观相互作用。首先,当TaAFP与冰晶面作用时,蛋白面M1和冰晶之间发生弱轨道相互作用,AM1和PM3的计算结果均显示面M1与冰晶面之间的弱轨道相互作用是最强的。第二,半经验量子力学计算证实TaAFP与冰晶面之间存在电荷迁移,对整个体系而言,电子是从TaAFP迁移到冰晶上。因此,TaAFP与冰晶相互作用增强。第三,键级能的计算结果显示各个蛋白面与冰晶面的键级能基本上相当,其中,M1属于相互作用较强的面。因此,确定蛋白面M1是TaAFP与冰晶的最佳结合面。
     TaAFP的抗冻机理就在于M1通过库仑作用、范德华作用、轨道重合和电荷迁移等相互作用与冰晶面紧密的结合。当M1与冰晶面结合后TaAFP锚定于冰晶表面,冰晶如果继续生长,则冰晶的表面积需要增加,而冰晶表面积的增加则需要外界进一步提供能量。提供能量后,系统的熵降低,体系温度下降。在宏观上则表现为冰晶需要更低的温度才可以进一步生长,体系的冰点被降低,即产生热滞现象。
Antifreeze protein (AFP) can decrease the freezing point nonequilibriumly, referred to as thermal-hysteresis activity (THA), and retard recrystallization strongly. Even in frozen condition, AFPs inhibit the Ostwald ripening, particularly when ice approaches the melting point. Up to now, AFPs have been applied to food processing, cryopreservation of organs or cells, cryosurgery and aquaculture. In food processing, AFPs have been used to enhance the quality of the ice cream, frozen dough or meat, proving that the application of AFPs in food processing is feasible in the future. AFPs are widely distributed among organisms including prokaryotes, fungi, insects, plants, and fish. Therefore, it is an important subject for the food engineer to study. Winter-wheat (Triticum aestivum L.) bran antifreeze protein (TaAFP) was screened out and purified in this paper. The physicochemical and structure of TaAFP were also studied. Moreover, the ice-binding domain and the antifreeze mechanism of TaAFP were discussed.
     The measurement of THA was established at first. The differential scanning calorimetry (DSC) method was chosen for its advantages of the microsample, accurately controlling temperature, and precisely detecting ice crystal content. The effect of the temperature raising speed, ice crystal content, and protein content of the sample on the THA was studied. The stability, repetition, and accuracy of the DSC measurement were also evaluated. The results showed the stability, repetition, and accuracy of the DSC measurement were high enough for the following studies, with the RSD lower than 0.4%, relatively standard deviation of 3.84%. The process of the DSC measurement was also fixed: the sample was dissolved in 10 mmol/L PBS (pH 8.0), with the final protein content of 1.0 mg/mL. An aliquot of 10μL of the sample was sealed in the aluminum pan followed by the balancing on the control desk for 15 min. The temperature of the control desk was raised or decreased to Th at speed of 1.0 oC/min, with ice crystal content ranged from 10 % to 90 % (w/w).
     TaAFP was screened out from kinds of the corns, such as: spring-wheat bran, winter-wheat bran, rice, rice germ, barely, buckwheat, oat, etc.. TaAFP was purified about 300-fold to electrophoretic homogeneity with an overall yield at about 1.50 % from winter-wheat-bran protein, by the traditional purification process, specific binding purification process, and gel-sliced purification process, respectively. The traditional purification process can be used for kinds of samples, but needs long time and boring steps. The specific binding purification process can be used for the enlarged batch purification of TaAFP or other kinds of AFPs. The gel-sliced purification process can be used for structure determination, but the yield of the process is tiny.
     The physicochemical properties of TaAFP were also investigated. The molecular mass of TaAFP was 13860 Da by SDS-PAGE analysis. The Schiff-reagent dye showed TaAFP was not an antifreeze glycoprotein (AFGP). Amino acid analysis showed TaAFP consisted of 155 amino acid residues with molecular mass of 13085.2 Da, similar to the results from SDS-PAGE analysis. TaAFP was a glycine-rich protein (GRP) with glycine residues of 52.26 mol %, related to the cold-stressed protein. DSC analysis showed the denature temperature of TaAFP was 61.47oC, losing its THA after denature. The effect of pH and cations on THA of TaAFP was also investigated. TaAFP showed the stronger THA in pH7.0-9.0 than in other condition, consistent with the physiology condition of the plants. The THA of TaAFP was improved at the presence of Ca2+ instead of other cations. TaAFP was a Ca2+-dependend AFP, and its THA was improved at the presence of Ca2+. The hypothetical binding model of calcium to AFP was also discussed. The typical hydrophilicity and ice-binding capacity of AFP were also found in TaAFP by the TGA and specific binding analysis.
     The molecular weight of TaAFP was 13637.711 Da determined by MALDI-TOF-MS analysis. The primary structure and second structure of TaAFP was determined. The primary structure of TaAFP was determined by the combination of N-terminal sequencing and mass fingerprint overlapping analysis. The primary structure of TaAFP was MARKVIALAFLLLLTISLSKSNAARV KYNGGESGGGGGGGGGGGGGGNGSGSGSGYGYNYGKGGGQSGGGQGGGGGGGGGGGSNGSGSGSGYGYGYGQGNGGAQGQGSGGGGGGGGGGGGGGSGQGSGSGYGYGYGKGGGGGGGGGGDGGGGGGGGSAYVGRHE, with overlap rate of 100 %. The secondary structure of TaAFP was studied by the circular dichroistic spectra, Raman spectra, FI-IR spectra, and bioinformatics prediction. The results were summarized asα-helix of 10%-15%,β-sheet of 10%-20%, and random coil of 40%-60%.
     Finally, the antifreeze mechanism of TaAFP studied by the theory of the molecular mechanics and the quantum mechanics. The surface of TaAFP was divided into eight parts, denoted as surface 1 to surface 8, respectively. From the calculation, surface 1 (Met1, Lys4, Gly47, Asn48, Ser50, Gly51, Gly138, Gly139, Gly141, Gly142, Gly143, Gly161, Arg162, His163, Glu164) had the strongest binding capacity with ice surface (112 1). The Coulomb force and van de Wall force were the important factor between the TaAFP-ice binding domain instead of the hydrogen bond, consistent with the reported results. Meanwhile, surface 1 had 15 amino acid residues and the middle surface area among the tested surfaces, proving that the surface with the biggest area was usually not the best binding surface. The binding surface was usually flat and was suited for the ice crystal surface, just like surface 1. Furthermore, the semi-experiential mechanics including AM1 & PM3 was used to give a deeper insight of the interaction of TaAFP-ice, which could not be obtained by the molecular mechanics. The weak orbit interaction of surface 1 to ice was the strongest among the tested. Thus surface 1 had the more overlapped orbits to the ice than that of the other surfaces. Moreover, the results of the charge transfer also proved that surface 1 was the best surface binding to ice. The calculation of the charge transfer showed the charge of TaAFP moved to the ice and the ice-binding domain was improved. The bond level of surface 1 to ice was also the strongest in the surfaces. From the mentioned evidences, surface 1 was the optimal ice-binding domain.
引文
1. Atici O, Nalbantoglu B. Antifreeze proteins in higher plants [J]. Phytochemistry, 2003, 64(7): 1187-1196.
    2. Zhong Q W, Fan T J. Advances in fish antifreeze protein research [J]. Acta Biochimica Et Biophysica Sinica, 2002, 34(2): 124-130.
    3. Lu C F, Wang H, Jian L C, et al. Progress in study of plant antifreeze proteins [J]. Progress in Biochemistry and Biophysics, 1998, 25(3): 210-216.
    4. Griffith M, Ewart K V. Antifreeze proteins and their potential use in frozen foods [J]. Biotechnology Advances, 1995, 13(3): 375-402.
    5. Hon W C, Griffith M, Chong P L, et al. Extraction and isolation of antifreeze proteins from winter rye (Secale-Cereale L.) leaves [J]. Plant Physiology, 1994, 104(3): 971-980.
    6. Yeh S, Moffatt B A, Griffith M, et al. Chitinase genes responsive to cold encode antifreeze proteins in winter cereals [J]. Plant Physiology, 2000, 124(3): 1251-1263.
    7. Chen L B, DeVries A L, Cheng C H C. Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod [J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(8): 3817-3822.
    8. Smallwood M, Worrall D, Byass L, et al. Isolation and characterization of a novel antifreeze protein from carrot (Daucus carota) [J]. Biochemical Journal, 1999, 340: 385-391.
    9. Yeh Y, Feeney R E. Antifreeze proteins: Structures and mechanisms of function [J]. Chemical Reviews, 1996, 96(2): 601-617.
    10. Knight C A. Structural biology - Adding to the antifreeze agenda [J]. Nature, 2000, 406(6793): 249-251.
    11. Jia Z C, Davies P L. Antifreeze proteins: an unusual receptor-ligand interaction [J]. Trends in Biochemical Sciences, 2002, 27(2): 101-106.
    12. Yang D S C, Sax M, Chakrabartty A, et al. Crystal-structure of an antifreeze polypeptide and its mechanistic implications [J]. Nature, 1988, 333(6170): 232-237.
    13. Devries A L. Antifreeze peptides and glycopeptides in cold-water fishes [J]. Annual Review of Physiology, 1983, 45: 245-260.
    14. Hansen T N, Baust J G. Differential scanning calorimetric analysis of antifreeze protein activity in the common mealworm, Tenebrio molitor [J]. Biochimica Et Biophysica Acta, 1988, 957(2): 217-221.
    15. Hansen T N, Baust J G. Differential scanning calorimetric analysis of Tenebrio molitor antifreeze protein activity [J]. Cryobiology, 1989, 26(4): 383-388.
    16.陈廷超,张极震,杨景文等.差示扫描量热法直接测定抗冻蛋白质溶液的热滞效应[J].生物物理学报, 1995, 11(3): 309-313.
    17. Griffith M, Ala P, Yang D S C, et al. Antifreeze protein produced endogenously in winter rye leaves [J]. Plant Physiology, 1992, 100(2): 593-596.
    18. Horwath K L, Easton C M, Poggioli G J, et al. Tracking the profile of a specific antifreeze protein and its contribution to the thermal hysteresis activity in cold hardy insects [J]. European Journal of Entomology, 1996, 93(3): 419-433.
    19. Hon W C, Griffith M, Chong P, et al. Extraction and isolation of antifreeze protein from winter rye (Secale cereale L.) leaves [J]. Plant Physiol, 1994, 104: 971-980.
    20. Deng G J, Laursen R A. Isolation and characterization of an antifreeze protein from the longhorn sculpin, Myoxocephalus octodecimspinosis [J]. Biochimica Et Biophysica Acta-Protein Structure and Molecular Enzymology, 1998, 1388(2): 305-314.
    21. Evans R P, Fletcher G L. Isolation and purification of antifreeze proteins from skin tissues of snailfish, cunner and sea raven [J]. Biochimica Et Biophysica Acta-Proteins and Proteomics, 2004, 1700(2): 209-217.
    22. Meyer K, Keil M, Naldrett M J. A leucine-rich repeat protein of carrot that exhibits antifreeze activity [J]. Febs Letters, 1999, 447(2-3): 171-178.
    23. Kuiper M J, Lankin C, Gauthier S Y, et al. Purification of antifreeze proteins by adsorption to ice [J]. Biochemical and Biophysical Research Communications, 2003, 300(3): 645-648.
    24. Davies P L, Hew C L. Biochemistry of fish antifreeze proteins [J]. Faseb Journal, 1990, 4(8): 2460-2468.
    25. Low W K, Lin Q S, Stathakis C, et al. Isolation and characterization of skin-type, type I antifreeze polypeptides from the longhorn sculpin, Myoxocephalus octodecemspinosus [J]. Journal of Biological Chemistry, 2001, 276(15): 11582-11589.
    26. Low W K, Miao M, Ewart K V, et al. Skin-type antifreeze protein from the shorthorn sculpin, Myoxocephalus scorpius - Expression and characterization of a M-r 9,700 recombinant protein [J]. Journal of Biological Chemistry, 1998, 273(36): 23098-23103.
    27. Sonnichsen F D, Sykes B D, Davies P L. Comparative modeling of the 3-dimensional structure of type-II antifreeze protein [J]. Protein Science, 1995, 4(3): 460-471.
    28. Loewen M C, Gronwald W, Sonnichsen F D, et al. The ice-binding site of sea raven antifreeze protein is distinct from the carbohydrate-binding site of the homologous C-type lectin [J]. Biochemistry, 1998, 37(51): 17745-17753.
    29. Sonnichsen F D, Sykes B D, Chao H, et al. The nonhelical structure of antifreeze protein type-III [J]. Science, 1993, 259(5098): 1154-1157.
    30. Deng G J, Andrews D W, Laursen R A. Amino acid sequence of a new type of antifreeze protein: From the longhorn sculpin Myoxocephalus octodecimspinosis [J]. Febs Letters, 1997, 402(1): 17-20.
    31. Raymond J A, Devries A L. Abroption inhibition as a mechanis moffreezing resistance in polar fishes [J]. Proc. Natt. Acad. Sci. USA, 1997, 74: 2589-2593.
    32.郭惠红,高述民,李凤兰等.植物抗冻蛋白和抗寒基因表达的调控[J].植物生理学通讯, 2003, 39(6): 555-560.
    33. Pudney P D A, Buckley S L, Sidebottom C M, et al. The physico-chemical characterization of a boiling stable antifreeze protein from a perennial grass (Lolium perenne) [J]. Archives of Biochemistry and Biophysics, 2003, 410(2): 238-245.
    34.费云标,孙龙华,黄涛等.沙冬青高活性抗冻蛋白的发现[J].植物学报, 1994, 36(8): 649-650.
    35. Duman J G, Wu D W, Olsen T M, et al. Thermal hysteresis proteins [J]. Adv. Low Temp. Biol., 1993, 2: 131-182.
    36. Atici O, Nalbantoglu B. Effect of apoplastic proteins on freezing tolerance in leaves [J]. Phytochemistry, 1999, 50(5): 755-761.
    37. Xu L, Duman J G, Wu D W, et al. A role for juvenile-hormone in the induction of antifreeze protein-production by the fat-body in the beetle Tenebrio molitor [J]. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology, 1992, 101(1-2): 105-109.
    38. Horwath K L, Duman J G. Further-studies on the involvement of the circadian system in photoperiodic control of antifreeze protein-production in the beetle Dendroides canadensis [J]. Journal of Insect Physiology, 1984, 30(12): 947-955.
    39. Xu L, Neven L G, Duman J G. Hormonal control of hemolymph lipoprotein ice nucleators in over wintering freeze susceptible larvae of the stag beetle Ceruchu piceus: adipokinetic hormone and juvenile hormone [J]. J.Comp.Physiol. B, 1990, 160: 51-59.
    40. Leinala E K, Davies P L, Doucet D, et al. A beta-helical antifreeze protein isoform with increased activity - Structural and functional insights [J]. Journal of Biological Chemistry, 2002, 277(36): 33349-33352.
    41. Cheng Y H, Yang Z Y, Tan H W, et al. Analysis of ice-binding sites in fish type II antifreeze protein by quantum mechanics [J]. Biophysical Journal, 2002, 83(4): 2202-2210.
    42. Graether S P, Sykes B D. Cold survival in freeze-intolerant insects - The structure and function of beta-helical antifreeze proteins [J]. European Journal of Biochemistry, 2004, 271(16): 3285-3296.
    43. Li N, Chibber B A K, Castellino F J, et al. Mapping of disulfide bridges in antifreeze proteins from overwintering larvae of the beetle Dendroides canadensis [J]. Biochemistry, 1998, 37(18): 6343-6350.
    44. Knight C A, Driggers E, Devries A L. Adsorption to ice of fish antifreeze glycopeptide-7 and glycopeptide-8 [J]. Biophysical Journal, 1993, 64(1): 252-259.
    45. Graham L A, Liou Y C, Walker V K, et al. Hyperactive antifreeze protein from beetles [J]. Nature, 1997, 388(6644): 727-728.
    46. Fairley K, Westman B J, Pham L H, et al. Type I shorthorn sculpin antifreeze protein - Recombinant synthesis, solution conformation, and ice growth inhibition studies [J]. Journal of Biological Chemistry, 2002, 277(27): 24073-24080.
    47. Baardsnes J, Davies P L. Contribution of hydrophobic residues to ice binding by fish type IIIantifreeze protein [J]. Biochimica Et Biophysica Acta-Proteins and Proteomics, 2002, 1601(1): 49-54.
    48. Knight C A, Cheng C C, DeVries A L. Adsorption ofα-helical antifreeze peptides on specific ice crystal surface planes [J]. Journal of Biophysics, 1991, 59: 409-418.
    49. Liou Y C, Tocilj A, Davies P L, et al. Mimicry of ice structure by surface hydroxyls and water of a beta-helix antifreeze protein [J]. Nature, 2000, 406(6793): 322-324.
    50. Haymet A D J, Ward L G, Harding M M. Winter flounder "antifreeze" proteins: Synthesis and ice growth inhibition of analogues that probe the relative importance of hydrophobic and hydrogen-bonding interactions [J]. Journal of the American Chemical Society, 1999, 121(5): 941-948.
    51. Jia Z C, DeLuca C I, Chao H M, et al. Structural basis for the binding of a globular antifreeze protein to ice [J]. Nature, 1996, 384(6606): 285-288.
    52. Yang D S C. Ice binding structure and mechanism of an antifreeze protein from winter flounder [J]. Nature, 1995, 375: 427-431.
    53. Sicheri F, Yang D S C. Ice-binding structure and mechanism of an antifreeze protein from winter flounder [J]. Nature, 1995, 375(6530): 427-431.
    54. Knight C A, Devries A L. Effects of a polymeric, nonequilibrium antifreeze upon ice growth from water [J]. Journal of Crystal Growth, 1994, 143(3-4): 301-310.
    55. Davies P L, Baardsnes J, Kuiper M J, et al. Structure and function of antifreeze proteins [J]. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 2002, 357(1423): 927-933.
    56. Leinala E K, Davies P L, Jia Z C. Crystal structure of beta-helical antifreeze protein points to a general ice binding model [J]. Structure, 2002, 10(5): 619-627.
    57.阎隆飞,孙之荣,蛋白质分子结构[M]. 1999,北京:清华大学出版社. 177-181.
    58.杨作银,贾宗超,刘若庄等.一种具有规则结构的蛋白单体之间相互识别的分子力学模拟和量子化学计算[J].中国科学B辑, 2003, 33(4): 347-353.
    59.来鲁华,蛋白质的结构预测与分子设计[M].第1版ed. 1993,北京:北京大学出版社. 49.
    60. Dewar M J S, Zoebisch E G, Healy E F, et al. AM1: a new general purpose quantum mechanical mode [J]. Journal American Chemical Society, 1985, 107: 3902-390.
    61. Dewar M J S, Thiel W. Ground states of molecules. 38. The MNDO Method. Approximations and Parameters [J]. Journal American Chemical Society, 1977, 99: 4899.
    62.冯玉玲.π电子自洽场分子轨道理论及其应用[J].大学化学, 2000, 15(6): 51-54.
    63. Chou K C. Energy-optimized structure of antifreeze protein and its binding mechanism [J]. Journal of Molecular Biology, 1992, 223(2): 509-517.
    64. Wen D Y, Laursen R A. A model for binding of an antifreeze polypeptide to ice [J]. Biophysical Journal, 1992, 63(6): 1659-1662.
    65. Lal M, Clark A H, Lips A, et al. Inhibition of ice crystal-growth by preferential peptide adsorption - a molecular modeling study [J]. Faraday Discussions, 1993: 299-306.
    66. Ewart K V, Rubinsky B, Fletcher G L. Structural and functional similarity between fish antifreeze proteins and calcium-dependent lectins [J]. Biochemical and Biophysical Research Communications, 1992, 185(1): 335-340.
    67. Madura J D, Wierzbicki A, Harrington J P, et al. Interactions of the D-form and L-form of winter flounder antifreeze peptide with the (201) planes of Ice [J]. Journal of the American Chemical Society, 1994, 116(1): 417-418.
    68. Cheng A L, Merz K M. Ice-binding mechanism of winter flounder antifreeze proteins [J]. Biophysical Journal, 1997, 73(6): 2851-2873.
    69. Kollman P A. Free energy calculations: applications to chemical and biochemical phenomen [J]. Chem. Rev., 1993, 93: 2395-2417.
    70. Gronwald W, Loewen M C, Lix B, et al. The solution structure of type II antifreeze protein reveals a new member of the lectin family [J]. Biochemistry, 1998, 37(14): 4712-4721.
    71. Madura J D, Ward W A, Murrill S, et al. Computer simulation of a type 1 antifreeze protein at the ice water interface [J]. Biophysical Journal, 1996, 70(2): MP438-MP438.
    72. Wierzbicki A, Madura J D, Salmon C, et al. Modeling studies of binding of sea raven type II antifreeze protein to ice [J]. Journal of Chemical Information and Computer Sciences, 1997, 37(6): 1006-1010.
    73. Yang D S C, Hon W C, Bubanko S, et al. Identification of the ice-binding surface on a type III antifreeze protein with a "Flatness function" algorithm [J]. Biophysical Journal, 1998, 74(5): 2142-2151.
    74. Harding M M, Ward L G, Haymet A D J. Type I 'antifreeze' proteins - Structure-activity studies and mechanisms of ice growth inhibition [J]. European Journal of Biochemistry, 1999, 264(3): 653-665.
    75. Jorov A, Zhorov B S, Yang D S C. Theoretical study of interaction of winter flounder antifreeze protein with ice [J]. Protein Science, 2004, 13(6): 1524-1537.
    76. Liu K, Jia Z C, Chen G J, et al. Systematic size study of an insect antifreeze protein and its interaction with ice [J]. Biophysical Journal, 2005, 88(2): 953-958.
    77. Liu J J, Li Q Z. A theoretical model on thermal hysteresis activity of the winter flounder protein 'HPLC-6' [J]. Chemical Physics Letters, 2003, 378(3-4): 238-243.
    78. Mizuno A, Mitsuiki M, Toba S, et al. Antifreeze activities of various food components [J]. Journal of Agricultural and Food Chemistry, 1997, 45(1): 14-18.
    79. Hightower R, Baden C, Penzes E, et al. Expression of antifreeze proteins in transgenic plants [J]. Plant Molecular Biology, 1991, 17(5): 1013-1021.
    80. Grandum S, Nakagomi K. Characteristics of ice slurry containing antifreeze protein for ice storage applications [J]. Journal of Thermophysics and Heat Transfer, 1997, 11(3): 461-466.
    81. Clemmings J F, Zoerb H F, Rosenwald D R, et al., in Pillsbury Co., Minneapolis, MN, USA, M. Pillsbury Co., MN, USA, Editor: USA. 82. Unilever.
    83. Payne S R, Young O A. Effects of pre-slaughter administration of antifreeze proteins on frozen meat quality [J]. Meat Science, 1995, 41(2): 147-155.
    84. Zhang C, Zhang H, Wang L. Effect of carrot (Daucus carota) antifreeze proteins on the fermentation capacity of frozen dough [J]. Food Research International, 2007, 40: 763-769.
    85. Zhang C, Zhang H. Effect of carrot (Daucus carota) antifreeze proteins on texture properties of frozen dough and volatile compounds of crumb [J]. LWT (Food Science and Technology), 2007.
    86. Crevel R W R, Fedyk J K, Spurgeon M J. Antifreeze proteins: characteristics, occurrence and human exposure [J]. Food and Chemical Toxicology, 2002, 40(7): 899-903.
    87. Fei Y B, Wei L B, Gao S Q, et al. Effect of plant antifreeze proteins on porcine embryo to cryopreservation [J]. Develop Repr Biol,, 1995, 4(1): 21-25.
    88. Rubinsky B, Arav A, Mattioli M, et al. The effect of antifreeze glycopeptides on membrane-potential changes at hypothermic temperatures [J]. Biochemical and Biophysical Research Communications, 1990, 173(3): 1369-1374.
    89. Rubinsky B, Mattioli M, Arav A, et al. Inhibition of Ca2+ and K+ Currents by Antifreeze Proteins [J]. American Journal of Physiology, 1992, 262(3): R542-R545.
    90. Amir G, Horowitz L, Rubinsky B, et al. Subzero nonfreezing cryopresevation of rat hearts using antifreeze protein I and antifreeze protein III [J]. Cryobiology, 2004, 48(3): 273-282.
    91. Hincha D K, Devries A L, Schmitt J M. Cryotoxicity of antifreeze proteins and glycoproteins to spinach thylakoid membranes - Comparison with cryotoxic sugar acids [J]. Biochimica Et Biophysica Acta, 1993, 1146(2): 258-264.
    92. Rubinsky B, DeVries A L. Effects of ice crystal habit on the viability of glycerol protected red blood cells [J]. Cryobiology, 1989, 26: 580.
    93. Ekins S, Murray G I, Hawksworth G M. Ultrastructural and metabolic effects after vitrification of precision-cut rat liver slices with antifreeze proteins [J]. Cryo-Letters, 1996, 17(3): 157-164.
    94. Cutler A J, Saleem M, Kendall E, et al. Winter flounder antifreeze protein improves the cold hardiness of plant-tissues [J]. Journal of Plant Physiology, 1989, 135(3): 351-354.
    95. Pham L, Dahiya R, Rubinsky B. An in vivo study of antifreeze protein adjuvant cryosurgery [J]. Cryobiology, 1999, 38(2): 169-175.
    96. Larese A, Acker J, Muldrew K, et al. Antifreeze proteins induce intracellular nucleation [J]. Cryo-Letters, 1996, 17(3): 175-182.
    97. Georges F, Saleem M, Cutler A J. Design and cloning of a synthetic gene for the flounder antifreeze protein and its expression in plant cells. [J]. Gene, 1991, 91: 159-165.
    98. Wallis J G, Wang H Y, Guerra D J. Expression of a synthetic antifreeze protein in potato reduces electrolyte release at freezing temperatures [J]. Plant Molecular Biology, 1997, 35(3): 323-330.
    99.黄永芬,汪清胤,付桂荣等.美洲拟鲽抗冻蛋白基因(afp)导入番茄的研究[J].中国生物化学与分子生物学报, 1997, 13(04): 418-422.
    100. Kenward K D, Brandle J, McPherson J, et al. Type II fish antifreeze protein accumulation in transgenic tobacco does not confer frost resistance [J]. Transgenic Research, 1999, 8(2): 105-117.
    101. Modak P R, Usui H, Suzuki H. Agglomeration control of ice particles in ice-water slurry system using surfactant additives [J]. Hvac&R Research, 2002, 8(4): 453-466.
    102. Steponkus P L, Webb M S, Water and Life: Comparative Analysis of Water Relationships at the Organismic,Cellular and molecular Level. [M]. In G Somero, B Osmond, eds, ed. Cellular and molecular Level. 1992, Berlin: Springer-Verlag. 338-362.
    1. Zepeda S, Yeh Y, Orme C A. Atomic force microscope chamber for in situ studies of ice [J]. Review of Scientific Instruments, 2001, 72(11): 4159-4163.
    2. Devries A L. Antifreeze peptides and glycopeptides in cold-water fishes [J]. Annual Review of Physiology, 1983, 45: 245-260.
    3. Zhang D Q, Liu B, Feng D R, et al. Expression, purification, and antifreeze activity of carrot antifreeze protein and its mutants [J]. Protein Expression and Purification, 2004, 35(2): 257-263.
    4. Worrall D, Elias L, Ashford D, et al. A carrot leucine-rich-repeat protein that inhibits ice recrystallization [J]. Science, 1998, 282(5386): 115-117.
    5. Evans R P, Fletcher G L. Isolation and characterization of type I antifreeze proteins fromAtlantic snailfish (Liparis atlanticus) and dusky snailfish (Liparis gibbus) [J]. Biochimica Et Biophysica Acta-Protein Structure and Molecular Enzymology, 2001, 1547(2): 235-244.
    6. Chao H, Hodges R S, Kay C M, et al. A natural variant of type I antifreeze protein with four ice-binding repeats is a particularly potent antifreeze [J]. Protein Science, 1996, 5(6): 1150-1156.
    7. Zhang W, Laursen R A. Structure-function relationships in a type I antifreeze polypeptide - The role of threonine methyl and hydroxyl groups in antifreeze activity [J]. Journal of Biological Chemistry, 1998, 273(52): 34806-34812.
    8. Hansen T N, Baust J G. Differential scanning calorimetric analysis of Tenebrio molitor antifreeze protein activity [J]. Cryobiology, 1989, 26(4): 383-388.
    9. Duman J G, Olsen T M. Thermal hysteresis protein-activity in bacteria, fungi, and phylogenetically diverse plants [J]. Cryobiology, 1993, 30(3): 322-328.
    10. Hansen T N, Carpenter J F. Calorimetric determination of inhibition of ice crystal-growth by antifreeze protein in hydroxyethyl starch solutions [J]. Biophysical Journal, 1993, 64(6): 1843-1850.
    11. Zhou X L, Chen T T, Wang B H, et al. DSC study on the thermal hysteresis activity of plant antifreeze proteins [J]. Acta Physico-Chimica Sinica, 2001, 17(1): 66-69.
    12. Zhang C, Zhang H, Wang L. Effect of carrot (Daucus carota) antifreeze proteins on the fermentation capacity of frozen dough [J]. Food Research International, 2007, 40: 763-769.
    13. Hansen T N, Devries A L, Baust J G. Calorimetric analysis of antifreeze glycoproteins of the polar fish, Dissostichus-Mawsoni [J]. Biochimica Et Biophysica Acta, 1991, 1079(2): 169-173.
    14. Fei Y B, Wei L B, Gao S Q, et al. Isolation, purification and characterization of secondary structure of antifreeze protein from Ammopiptanthus mongolicus [J]. Chinese Science Bulletin, 2001, 46(6): 495-498.
    15. Hansen T N, Baust J G. Differential scanning calorimetric analysis of antifreeze protein activity in the common mealworm, Tenebrio molitor [J]. Biochimica Et Biophysica Acta, 1988, 957(2): 217-221.
    16. Lu M, Wang B, Li Z, et al. Differential scanning calorimetric and circular dichroistic studies on plant antifreeze proteins [J]. Journal of Thermal Analysis and Calorimetry, 2002, 67(3): 689-698.
    17. Smallwood M, Worrall D, Byass L, et al. Isolation and characterization of a novel antifreeze protein from carrot (Daucus carota) [J]. Biochemical Journal, 1999, 340: 385-391.
    18. Meyer K, Keil M, Naldrett M J. A leucine-rich repeat protein of carrot that exhibits antifreeze activity [J]. Febs Letters, 1999, 447(2-3): 171-178.
    19. Laemmli U K. Cleavage of structure proteins during the assembly of the head of bacteriophage T4 [J]. Nature, 1970, 277: 680-685.
    20.汪正范,色谱的定性与定量[M]. 2000,北京:化学工业出版社. 11-17,163-172.
    21. Kousksou T, Jamil A, Zeraouli Y, et al. DSC study and computer modelling of the melting process in ice slurry [J]. Thermochimica Acta, 2006, 448(2): 123-129.
    22.周晓蕾,陈滔滔,王保怀等.沙冬青抗冻蛋白热滞活性的DSC研究[J].物理化学学报, 2001, 17(1): 66-69.
    23. Block W. Differential scanning calorimetry in ecophysiological research [J]. Acta Oecologica-International Journal of Ecology, 1994, 15(1): 13-22.
    24. Wang L H, Wusteman M C, Smallwood M, et al. The stability during low-temperature storage of an antifreeze protein isolated from the roots of cold-acclimated carrots [J]. Cryobiology, 2002, 44(3): 307-310.
    25. Knight C A, Devries A L, Oolman L D. Fish antifreeze protein and the freezing and recrystallization of ice [J]. Nature, 1984, 308(5956): 295-296.
    26. Knight C A, Devries A L. Melting inhibition and superheating of ice by an antifreeze glycopeptide [J]. Science, 1989, 245(4917): 505-507.
    27. Wen D Y, Laursen R A. Structure-function-relationships in an antifreeze polypeptide - the effect of added bulky groups on activity [J]. Journal of Biological Chemistry, 1993, 268(22): 16401-16405.
    28. Wen D Y, Laursen R A. Structure-function-relationships in an antifreeze polypeptide - the role of charged amino-acids [J]. Journal of Biological Chemistry, 1993, 268(22): 16396-16400.
    29. Wen D Y, Laursen R A. Structure-function-relationships in an antifreeze polypeptide - the role of neutral, polar amino-acids [J]. Journal of Biological Chemistry, 1992, 267(20): 14102-14108.
    30. Chakrabartty A, Ananthanarayanan V S, Hew C L. Structure-Function-Relationships in a Winter Flounder Antifreeze Polypeptide .1. Stabilization of an Alpha-Helical Antifreeze Polypeptide by Charged-Group and Hydrophobic Interactions [J]. Journal of Biological Chemistry, 1989, 264(19): 11307-11312.
    31. Chakrabartty A, Yang D S C, Hew C L. Structure-function relationship in a winter flounder antifreeze polypeptide. 2. Alteration of the component growth-rates of ice by synthetic antifreeze polypeptides [J]. Journal of Biological Chemistry, 1989, 264(19): 11313-11316.
    32. Kobashigawa Y, Nishimiya Y, Miura K, et al. A part of ice nucleation protein exhibits the ice-binding ability [J]. Febs Letters, 2005, 579(6): 1493-1497.
    33. Chao H M, Houston M E, Hodges R S, et al. A diminished role for hydrogen bonds inantifreeze protein binding to ice [J]. Biochemistry, 1997, 36(48): 14652-14660.
    34. Wilson P W. Explaining thermal hysteresis by the Kelvin effect [J]. Cryo-Letters, 1993, 14(1): 31-36.
    35. Sander L M, Tkachenko A V. Kinetic pinning and biological antifreezes [J]. Physical Review Letters, 2004, 93(12): 4.
    36. Kristiansen E, Zachariassen K E. The mechanism by which fish antifreeze proteins cause thermal hysteresis [J]. Cryobiology, 2005, 51(3): 262-280.
    37. Hansen T N, Baust J G. Serial dilution of Tenebrio-Molitor hemolymph - analysis of antifreeze activity by differential scanning calorimetry [J]. Cryo-Letters, 1988, 9(6): 386-391.
    38. Zachariassen K E, Husby J A. Antifreeze effect of thermal hysteresis agents protects highly supercooled insects [J]. Nature, 1982, 298(5877): 865-867.
    39. Zachariassen K E, Kristiansen E. Ice nucleation and antinucleation in nature [J]. Cryobiology, 2000, 41(4): 257-279.
    40. Wohrmann A P A. Antifreeze glycopeptides and peptides in Antarctic fish species from the Weddell Sea and the Lazarev Sea [J]. Marine Ecology-Progress Series, 1996, 130(1-3): 47-59.
    1. Atici O, Nalbantoglu B. Antifreeze proteins in higher plants [J]. Phytochemistry, 2003, 64(7): 1187-1196.
    2.佚名.雪莲中提取抗寒基因助农作物“不怕冷”[J].农村实用技术与信息, 2004(11): 50.
    3.李璐,王晓军,赵安民.新疆雪莲新的内切几丁质酶类冷诱导基因的分离、克隆和测序[J].植物生理学通讯, 2005, 41(6): 731-736.
    4.郭继萍,田惠平.科研人员首次从天山雪莲中提取出抗寒基因[J].农业知识, 2005(2): 17.
    5. Smallwood M, Worrall D, Byass L, et al. Isolation and characterization of a novel antifreeze protein from carrot (Daucus carota) [J]. Biochemical Journal, 1999, 340: 385-391.
    6. Meyer K, Keil M, Naldrett M J. A leucine-rich repeat protein of carrot that exhibits antifreeze activity [J]. Febs Letters, 1999, 447(2-3): 171-178.
    7. Hon W C, Griffith M, Chong P, et al. Extraction and isolation of antifreeze protein from winter rye (Secale cereale L.) leaves [J]. Plant Physiol, 1994, 104: 971-980.
    8. Griffith M, Antikainen M, Hon W C, et al. Antifreeze proteins in winter rye [J]. Physiologia Plantarum, 1997, 100(2): 327-332.
    9. Griffith M, Ala P, Yang D S C, et al. Antifreeze protein produced endogenously in winter rye leaves [J]. Plant Physiology, 1992, 100(2): 593-596.
    10. Wei L B, Jiang Y, Shu N H, et al. Biological characterization of heat-stable antifreeze proteins from leaves of Ammopiptanthus mongolicus [J]. Acta Botanica Sinica, 1999, 41(8): 837-841.
    11. Fei Y B, Wei L B, Gao S Q, et al. Isolation, purification and characterization of secondarystructure of antifreeze protein from Ammopiptanthus mongolicus [J]. Chinese Science Bulletin, 2001, 46(6): 495-498.
    12.魏令波,江勇,舒念红等.沙冬青叶片热稳定抗冻蛋白特性分析[J].植物学报, 1999, 41(8): 837-841.
    13. Chun J U, Yu X M, Griffith M. Genetic studies of antifreeze proteins and their correlation with winter survival in wheat [J]. Euphytica, 1998, 102(2): 219-226.
    14. Kuiper M J, Lankin C, Gauthier S Y, et al. Purification of antifreeze proteins by adsorption to ice [J]. Biochemical and Biophysical Research Communications, 2003, 300(3): 645-648.
    15. Zhang C, Zhang H, Wang L, et al. Purification of antifreeze protein from wheat bran (Triticum aestivum L.) based on its hydrophilicity and ice-binding capacity [J]. Journal of Agricultural and Food Chemistry, 2007, 55: 7654-7658.
    16. Duman J G. Purification and characterization of a thermal hysteresis protein from a plant, the bittersweet nightshade Solanum-Dulcamara [J]. Biochimica Et Biophysica Acta-Protein Structure and Molecular Enzymology, 1994, 1206(1): 129-135.
    17. Evans R P, Fletcher G L. Isolation and purification of antifreeze proteins from skin tissues of snailfish, cunner and sea raven [J]. Biochimica Et Biophysica Acta-Proteins and Proteomics, 2004, 1700(2): 209-217.
    18. Tong L, Lin Q S, Wong W K R, et al. Extracellular expression, purification, and characterization of a winter flounder antifreeze polypeptide from Escherichia coli [J]. Protein Expression and Purification, 2000, 18(2): 175-181.
    19. Wang W X, Wei L B. Purification of boiling-soluble antifreeze protein from the legume Ammopiptanthus mongolicus [J]. Preparative Biochemistry & Biotechnology, 2003, 33(1): 67-80.
    20. Boothe J G, Sonnichsen F D, deBeus M D, et al. Purification, characterization, and structural analysis of a plant low-temperature-induced protein [J]. Plant Physiology, 1997, 113(2): 367-376.
    21. Wu D W, Duman J G, Cheng C H C, et al. Purification and characterization of antifreeze proteins from larvae of the beetle Dendroides-Canadensis [J]. Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology, 1991, 161(3): 271-278.
    22. Li Y P, Gong H, Park H Y. Purification and partial characterization of thermal hysteresis proteins from overwintering larvae of pine needle gall midge, Thecodiplosis japonensis (Diptera : Cecidomiidae) [J]. Cryoletters, 2000, 21(2): 117-124.
    23. Lin F H, Graham L A, Campbell R L, et al. Structural modeling of snow flea antifreeze protein [J]. Biophysical Journal, 2007, 92: 1717-1723
    24. Graham L A, Davies P L. Glycine-rich antifreeze proteins from snow fleas [J]. Science, 2005, 310(5747): 461-461.
    25.袁小平,酶解麦麸制备阿魏酰低聚糖及其生物活性的研究, in江南大学. 2006,江南大学:无锡. p. 124.
    1. Soria D B, Piro O E, Castellano E E, et al. Crystal and molecular structure determination, TGA, DTA, and infrared and Raman spectra of rubidium nitroprusside monohydrate, Rb2[Fe(CN5) NO]?H2O [J]. Journal of Chemical Crystallography, 1999, 26: 325-330.
    2. Riesen R, Vogel K, Schubnell M. DSC by the TGA/SDTA851e considering mass changes [J]. Journal of Thermal Analysis and Calorimetry, 2001, 64: 243-252.
    3. Zhang C, Zhang H, Wang L, et al. Validation of antifreeze properties of glutathione based on its thermodynamic characteristics and Baker's Yeast protective ability during cryopreseration [J]. Journal of Agricultural and Food Chemistry, 2007, 55(12): 4698-4703.
    4. Sabato D A, Roberto B, MoséR, et al. Effects of temperature and SDS on the structure of beta-glycosidase from the thermophilic archaeon Sulfolobus solfataricus [J]. Biochem. J. , 1997, 323: 833-840.
    5. Alizadeh-Pasdar N, Eunice C Y, Li C. Comparison of protein surface hydrophobicity measured at various pHvalues using three different fluorescent probe [J]. Journal of Agricultural and Food Chemistry, 2000, 48: 328-334.
    6. Kato A, Nakai S. Hydrophobicity determined by a fluorescence probe method and its correlation with surface properties of proteins [J]. J. Biochim Biophys Acta, 1980, 624: 13-20.
    7. Kuiper M J, Lankin C, Gauthier S Y, et al. Purification of antifreeze proteins by adsorption to ice [J]. Biochemical and Biophysical Research Communications, 2003, 300(3): 645-648.
    8. Ramlov H, DeVries A L, Wilson P W. Antifreeze glycoproteins from the antartic fish Dissostichus mawsoni studied by differential scanning calorimetry (DSC) in combination with nanolitre osmometry [J]. Cryoletters, 2005, 26(2): 73-84.
    9. Harding M M, Anderberg P I, Haymet A D J. 'Antifreeze' glycoproteins from polar fish [J]. European Journal of Biochemistry, 2003, 270(7): 1381-1392.
    10. Nguyen D H, Colvin M E, Yeh Y, et al. The dynamics, structure, and conformational free energy of proline-containing antifreeze glycoprotein [J]. Biophysical Journal, 2002, 82(6): 2892-2905.
    11. Wan-Chi L, Ming-Lung C, Jia-Wei W, et al. A glycine-rich protein gene family predominantly expressed in tomato roots, but not in leaves and ripe fruit [J]. Plant Science, 2005, 168: 283-295.
    12. Horvath D P, Olson P A. Cloning and characterization of cold-regulated glycine-rich RNA binding protein genes from leaf of spurge (Euphorbia esula L.) and comparison to heterologous genomic clones [J]. Plant Mol.Biol., 1998, 38: 531-538.
    13. Bergeron D, Beauseigle D, Bellemare G. Sequence and expression of a gene encoding aprotein with RNA-binding and glycine-rich domains in Brassica napus [J]. Biochim. Biophys. Acta, 1993, 1216: 123-125.
    14. Carpenter C D, Kreps J A, Simon A E. Genes encoding glycine-rich Arabidopsis thaliana proteins with RNA-binding motifs are influenced by cold treatment and an endogenous circadian rhythm [J]. Plant Physiology, 1994, 104: 1015-1025.
    15. Gomez J, Sanchez-Martinez D, Stiefel V, et al. A gene induced by the plant hormone abscisic acid in response to water stress encodes a glycine-rich protein [J]. Nature, 1998, 334: 262-264.
    16. Young I H, Jong M L, Suk-Min K, et al. A ginseng-specific abundant protein (GSAP) located on the cell wall is involved in abiotic stress tolerance [J]. Gene, 2007, 386: 115-122.
    17. Sturm A. A wound-inducible glycine-rich protein from Daucus carota with homology to single-stranded nucleic acid binding proteins [J]. Plant Physiology, 1992, 99: 1689-1692.
    18. Gomez J, Sanchez-Martinez D, Stiefel V, et al. A gene induced by the plant hormone abscisic acid in response to water stress encodes a glycine-rich protein [J]. Nature, 1988, 334: 262-264.
    19. Gualberto J M, Bonnard G, Lamattina L, et al. Expression of the wheat mitochondrial nad3-rps12 transcription unit: correlation between editing and mRNA maturation [J]. Plant Cell, 1991, 3: 1109-1120.
    20. Graham L A, Davies P L. Glycine-rich antifreeze proteins from snow fleas [J]. Science, 2005, 310(5747): 461-461.
    21. Moffatt B, Ewart V, Eastman A. Cold comfort: plant antifreeze proteins [J]. Physiologia Plantarum, 2006, 126(1): 5-16.
    22. Wei L B, Jiang Y, Shu N H, et al. Biological characterization of heat-stable antifreeze proteins from leaves of Ammopiptanthus mongolicus [J]. Acta Botanica Sinica, 1999, 41(8): 837-841.
    23. Chris S, Sarah B, Paul P, et al. Heat-stable antifreeze protein from grass [J]. Nature, 2000, 406: 256.
    24. Wharton D A, Barrett J, Goodall G, et al. Ice-active proteins from the Antarctic nematode Panagrolaimus davidi [J]. Cryobiology, 2005, 51(2): 198-207.
    25. Fairbrother A, Craig M A, Walker K, et al. Changes in mallard (Anas platyrhynchos) serum chemistry due to age, sex, and reproductive condition [J]. Journal of Wildlife Diseases, 1990, 26(1): 67-77.
    26. Gilbert J A, Davies P L, Laybourn-Parry J. A hyperactive, Ca2+-dependent antifreeze protein in an Antarctic bacterium [J]. Fems Microbiology Letters, 2005, 245(1): 67-72.
    27. Yamashita Y, Miura R, Takemoto Y, et al. Type II antifreeze protein from a mid-latitudefreshwater fish, Japanese smelt (Hypomesus nipponensis) [J]. Bioscience Biotechnology and Biochemistry, 2003, 67(3): 461-466.
    28. Nishimiya Y, Kondo H, Yasui M, et al. Crystallization and preliminary X-ray crystallographic analysis of Ca2+-independent and Ca2+-dependent species of the type II antifreeze protein [J]. Acta Crystallographica Section F-Structural Biology and Crystallization Communications, 2006, 62: 538-541.
    29. Achenbach J C, Ewart K V. Structural and functional characterization of a C-type lectin-like antifreeze protein from rainbow smelt (Osmerus mordax) [J]. European Journal of Biochemistry, 2002, 269(4): 1219-1226.
    30. Ewart K V, Blanchard B, Johnson S C, et al. Freeze susceptibility in haddock (Melanogrammus aeglefinus) [J]. Aquaculture, 2000, 188(1-2): 91-101.
    31. Stressmann M, Kitao S, Griffith M, et al. Calcium interacts with antifreeze proteins and chitinase from cold-acclimated winter rye [J]. Plant Physiology, 2004, 135: 364-376.
    32. Davies P L, Baardsnes J, Kuiper M J, et al. Structure and function of antifreeze proteins [J]. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 2002, 357(1423): 927-933.
    33. Wilson P W. A model for thermal hysteresis utilizing the anisotropic interfacial energy of ice crystals [J]. Cryobiology, 1994, 31(4): 406-412.
    34. Meyer K, Keil M, Naldrett M J. A leucine-rich repeat protein of carrot that exhibits antifreeze activity [J]. Febs Letters, 1999, 447(2-3): 171-178.
    35. Worrall D, Elias L, Ashford D, et al. A carrot leucine-rich-repeat protein that inhibits ice recrystallization [J]. Science, 1998, 282(5386): 115-117.
    36. Smallwood M, Worrall D, Byass L, et al. Isolation and characterization of a novel antifreeze protein from carrot (Daucus carota) [J]. Biochemical Journal, 1999, 340: 385-391.
    37. Zhang C, Zhang H, Wang L. Effect of carrot (Daucus carota) antifreeze proteins on the fermentation capacity of frozen dough [J]. Food Research International, 2007, In Press.
    38. Graham L A, Liou Y C, Walker V K, et al. Hyperactive antifreeze protein from beetles [J]. Nature, 1997, 388(6644): 727-728.
    39. Deng G J, Andrews D W, Laursen R A. Amino acid sequence of a new type of antifreeze protein: From the longhorn sculpin Myoxocephalus octodecimspinosis [J]. Febs Letters, 1997, 402(1): 17-20.
    40. Kyte J, Doolittle R F. A simple method for displaying the hydropathic character of a protein [J]. J. Mol. Biol., 1982, 157: 105-132.
    41. Zhang C, Zhang H, Wang L, et al. Purification, properties and amino acid sequence of a novel glycine-rich antifreeze protein from winter-wheat bran (Triticum aestivum L.) [J].Food Chemistry, 2007, Submitted.
    42. Daley M E, Graether S P, Sykes B D. Hydrogen bonding on the ice-binding face of a beta-helical antifreeze protein indicated by amide proton NMR chemical shifts [J]. Biochemistry, 2004, 43(41): 13012-13017.
    43. Dalal P, Knickelbein J E, Haymet A D J, et al. Hydrogen bond analysis of the type 1 antifreeze protein in the water and the ice/water interfacial region [J]. Abstracts of Papers of the American Chemical Society, 2001, 222: U398-U399.
    44. Haymet A D J, Ward L G, Harding M M. Hydrophobic analogues of the winter flounder 'antifreeze' protein [J]. Febs Letters, 2001, 491(3): 285-288.
    45. Zhang C, Zhang H, Wang L. Effect of carrot (Daucus carota) antifreeze proteins on the fermentation capacity of frozen dough [J]. Food Research International, 2007, 40: 763-769.
    1.阎隆飞,孙之荣,蛋白质分子结构[M]. 1999,北京:清华大学出版社. 177-181.
    2.来鲁华,蛋白质的结构预测与分子设计[M].第1版ed. 1993,北京:北京大学出版社. 49.
    3.王兵,蛋白质相互作用及其位点的预测方法, in模式识别与智能系统. 2006,中国科学科技大学:合肥. p. 123.
    4.汤海旭,陈洁.蛋白质柔性复合物的结构预测[J].生物物理学报, 1998, 14: 750-756.
    5. Akito T, Hirotaka Y, Kengo F, et al. Determination of amino acid sequence responsible for suppression of bone resorption by serum calcium-decreasing factor (caldecrin) [J]. FEBS Letters, 2001, 508: 454-458.
    6. Naoko Y, Naoshi D, Koji T, et al. Purification, properties, and partial amino acid sequences of alanine racemase from the muscle of the black tiger prawn Penaeus [J]. Comparative Biochemistry and Physiology Part B, 2002, 133: 445-453.
    7. Keil B, Specificity of proteolysis [M]. 1992, New York: Springer-Verlag Berlin-Heidelberg-NewYork. 335.
    8. Bornstein P, Balian G. Cleavage at Asn-Gly bonds with hydroxylamine [J]. Methods in Enzymology, 1977, 47: 132-144.
    9. Drapeau G R. Substrate specificity of aproteolytic enzyme isolated from a mutant of Pseudomonas fragi [J]. J Biol Chem., 1980, 255: 839-840.
    10.王贤纯,梁宋平.电喷雾串联质谱图的叠合与多肽序列分析[J].生物化学与生物物理学报, 2001, 33: 665-670.
    11. Noga M, Lewandowski J, Suder P, et al. An enhanced method for peptides sequencing by N-terminal derivatization and MS [J]. Proteomics, 2005, 5: 4367-4375.
    12. Carey P R, Fast P, Kaplan H, et al. Molecular structure of the protein crystal from Bacillus thuringiensis: a Raman spectroscopic study [J]. Biochima et Biophysica Acta, 1986, 872: 169-176.
    13.刘媛,谢孟峡,康娟.三七总皂甙对牛血清白蛋白溶液构象的影响[J].化学学报, 2003, 61(8): 1305-1310.
    14. Surewicz W K, Mantsch H H. New insight into protein secondary structure from resolution-enhanced infrared spetra [J]. Biochimica et Biophysica Acta, 1988, 952: 115-130.
    15.许以明,杨红英,张志义.竹红菌乙素敏化的人红细胞膜结构光损伤的Raman光谱特征[J].中国科学:C辑, 1999, 029(002): 138-144.
    16.许以明,拉曼光谱及其在结构生物学中的应用[M].第一版ed. 2005,北京:化学工业出版社.
    17. Nakamura S, Magoshi J, Magoshi Y, In Silk Polymers [M]. Materials Science and Biotechnology, ed. D. Kaplan, et al. Vol. Symposium Series 544. 1994, Washington: American Chemical Society. 211~221.
    18. Shen Y, Wu P Y. Two-dimensional ATR-FTIR spectroscopic investigation on water diffusion in polypropylene film: water bending vibration [J]. J. Phys. Chem. , 2003, 107: 4224-4226.
    19. Noda I, Dowrey A E, Marcott C, et al. Generalized two-dimensional correlation spectroscopy [J]. Appl. Spectrosc., 2000, 54: 236-246.
    20.王琪,胡鑫尧.三维光谱学—二维红外光谱和时间分辨光谱[J].光谱学与光谱分析, 2000, 20(2): 175-179.
    21. Byler D M, Brouillette J N. Quantitative studies of protein structure by FT-IR spectra disconsolation and curve-fitting [J]. Spectroscopy, 1986, 3: 29-32.
    22. Watanabe R, Masui R, Mikawa T, et al. Interaction of Escherichia coli RecA protein with ATP and its analogues [J]. J. Biochem. (Tokyo) 1994, 116: 969-966.
    23. Garnier J, Gibrat J F, Robson B. GOR secondary structure prediction method version IV [J]. Methods in Enzymology, 1996, 268: 540-553.
    24. Geourjon C, Deléage G. SOPMA: Significant improvement in protein secondary structure prediction by consensus prediction from multiple alignments. [J]. Cabios 1995, 11: 681-684.
    25. Guermeur Y, Hierarchical neural network result for : UNK_61430, in PhD Thesis. .
    26. Raghava G P S. Protein secondary structure prediction using nearest neighbor and neural network approach [J]. CASP4, 2000: 75-76.
    27. Pollastri G, McLysaght A. Porter: a new, accurate server for protein secondary structure prediction [J]. Bioinformatics, 2005, 21(8): 1719-1720.
    28. Vullo A, Walsh I, Pollastri G. A two-stage approach for improved prediction of residue contact maps [J]. BMC Bioinformatics, 2006, 7: 180.
    29. Vullo A, Bortolami O, Pollastri G, et al. Spritz: a server for the prediction of intrinsically disordered regions in protein sequences using kernel machines [J]. Nucleic Acids Research, 2007, In Press.
    30. Duman J G, Verleye D, Li N. Site-specific forms of antifreeze protein in the beetle Dendroides canadensis [J]. Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology, 2002, 172(6): 547-552.
    31.田宗成,中国蓝氏贾第虫病毒的鉴定、全长cDNA构建及部分衣壳蛋白表达,中国人民解放军军需大学.
    32. Lei M, Wu R. A novel glycine-rich cell wall protein gene in rice [J]. Plant Mol. Biol., 1991, 16: 187-198.
    33. Yu J, Wang J, Lin W, et al. The genomes of Oryza sativa: a history of duplications [J]. PLoS Biol., 2005, 3: 38.
    34. Peacock C S, Seeger K, Harris D, et al. Comparative genomic analysis of three Leishmania species that cause diverse human disease [J]. Nat. Genet., 2007, 39: 839-847.
    35. Ivens A C, Peacock C S, Worthey E A, et al. The genome of the kinetoplastid parasite, Leishmania major [J]. Science, 2005, 309: 436-442.
    36. Lei M, Wu R, rice."; A n g-r c w p g i, et al. A novel glycine-rich cell wall protein gene in rice [J]. Plant Mol. Biol. , 1991, 16: 187-198.
    37. Gilberto S M, Luciana O F, Dulce E O. Plant glycine-rich proteins: a family or just proteinswith a common motif? [J]. Biochimica et Biophysica Acta, 2000, 1429: 1-14.
    38. Reddy A S N, Poovaiah B W. Accumulation of a glycine rich protein in auxin-deprived strawberry fruits [J]. Biochem. Biophys. Res. Commun., 1987, 147: 885-891.
    39. Luo M, Lin L, Hill R D, et al. Primary structure of an environmental stress and abscisic acid-inducible alfalfa protein [J]. Plant Mol. Biol., 1991, 17: 1267-1269.
    40. Luo M, Liu J H, Mohapatra S, et al. Characterization of a gene family encoding abscisic acid- and environmental stress-inducible proteins of alfalfa [J]. J. Biol.Chem., 1995, 267: 15367-15374.
    41. Godoy J A, Pardo J M, Pintor-Toro J A. A tomato cDNA inducible by salt stress and abscisic acid: nucleotide sequence and expression pattern [J]. Plant Mol. Biol., 1990, 15: 695-705.
    42. Heintzen C, Melzer S, Fischer R, et al. A light-and temperature-entrained circadian clock controls expression of transcripts encoding nuclear proteins with homology to RNA-binding proteins in meristematic tissue [J]. Plant J., 1994, 5: 799-813.
    43. Carpenter C D, Kreps J A, Simon A E. Genes encoding glycine-rich Arabidopsis thalian proteins with RNA-binding motifs are influenced by cold treatment and an endogenous circadian rhythm [J]. Plant Physiol, 1994, 104 1015-1025.
    44. de Oliveira D E, Seurinck J, Inze D, et al. Differential expression of five arabidopsis genes encoding glycine-rich proteins [J]. Plant Cell 1990, 2: 427-436.
    45. Kingsley P D, Palls J. GRP2 proteins contain both CCHC zinc fingers and a cold shock domain [J]. Plant Cell, 1994, 6: 1522-1523.
    46. Condit C M, Meagher R B. Expression of a gene encoding a glycine-rich protein in petunia. [J]. Molecular and Cellular Biology, 1987, 7: 4273-4279.
    47. Kristiansen E, Ramlov H, Hagen L, et al. Isolation and characterization of hemolymph antifreeze proteins from larvae of the longhorn beetle Rhagium inquisitor (L.) [J]. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology, 2005, 142(1): 90-97.
    48. Grasselli J, Bulkin G B J, Analytical raman spectroscopy [M]. 1991: New York : John Wiley and Sons.
    49. Yada R Y, Jackman R L, Smith J L. Secondary structure prediction and determination of proteins--a review [J]. International Journal of Peptide Protein Research, 1988, 31(1): 98-108.
    50.谢孟峡,刘俊.红外光谱酰胺III带用于蛋白质二级结构的测定研究[J].高等学校化学学报, 2003, 24(2): 226-231.
    51.肖和兰,孙素琴,周群等.温度对胶原蛋白结构影响的二维红外相关光谱的研究[J].原子与分子物理学报, 2003, 20(2): 211-218.
    52.吴谨光,近代傅立叶变换红外光谱技术及应用[M]. 1994,北京:科学技术文献出版社.
    53. Carter D C, Ho J X. Structure of serum albumin [J]. Adv. Protein Chem., 1994, 45: 153-160.
    54. Mallapragada S K, Peppas N A. Dissolution mechanism of semicrystalline poly(vinylalcohol) in water [J]. Journal of Applied Polymer Science, 1996, 34: 1339-1346.
    55. Somania P R, Marimuthua R, Viswanatha A K, et al. Thermal degradation properties of solid polymer electrolyte (poly(vinylalcohol) + phosphoric acid) /methylene blue composites [J]. Polymer Degradation and Stability, 2003, 79: 77-83.
    56. Byler D M, Brouillette J N, Susi H. Quantitative studies of protein structure by FT-IR spectra deconvo1ution and curve-fitting [J]. Spectroscopy, 1986, 3: 29-32.
    57.申婷婷,付常璐,牟宗刚等.二维红外相关光谱法的分析[J].济南大学学报(自然科学版), 2007, 21(2): 124-129.
    58.沈怡,彭云,武培怡等.二维相关振动光谱技术[J].化学进展, 2005, 17(3): 500-502.
    59. Isao N. Advance in two-dimensional correlation spectroscopy [J]. Vibrational Spectroscopy, 2004, 36: 143-165.
    60. Slobo D, Jiang J-H, Ozaki Y. Potentials of variable- variable and sample-sample, generalized and statistical, two-dimensional correlation spectroscopy in investigations of chemical reactions [J]. Chemometrics and Intelligent Laboratory Systems, 2003, 65: 1-15.
    61.秦竹,许长华,周群等.二维相关红外光谱与奶粉的品质分析[J].分析化学, 2004, 32: 1156-1160.
    62.殷志祥.蛋白质结构预测方法的研究进展[J].计算机工程与应用, 2004, 20: 54-57.
    63.单良,麦胚凝集素的分离纯化以及功能特性的研究, in食品学院. 2005,江南大学:无锡. p. 117.
    64.杨宇红,邵正中,陈新.光谱法研究pH值对再生桑蚕丝素蛋白在水溶液中结构的影响[J].化学学报, 2006, 64(16): 1730-1736.
    65.李春华,马晓慧,陈慰祖等.蛋白质-蛋白质分子对接方法研究进展[J].生物化学与生物物理进展, 2006, 33(7): 616-621.
    66. Smith G R, Sternberg M J E, Bates P A. The relationship between thef lexibilityo fp roteinsa ndt heirc onformational states on forming protein-protein complexes with application to protein-protein docking [J]. J Mol Biol 2005, 347(5): 1077-1101.
    67.于淑惠,袁可,杨应斌.基于信息熵的蛋白质二级结构预测算法的准确性研究[J].生物信息学, 2006, 5: 19-22.
    68.张阳德,生物信息学[M]. 2009.9,北京:科学出版社.
    69. Okuno A, Kato M, Taniguchi Y. The secondary structure of pressure- and temperature-induced aggregates of equine serum albumin studied by FT-IR spectroscopy [J]. Biochimica et Biophysica Acta, 2006, 1764: 1407-1412.
    70. Stefanie S, Wolfgang F, Karoline B-P, et al. Conformational analysis of protein secondary structure during spray-drying of antibody/mannitol formulations [J]. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 65: 1-9.
    1. Harlow E P, Whyte B R, Franza J, et al. Association of adenovirus early-region 1A protein with cellular polypeptides [J]. Mol Cell Biol, 1986, 6(5): 1579-1589.
    2. McMathon S B, VanBuskirk H A, Dugan K A. The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins [J]. Cell, 1998, 94(3): 363-374.
    3. Mitchell D A, Marshall T K, Deschenes R J. Vectors for the induciable overpression of glutathione S-transferase fusion protein in yeast [J]. Yeast, 1993, 9(7): 715-722.
    4. Carr D W, Scott J D. Blotting and band-shifting: techniques for studying protein-protein interaction [J]. Trends Biochem Sci, 1992, 17(7): 264-269.
    5. Gunzburg J R R, Weinberg R A. Identification of a protein associated with p21ras bychemical crosslinking [J]. Proc Natl Acad Sci USA, 1989, 86(11): 4007-4011.
    6. Williams C, Addona T A. The integration of SPR biosensors with mass spectrometry: possible applications for proteome analysis [J]. Trends Biotechnol, 2000, 18(2): 45-48.
    7. Multhaup G, Strausak D, Bissig K D. Interaction of the CopZ copper chaperone with the CopA copper ATPase of Enterococcus hirae assessed by surface plasmon resonance [J]. Biochem Biophys Res Commun, 2001, 288(1): 172-177.
    8. Mochizuki N, Yamashita S, Kurokawa K, et al. Spatio-temporal images of growth-factor-induced activation of Ras and Rapl [J]. Nature, 2001, 411(6841): 1065-1068.
    9. FitzGerald K. Invitro display technologies– new tools for drug discovery [J]. Drug Discovery Today, 2000, 5(6): 253-258.
    10. Costa P J, Amdt K M. Synthetic lethal interactions suggest a role for the Saccharomyces Cerevisias Rtf1 protein in transcription elongation [J]. Genetics, 2000, 156(2): 535-547.
    11.王兵,蛋白质相互作用及其位点的预测方法, in模式识别与智能系统. 2006,中国科学科技大学:合肥. p. 123.
    12. Dalal P, Madura J D. Computational modeling of antifreeze protein: Ice interactions [J]. Abstracts of Papers of the American Chemical Society, 2000, 220: U292-U292.
    13. Sonnichsen F D, Dalal P D. Modeling of the type I antifreeze protein - Ice interface [J]. Biophysical Journal, 1998, 74(2): A145-A145.
    14. Edwards A R, A molecular modeling study of the winter flounder antifreeze peptide as a potential kinetic hydrate inhibitor, in International Conference on Natural Gas Hydrates. 1994. p. 543-544.
    15. Dewar M J S, Zoebisch E G, Healy E F, et al. AM1: a new general purpose quantum mechanical mode [J]. Journal American Chemical Society, 1985, 107: 3902-390.
    16. Dewar M J S, Thiel W. Ground states of molecules. 38. The MNDO Method. Approximations and Parameters [J]. Journal American Chemical Society, 1977, 99: 4899.
    17. Sali A, Overington J P. Derivation of rules for comparative protein modeling from a database of protein structure alignments [J]. Protein Science, 1994, 3(9): 1582-1596.
    18. Sali A, Potterton L, Yuan F, et al. Evaluation of comparative protein modeling by MODELLER [J]. Proteins: Structure, Function, and Genetics, 2004, 23(3): 318-326.
    19. Biosym, ed. Discover 3 User Guide. 1999, MSI: San Diego, USA.
    20. Kroemer R T, Doughty S W, Robinson A J, et al. Prediction of the three-dimensional structure of human interleu- kin-7 by homology modeling [J]. Protein Engineering, 1996, 9(6): 493-498.
    21. Wierzbicki A, Madura J D, Salmon C, et al. Modeling studies of binding of sea raven type II antifreeze protein to ice [J]. Journal of Chemical Information and Computer Sciences, 1997,37(6): 1006-1010.
    22. Cheng A, Merz K M. Ice-binding mechanism of the antifreeze protein by MD simulations [J]. Progress in Biophysics & Molecular Biology, 1996, 65: PA310-PA310.
    23.李志军,康建成.北极生长的多年海冰晶体结构分析[J].冰川冻土, 2001, 23(4): 383-388.
    24. Dodge C, Schneider R, Sander C. The HSSP database of protein structure-sequence alignments and family profiles [J]. Nucleic Acids Research, 1998, 26(1): 313-315.
    25.岳俊杰,蛋白质结构同源建模方法研究及芋螺毒素与钙通道相互作用的计算机模拟, in军事医学科学院. 1999,军事医学科学院:北京. p. 78.
    26. Lin F H, Graham L A, Campbell R L, et al. Structural modeling of snow flea antifreeze protein [J]. Biophysical Journal, 2007, 92: 1717-1723
    27. Engelman D M, Steitz T A, Goldman A. Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins [J]. Annu. Rev. Biophys. Biophys. Chem. , 1986, 15: 321-353.
    28. Yang D S C, Hon W C, Bubanko S, et al. Identification of the ice-binding surface on a type III antifreeze protein with a "Flatness function" algorithm [J]. Biophysical Journal, 1998, 74(5): 2142-2151.
    29. Jia Z C, DeLuca C I, Chao H M, et al. Structural basis for the binding of a globular antifreeze protein to ice [J]. Nature, 1996, 384(6606): 285-288.
    30. Ewart K V, Rubinsky B, Fletcher G L. Structural and functional similarity between fish antifreeze proteins and calcium-dependent lectins [J]. Biochemical and Biophysical Research Communications, 1992, 185(1): 335-340.
    31. Haymet A D J, Ward L G, Harding M M. Winter flounder "antifreeze" proteins: Synthesis and ice growth inhibition of analogues that probe the relative importance of hydrophobic and hydrogen-bonding interactions [J]. Journal of the American Chemical Society, 1999, 121(5): 941-948.
    32. Loewen M C, Chao H M, Houston M E, et al. Alternative roles for putative ice-binding residues in type I antifreeze protein [J]. Biochemistry, 1999, 38(15): 4743-4749.
    33. Chen G J, Jia Z C. Ice-binding surface of fish type III antifreeze [J]. Biophysical Journal, 1999, 77(3): 1602-1608.
    34. Liu K, Jia Z C, Chen G J, et al. Systematic size study of an insect antifreeze protein and its interaction with ice [J]. Biophysical Journal, 2005, 88(2): 953-958.
    35. Liu J J, Li Q Z. A theoretical model on thermal hysteresis activity of the winter flounder protein 'HPLC-6' [J]. Chemical Physics Letters, 2003, 378(3-4): 238-243.
    36.周文富.基团轨道相互作用理论与应用[J].化学通报, 1992, 4: 55-59.
    37.陈强,谭民裕,刘伟生.超分子中分子间弱相互作用力的研究方法概述[J].化学通报, 2001, 4: 236-239.
    38.冯玉玲.π电子自洽场分子轨道理论及其应用[J].大学化学, 2000, 15(6): 51-54.
    39.谢菊芳,易伟松,熊刚等.高压静电场对植物细胞跨膜电位的影响及机理初探[J].湖北大学学报(自然科学版), 2002, 24(3): 235-237.
    40. Jason D T, Christopher J C, Donald G T. Parameterization of charge model 3 for AM1, PM3, BLYP, and B3LYP [J]. Journal of Computational Chemistry, 2003, 24(11): 1291 - 1304.
    41.李永红,徐文媛.四唑异构体异构反应的量子化学研究[J].江西师范大学学报:自然科学版, 1997, 21(2): 142-145.
    42.蒋华良,陈凯先.溶剂效应量子化学研究进展[J].化学通报, 1995, 4: 1-6.
    43.贡雪东, Bast G. DELPHI有机共轭体系MM力场的优化和应用[J].化学学报, 1997, 55(5): 440-447.
    44.李燕峰,徐慧.材料学中微观结构领域的计算方法[J].材料导报, 2004, 18(9): 1-4.
    45. Raymond J A, Devries A L. Abroption inhibition as a mechanis moffreezing resistance in polar fishes [J]. Proc. Natt. Acad. Sci. USA, 1997, 74: 2589-2593.
    46. Jia Z C, Davies P L. Antifreeze proteins: an unusual receptor-ligand interaction [J]. Trends in Biochemical Sciences, 2002, 27(2): 101-106.
    47. Knight C A, Driggers E, Devries A L. Adsorption to ice of fish antifreeze glycopeptide-7 and glycopeptide-8 [J]. Biophysical Journal, 1993, 64(1): 252-259.
    48. Knight C A, Devries A L. Effects of a polymeric, nonequilibrium antifreeze upon ice growth from water [J]. Journal of Crystal Growth, 1994, 143(3-4): 301-310.
    49. Devries A L. Antifreeze peptides and glycopeptides in cold-water fishes [J]. Annual Review of Physiology, 1983, 45: 245-260.
    50. Yang D S C, Sax M, Chakrabartty A, et al. Crystal-structure of an antifreeze polypeptide and its mechanistic implications [J]. Nature, 1988, 333(6170): 232-237.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700