改性多孔材料常温下吸附分离密闭空间二氧化碳
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在密闭空间中,如载人航天飞行器、空间站和潜艇等,CO2去除是环境控制与生命保障系统的重要任务之一,其浓度过高将直接危害人体健康。密闭空间中CO2去除技术首先要求高效、稳定和安全,其次是装置体积小、重量轻、能耗低、寿命长,以及操作和维护简便。本论文围绕上述目标,基于吸附法效率高、可再生、低能耗和工艺相对简单等优势,选用新型多孔材料SBA-16和碳纳米管(CNTs)为载体、富氨基材料为改性剂开发制备新型CO2吸附剂。通过表面分析和性能测试对所合成吸附剂进行优选,并在模拟密闭空间条件下对优选出的固体胺吸附剂进行性能研究,并设计比较最佳脱附工艺,为实际应用奠定理论研究基础。得到以下一些结论:
     以多孔材料SBA-16、NTs为载体,四乙烯五胺(TEPA)、三乙烯四胺(TETA)为氨基改性剂,采用浸渍法合成新型CO2吸附剂。研究结果表明,吸附剂通过浸渍改性后均保持了原有主孔道结构。吸附剂的比表面积、孔容以及孔径随着TETA或TEPA浸渍量的增加而减小。改性后SBA-16和CNTs吸附剂的CO2吸附量随着TETA或TEPA浸渍量的升高而增加,并存在最佳浸渍量,均为30wt%左右。改性后SBA-16和CNTs吸附剂的C02吸附量随着吸附温度(288-308K)的升高而增大,在308K时,样品CTP-30和CTT-30表现出较高的吸附容量,分别为3.37mmol·g-1和2.65mmol·g-1。经过5次的吸附脱附循环再生,改性后SBA-16和CNTs吸附剂均表现出较为稳定的吸附性能。
     固定床动态吸附实验表明,在实际密闭空间温度范围内(283-313K),随着温度的升高,样品CTP-30的CO2动态吸附量从2.52mmol·g-1升至3.56mmol·g-1,其吸附C02过程以化学吸附为主,在283~313K之间,CTP-30的化学吸附量qec占吸附量q的比例达到74%以上。CTP-30对CO2的吸附等温线(283~313K)属于Ⅰ型吸附等温线。利用Langmuir方程模拟实验所得结果,相关系数均大于0.99,其平均等量吸附热为32.68kJ·mol-1
     气体中一定量水分的存在能提高CTP-30的CO2吸附量。在298K时,随着混合气体中水汽含量由0%升至2%,吸附量由2.97mmol·g-1增加到3.87mmol·g-1。但随着水汽含量继续增加到7%,吸附量逐渐下降,基本保持在2.67mmol·g-1。采用半吸附时间作为衡量手段,考察改性CNTs在密闭空间环境下对低浓度CO2的吸附动力学。在模拟密闭空间环境空气条件下,CTP-30吸附剂具有良好的吸附再生稳定性。经过20次的循环吸附脱附实验后,CO2的吸附容量有所下降,但吸附容量仍维持在3.68mmol·g-1以上。利用失活动力学模型对CTP-30在不同反应条件下的CO2吸附穿透曲线进行模拟分析。结果证明,模拟曲线与实验结果的相关系数R2均大于0.99。
     CTP-30吸附剂具有良好的脱附再生性能。TPD实验结果发现CTP-30存在两个明显的强弱脱附峰,其脱附温度分别为313K和358K。采用真空加热耦合脱附技术后,CTP-30可以在较低温度下(353K)实现脱附,脱附效率达到95%以上。而在5kPa压力,373K温度的脱附条件下实验所得初始最高脱附速率明显高于其它条件下的脱附速率,达到了0.7mmol·min-1,且在15min内达到基本完全脱附。根据实验结果,设计空间站小型改性碳纳米管两床式CO2清除概念装置,要求吸附脱附过程同时交替进行,单位操作时间为30min。吸附床层总容积为0.06m3,装置的处理量为0.3m3·h-1,最低耗能约为22.9kWh·kg-1CO2,可支持空间站内10名宇航员同时工作,同时将密闭舱室CO2浓度控制在03%以下。本研究对烟气中CO2的捕集也有借鉴意义。
CO2would be harmful and needs to be removed in confined space, such as submarines and space capsules. A key function of environment control and life support system is the removal of metabolic CO2from the atmosphere in the living quarters. The system needs indicate that any future CO2sequestration technologies must be high efficiency, stable and secure, and then the device must be small, light, low energy consumption, durable and easy operation. In this paper, according to the advantages of adsorption method, we developed a series of solid amine adsorbents by impregnating TEPA and TETA into SBA-16and CNTs porous material support. This material removed CO2at a low concentration at ambient temperature, similar to cabin atmosphere conditions. The adsorption and desorption performance of the adsorbent was investigated at a fixed-bed column. The main conclusions are as follows:
     The solid amine adsorbents for CO2removal were developed by SBA-16and CNTs impregnated with TEPA or TETA. After impregnation, the shapes, fundamental channels and pore structures of adsorbents were not changed. But the surface area and pore volumn decreased remarkably with the increasing amine loading amounts. And the CO2adsorption capacity was changed with a contrary tendency.The maximum amount of amine loading in the pore channel was about30wt.%. After modification, the CO2adsorption capacity improved with the temperature (288-308K). When the temperature reached308K, the maximum capacity was3.37and2.65mmol·g-1fo CTP-30and CTT-30, respectively. The adsorption performance of modified SBA-16and CNTs was relatively stable afer5adsorption/desorption cycles.
     The CO2adsorption capacity of CTP-30was remarkably improved with the increasing temperature from2.52to3.56mmol·g-1with the increasing temperature from283to313K. And the adsorption of CO2on CTP-30was mainly chemisorption. The ratio of chemisorption capacity was no less than74%of total adsorption capacity. The shapes of the adsorption isotherms of for CTP-30corresponded to type I at various temperatures. The average isosteric heat of adsorption is32.68kJ·mol-1.
     The adsorption capacity was also influenced by moisture.It increased significantly from2.97to2.88mmol·g-1as the water vapor increased from0to2%but began to decrease from3.88to2.67mmol·g-1as the water vapor further increased from2to7%. As a preliminary assessment of the adsorption kinetics of these materials under low CO2concentration, the adsorption half time was measured using the fixed-bed column. The CTP-30also exhibited a relatively stable CO2regeneration performance in adsorption capacity after20cycles, which remained around3.68mmol·g-1. In all cases, the experimental data agreed with the predicated breakthrough model. The regression analysis values of the data were0.99or higher under various conditions.
     CTP-30exihibited an excellent regenerabtion performance. The TPD results indicated that CTP-30had two desorption peaks at313K and358K, respectively. And vacuum and temperature swing adsorption (VTSA) was used to regenerate CO2. The results implied that the regeneration can be operated at relatively low temperature (353K) and the efficiency was95%or higher.The initial desorption rate of CTP-30(5kPa,373K) was quicker than that in other conditions (0.71mmol·min-1) and the adsorbent could be completely regenerated in15min. According to the results, a two-bed device using CTP-30was conceptually designed to remove CO2in space station, alternating between adsorption and desorption process. The operation unite time was about30min.The bed volumn was about0.06mJ, the blowing rate was0.3m3·h-1and the consumption energy was22.9kWh·kg-1CO2. The device can support up to10astronauts working inside the space station simultaneously, and can keep the CO2concentration around0.3%. The results also have some practical value to the CO2capture in flue gas application.
引文
1. Choi, S; Drese, J.H.; Eisenberger, P.M.; Jones, C.W., Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2009, 2, (9),796-854.
    2. IPCC, An assessment of the Intergovernmental panel on climate change. In 2007.
    3. Ammann, C. M.; Joos, F.; Schimel, D. S.; Otto-Bliesner, B. L.; Tomas, R. A., Solar influence on climate during the past millennium:Results from transient simulations with the NCAR Climate System Model. Proceedings of the national academy of sciences 2007,104, (10),3713.
    4. Anderson, K.; Bows, A., Reframing the climate change challenge in light of post-2000 emission trends. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2008,366, (1882),3863-3882.
    5. Solomon, S.; Plattner, G. K.; Knutti, R.; Friedlingstein, P., Irreversible climate change due to carbon dioxide emissions. Proceedings of the national academy of sciences 2009,106, (6),1704.
    6. GHG, I. CO2 Capture in the Cement Industry. International Energy Agency Greenhouse Gas R&D Programme, Technical Study; Report:2008.
    7. Serna-Guerrero, R.; Sayari, A., Modeling adsorption of CO2 on amine-functionalized mesoporous silica.2:Kinetics and breakthrough curves. Chemical Engineering Journal 2010,161, (1-2),182-190.
    8. Barta, D.; Henninger, D., Regenerative life support systems--Why do we need them? Advances in Space Research 1994,14, (11),403-410.
    9.郑东欢;李玉文;陈兆波;李永峰,水下航行器舱室内CO2的去除及O2再生工艺系统设计.环境工程学报2009,3,(1),137-142.
    10. Satyapal, S. F., T.; Michels, H.; Graf, J.. In a unique solid amine sorbent useful for caption low concentrations of carbon dioxide, the 4th International Greenhouse Gas Control Conference on Greenhouse Gas Control Technologies, Interlaken, Switzerland,1998; Elsevier Science:Interlaken, Switzerland,1998; pp 113-117.
    11.汪波;耿世彬;韩旭,封闭空间CO2气体去除技术的研究现状与展望.建筑热能通风空调2007,26,(6).
    12. Oyenekan, B. A.; Rochelle, G. T., Alternative stripper configurations for CO2 capture by aqueous amines. AIChE Journal 2007,53, (12),3144-3154.
    13. Knox, J. C.; Howard, D. F. In Performance enhancement, power reduction, and other flight concerns- Testing of the CO2 Removal Assembly for ISS,1999; 1999.
    14. Supra, L. N.; Brasseaux, S. F. In Molecular sieve CO2 removal systems-International Space Station and Lunar-Mars Life Support Test Project,1997; 1997.
    15. Brasseaux, S. F.; Graf, J. C.; Lewis, J. F.; Meyers, K. E.; Rosenbaum, M. L.; Supra, L. N. In Performance of the physicochemical air revitalization system during the Lunar-Mars Life Support Test Project Phase Ⅲ test,1998; 1998.
    16. Hwang, H. T.; Harale, A.; Liu, P. K. T.; Sahimi, M.; Tsotsis, T. T., A membrane-based reactive separation system for CO2 removal in a life support system. Journal of Membrane Science 2008,315, (1-2),116-124.
    17. Kovvali, A. S.; Sirkar, K., Dendrimer liquid membranes:CO2 separation from gas mixtures. Industrial & Engineering Chemistry Research 2001,40, (11),2502-2511.
    18. Dindore, V.; Brilman, D.; Feron, P.; Versteeg, G., CO2 absorption at elevated pressures using a hollow fiber membrane contactor. Journal of Membrane Science 2004,235,(1-2),99-109.
    19. Dindore, V. Y.; Brilman, D. W. F.; Geuzebroek, F. H.; Versteeg, G. F., Membrane-solvent selection for CO2 removal using membrane gas-liquid contactors. Separation and Purification Technology 2004,40, (2),133-145.
    20.秦向东;温铁军;金美芳,脱除与浓缩二氧化碳的膜分离技术.膜科学与技术1998,18,(6),7-13.
    21.杜大庆,密闭舱室膜分离吸收二氧化碳技术的探讨.舰船防化2004,(2),28-31.
    22. Sridharab, S. S., B.;Aminabhavia,T. M., Separation of Carbon Dioxide from Natural Gas Mixtures through Polymeric Membranes. Separation & Purification Reviews 2007,36, (2),113-174.
    23. Toft, G.; Cassidy, S.; Lunn, M., Supported liquid membranes for carbon dioxide removal from submarine atmospheres:Experiences with a technology demonstrator. SAE Technical Paper 2001,01-2394.
    24. Sychev, V.; Levinskikh, M.; Gurieva, T.; Podolsky, I., Biological life support systems for space crews:Some results and prospects. Human Physiology 2011,37, (7), 784-789.
    25. Sychev, V. N.; Levinskikh, M. A.; Podolsky, I. G, Biological component of life support systems for a crew in long-duration space expeditions. Acta Astronautica 2008,63,(7-10),1119-1125.
    26. Bolsunovsky, A.; Zhavoronkov, V., Prospects for using microalgae in life-support systems. SAE Transactions 1996,104,544-552.
    27. Barta, D.; Henninger, D., Johnson Space Center's regenerative life support systems test bed. Advances in Space Research 1996,18, (1-2),211-221.
    28. Adachi, T.; Miya, A., Microalgae culturing reactor for carbon dioxide elimination and oxygen recovery-CO2 fixation activity under various irradiation cycle. SAE Transactions 1994,103,1038-1038.
    29. Bolsunover, A.; Zhavoronks, V., Prospects for using microalgae in life-support system. SAE Transactions 1995,951496.
    30. Satyapal, S.; Filburn, T.; Trela, J.; Strange, J., Performance and properties of a solid amine sorbent for carbon dioxide removal in space life support applications. Energy & Fuels 2001,15, (2),250-255.
    31. Moloney, P.; Huffman, C.; Gorelik, O.; Nikolaev, P.; Arepalli, S.; Allada, R.; Springer, M.; Yowell, L., Advanced life support for space exploration:Air revitalization using amine coated single wall carbon nanotubes. Materials Research Society,506 Keystone Drive, Warrendale, PA 15088-7563 USA NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA 2005; Vol.851.
    32. Filburn, T. P.; Nalette, T. A.; Graf, J., The Design and Testing of a Fully Redundant Regenerative CO2 Removal System(Rcrs) for the Shuttle Orbiter.2001.
    33. Otsuji, K.; Hirao, M.; Satoh, S., A regenerable carbon dioxide removal and oxygen recovery system for the Japanese experiment module. Acta Astronautica 1987, 15,(1),45-54.
    34. Boynton, C. K.; Colling Jr, A., Solid amine CO2 removal system for submarine application. SAE Technical Paper 1983,831131.
    35. Shi, J. J.; Liu, Y.M.; Chen, J.; Zhang, Y.; Shi, Y., Dynamic Performance of CO2 Adsorption with Amine-Modified SBA-16. Acta Phys.-Chim.Sin.2010,26, (11), 3023-3029.
    36. Belmabkhout, Y.; Serna-Guerrero, R.; Sayari, A., Adsorption of CO2-containing gas mixtures over amine-bearing pore-expanded MCM-41 silica:application for gas purification. Industrial & Engineering Chemistry Research 2009,49, (1),359-365.
    37. Wang, L.; Ma, L.; Wang, A.; Liu, Q.; Zhang, T., CO2 adsorption on SBA-15 modified by aminosilane. Chinese Journal of Catalysis 2007,28, (9),805-810.
    38. Somy, A.; Mehrnia, M. R.; Amrei, H. D.; Ghanizadeh, A.; Safari, M., Adsorption of carbon dioxide using impregnated activated carbon promoted by Zinc. International Journal of Greenhouse Gas Control 2009,3, (3),249-254.
    39. Su, F.; Lu, C.; Cnen, W.; Bai, H.; Hwang, J. F., Capture of CO2 from flue gas via multiwalled carbon nanotubes. Science of the Total Environment 2009,407, (8), 3017-3023.
    40. Wei, J.W.; Shi, J.J.; Pan, H.; Su, Q.; Zhu, J.; Shi, Y., Thermal and hydrothermal stability of amino-functionalized SBA-16 and promotion of hydrophobicity by silylation. Microporous and mesoporous materials 2009,117, (3),596-602.
    41. Wei, J. W.; Shi, J. J.; Pan, H.; Zhao, W.; Ye, Q.; Shi, Y, Adsorption of carbon dioxide on organically functionalized SBA-16. Microporous and Mesoporous Materials 2008,116, (1-3),394-399.
    42. Zelenak, V.; Halamova, D.; Gaberova, L.; Bloch, E.; Llewellyn, P., Amine-modified SBA-12 mesoporous silica for carbon dioxide capture:Effect of amine basicity on sorption properties Microporous and Mesoporous Materials 2008, 116,(1-3),358-364.
    43. Su, F.; Lu, C.; Kuo, S. C.; Zeng, W., Adsorption of CO2 on Amine-Functionalized Y-Type Zeolites. Energy & Fuels 2010,24, (2),1441-1448.
    44. Zhao, H. L.; Hu, J.; Wang, J.J.; Zhou, L.H.; Liu, H.L., CO2 Capture by the Amine-modified Mesoporous Materials. Acta Phys-Chim Sin 2007,23, (6),801-806.
    45. Mello, M. R.; Phanon, D.; Silveira, G. Q.; Llewellyn, P. L.; Ronconi, C. M., Amine-modified MCM-41 mesoporous silica for carbon dioxide capture. Microporous and Mesoporous Materials 2011,143, (1),174-179.
    46. Wang, X.; Schwartz, V.; Clark, J. C.; Ma, X.; Overbury, S. H.; Xu, X.; Song, C., Infrared study of CO2 sorption over "Molecular Basket" sorbent consisting of polyethylenimine-modified mesoporous molecular sieve. Journal of Physical Chemistry C 2009,113, (17),7260-7268.
    47. Hsu, S.; Lu, C., Modification of single-walled carbon nanotubes for enhancing isopropyl alcohol vapor adsorption from air streams. Separation Science and Technology 2007,42, (12),2751-2766.
    48. Hiyoshi, N.; Yogo, K.; Yashima, T., Adsorption of carbon dioxide on amine modified SBA-15 in the presence of water vapor. Chemistry Letters 2004,33, (5), 510-511.
    49. Yue, M. B.; Chun, Y.; Cao, Y.; Dong, X.; Zhu, J.H., CO2 capture by as-prepared SBA-15 with an occluded organic template. Advanced Functional Materials 2006,16, (13),1717-1722.
    50. Huang, H. Y.; Yang, R. T.; Chinn, D.; Munson, C. L., Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas. Industrial & Engineering Chemistry Research 2003,42, (12),2427-2433.
    51. Zhang, P.; Shi, Y.; Wei, J.; Zhao, W.; Ye, Q., Regeneration of 2-amino-2-methyl-l-propanol used for carbon dioxide absorption. Journal of Environmental Sciences 2008,20, (1),39-44.
    52. Zhang, P.; Shi, Y.; Wei, J.-W., Kinetics region and model for mass transfer in carbon dioxide absorption into aqueous solution of 2-amino-2-methyl-1-propanol. Separation and Purification Technology 2007,56, (3),340-347.
    53. Huang, H.; Shi, Y.; Li, W.; Chang, S., Dual alkali approaches for the capture and separation of CO2. Energy & Fuels 2001,15, (2),263-268.
    54. Shi, Y.; Zhong, Z., A rigorous model for absorption of carbon dioxide into aqueous N-methyldiethanolamine solution. Chemical Engineering Communications 2005,192,(9),1180-1193.
    55. Liu, Y.; Ye, Q.; Shen, M.; Shi, J.; Chen, J.; Pan, H.; Shi, Y, Carbon Dioxide Capture by Functionalized Solid Amine Sorbents with Simulated Flue Gas Conditions. Environmental Science & Technology 2011,45, (13),5710-5716.
    56. Liu, Y. M.;Shi, J.J.; Chen, J.;Ye,Q.; Pan, H.; Shao, Z.H.; Shi, Y, Dynamic performance of CO2 adsorption with tetraethylenepentamine-loaded KIT-6. Microporous and Mesoporous Materials 2010,134, (1-3),16-21.
    57.刘亚敏;史晶金;陈杰;施耀,超枝化固体胺吸附分离烟气中二氧化碳.化工学报2011,62,(3),736-742.
    58. Wydeven, T., A survey of some regenerative physico-chemical life support technology. NASA Technical Memorandum 1988,101004.
    59.黄志德;沈学夫,空间站环境控制和生命保障技术.中国航天2000,2,28-32.
    60.蔡翘;封根泉;杨元辅,航空与空间医学基础.国防工业出版社:北京,1979.
    61. Zhang, Y.; Fan, L.; Zhang, L.; Chen, H., Research progress in removal of trace carbon dioxide from closed spaces. Frontiers of Chemical Engineering in China 2007, 1,(3),310-316.
    62. Dunaway, B. R., Assessment of lithium hydroxide conservation via international space station control of orbiter carbon dioxide.2002.
    63. Watkinson, D., An assessment of lithium hydroxide and sodium hydroxide treatments for archaeological ironwork. Conservation of Iron (Maritime Monographs and Reports No.53) 1982,28-40.
    64. Rendell, D.; Clarke, M.; Evans, M. In The effect of environmental conditions on the absorption of carbondioxide using soda lime,2003.
    65. Boehm, A. M.; Allen, G. F.; Ghen, P.; Sandersfeld, D. L., Orbiter regenerable CO2 sorbent life characterization. SAE Transactions 1997,106,430-436.
    66.范剑锋;黄祖蔚,载人飞船工程概论.国防工业出版社:2000.
    67. Amornvadee, V.; Paitoon. T.; Amit, C., Corrosion behavior of carbon steel in the CO2 absorption process using aqueous amine solutions. Industrial& Engineering Chemistry Research 1999,38, (10),3917-3924.
    68.沈力平;周抗寒,空间站座舱大气再生技术实验研究.空间科学学报2000,10,56-66.
    69. Pevida, C.; Drage, T. C.; Snape, C. E., Silica-templated melamine-formaldehyde resin derived adsorbents for CO2 capture. Carbon 2008,46, (11),1464-1474.
    70.黄燕,疏水性沸石分子筛及其在二氧化碳控制技术中的应用.应用化工2002,31,(003),12-15.
    71. Preise, H.; Breitling, W.; Funker, H. Regenerative CO2 control:A technology development for european manned space programs; SAE881116,1988.1726-1732: 1988.
    72. Nalette, T. A.; Blaser, R. W.; Coleman, W. D.; Cusick-NASA, R. J. Development of an advanced solid amine humidity and CO2 control system for potential space station extravehicular activity application; SAE 881062:1988.
    73. Funke, H.; Jehle, W.; Kreis, A.; Preib, H., CO2 Processing Technologies. SAE TRANSACTIONS 1993,102,1541-1541.
    74. Boehm, A. M.; Ouellette, F. A., Chamber testing of CO2 removal systems using solid amines. SAE Transactions 1996,104,512-519.
    75.罗圣平;孙金膘,KO2/NaO2-H2O-CO2反应系统特性的研究[J].航天医学与医学工程1994,7,30-38.
    76.侯立安;吴鸿辉;王佑君,密闭空间有害气体的吸附工艺研究.环境工程 2009,(006),63-65.
    77. Carrasquillo, R. L. In ISS ECLSS technology evolution for exploration,2005; 2005.
    78. Gray, M. L.; Champagne, K. J.; Fauth, D.; Baltrus, J. P.; Pennline, H., Performance of immobilized tertiary amine solid sorbents for the capture of carbon dioxide. International Journal of Greenhouse Gas Control 2008,2, (1),3-8.
    79.彭光明,潜艇密闭舱室二氧化碳清除措施探析.舰船工程研究2006,3,31-35.
    80. Heppner, D. B.; Hallick, T. M.; Clark, D. C.; Quattrone, P. D., Bosch-An alternate CO2 reduction technology. ASME Publication 1971.
    81. Wagner, R.; Carrasquillo, R.; Edwards, J.; Holmes, R., Maturity of the Bosch CO2 reduction technology for space station application. SAE Technical Paper 1988, 880995.
    82. Kleiner, G.; Cusick, R. In development of an advanced Sabatier CO2 reduction subsystem,1981.
    83. Huang, Z.; Chen, Z.; Ren, N.; Hu, D.; Zheng, D.; Zhang, Z., A novel application of the SAWD-Sabatier-SPE integrated system for CO2 removal and O2 regeneration in submarine cabins during prolonged voyages. Journal of Zhejiang University-Science A 2009,10,(11),1642-1650.
    84. Gray, M.; Soong, Y.; Champagne, K.; Pennline, H.; Baltrus, J.; Stevens Jr, R.; Khatri, R.; Chuang, S.; Filburn, T., Improved immobilized carbon dioxide capture sorbents. Fuel processing technology 2005,86, (14-15),1449-1455.
    85. Reynolds, S. P.; Mehrotra, A.; Ebner, A. D.; Ritter, J. A., Heavy reflux PSA cycles for CO2 recovery from flue gas:Part I. Performance evaluation. Adsorption-Journal of the International Adsorption Society 2008,14, (2),399-413.
    86. Pirngruber, G. D.; Cassiano-Gaspar, S.; Louret, S.; Chaumonnot, A.; Delfort, B. In amines immobilized on a solid support for postcombustion CO2 capture-A preliminary analysis of the performance in a VSA or TSA process based on the adsorption isotherms and kinetic data, Greenhouse Gas Control Technologies 9, Amsterdam,2009; Gale, J.; Herzog, H.; Braitsch, J., Eds. Elsevier Science BV: Amsterdam,2009; 1335-1342.
    87. Dabrowski, A., Adsorption from theory to practice. Advances in Colloid and Interface Science 2001,93, (1-3),135-224.
    88. Dabrowski, A., Adsorption and its applications in industry and environmental protection:Applications in industry. Elsevier Science:1999; Vol.1.
    89. Yang, R. T., Gas separation by adsorption processes.1986.
    90. Lemcoff, N. O., Pressure swing adsorption process. In Google Patents:1996.
    91.颜肖慈;罗明道,界面化学.化学工业出版社:2005.
    92. Gregg, S.; Sing, K. S. W., Adsorption, Surface Area, and Porosity. Academic Press:New York,1982.
    93. Do, D. D., Adsorption analysis:equilibria and kinetics. Imperial College Press: London,1998; Vol.2.
    94.赵振国,吸附作用应用原理.化学工业出版社:2005.
    95. Kumar, R.; Huggahalli, M.; Blow, M., Thermal swing adsorption process. In Google Patents:2002.
    96. Ramalingam, S. G.; Pre, P.; Giraudet, S.; Le Coq, L.; Le Cloirec, P.; Baudouin, O.; Dechelotte, S., Recovery comparisons-hot nitrogen vs steam regeneration of toxic dichloromethane from activated carbon beds in oil sands process. Journal of Hazardous Materials 2011.
    97. Skarstrom, C. W., Use of adsorption phenomna in automatic plant-type gas analyzers. Annals of the New York Academy of Sciences 1959,72, (13),751-763.
    98. Wiessner, F. G, Basics and industrial applications of pressure swing adsorption (PSA), the modern way to separate gas. Gas Separation & Purification 1988,2, (3), 115-119.
    99. Jee, J. G.; Kim, M. B.; Lee, C. H., Pressure swing adsorption processes to purify oxygen using a carbon molecular sieve. Chemical Engineering Science 2005,60, (3), 869-882.
    100. Yong, Z.; Mata, V.; Rodrigues, A. E., Adsorption of carbon dioxide at high temperature--a review. Separation and Purification Technology 2002,26, (2-3), 195-205.
    101.谭天恩;化学工业;麦本熙;丁惠华,化工原理.化学工业出版社:1998.
    102. Siriwardane, R. V.; Shen, M. S.; Fisher, E. P., Adsorption of CO2, N2, and O2 on natural zeolites. Energy & Fuels 2003,17, (3),571-576.
    103. Suyadal, Y.; Erol, M.; Oguz, H., Deactivation model for the adsorption of trichloroethylene vapor on an activated carbon bed. Industrial & Engineering Chemistry Research 2000,39, (3),724-730.
    104. Plaza, M. G.; Garcia, S.; Rubiera, F.; Pis, J. J.; Pevida, C., Post-combustion CO2 capture with a commercial activated carbon:Comparison of different regeneration strategies. Chemical Engineering Journal 2010,163, (1-2),41-47.
    105. Shigemoto, N.; Yanagihara, T.; Sugiyama, S.; Hayashi, H., Bench-scale CO2 recovery from moist flue gases by various alkali carbonates supported on activated carbon. Journal of chemical engineering of Japan 2005,38, (9),711-717.
    106. Jadhav, P.; Chatti, R.; Biniwale, R.; Labhsetwar, N.; Devotta, S.; Rayalu, S., Monoethanol amine modified zeolite 13X for CO2 adsorption at different temperatures. Energy & Fuels 2007,21, (6),3555-3559.
    107. Leal, O.; Bolivar, C.; Ovalles, C.; Garcia, J. J.; Espidel, Y., Reversible adsorption of carbon dioxide on amine surface-bonded silica gel. Inorganica Chimica Acta 1995,240, (1-2),183-189.
    108. Dadwhal, M.; Kim, T. W.; Sahimi, M.; Tsotsis, T. T., Study of CO2 diffusion and adsorption on calcined layered double hydroxides:The effect of particle size. Industrial & Engineering Chemistry Research 2008,47, (16),6150-6157.
    109. Siriwardane, R. V.; Shen, M. S.; Fisher, E. P.; Losch, J., Adsorption of CO2 on zeolites at moderate temperatures. Energy & Fuels 2005,19, (3),1153-1159.
    11 O.Diaz, E.; Munoz, E.; Vega, A.; Ordonez, S., Enhancement of the CO2 retention capacity of Y zeolites by Na and Cs treatments:Effect of adsorption temperature and water treatment. Ind. Eng. Chem. Res.2008,47, (2),412-418.
    111.Na, B. K.; Koo, K. K.; Eum, H. M.; Lee, H.; Song, H. K., CO2 recovery from flue gas by PSA process using activated carbon. Korean journal of chemical engineering 2001,18, (2),220-227.
    112.Wang, Y.; Zhou, Y.; Liu, C.; Zhou, L., Comparative studies of CO2 and CH4 sorption on activated carbon in presence of water. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2008,322, (1-3),14-18.
    113.Siriwardane, R. V.; Shen, M. S.; Fisher, E. P.; Poston, J. A., Adsorption of CO2 on molecular sieves and activated carbon. Energy & Fuels 2001,15, (2),279-284.
    114.Pevida, C.; Plaza, M.; Arias, B.; Fermoso, J.; Rubiera, F.; Pis, J., Surface modification of activated carbons for CO2 capture. Applied Surface Science 2008, 254, (22),7165-7172.
    115.Przepiorski, J.; Skrodzewicz, M.; Morawski, A., High temperature ammonia treatment of activated carbon for enhancement of CO2 adsorption. Applied Surface Science 2004,225, (1-4),235-242.
    116.Lu, C.; Bai, H.; Wu, B.; Su, F.; Hwang, J. F., Comparative study of CO2 capture by carbon nanotubes, activated carbons, and zeolites. Energy & Fuels 2008,22, (5), 3050-3056.
    117.Wu, S.; Beum, T.; Yang, J.; Kim, J., Properties of Ca-base CO2 sorbent using Ca (OH) 2 as precursor. Industrial & Engineering Chemistry Research 2007,46, (24), 7896-7899.
    118.Gregg, S.; Ramsay, J., Adsorption of carbon dioxide by magnesia studied by use of infrared and isotherm measurements. J. Chem. Soc. A 1970, (0),2784-2787.
    119.Ida, J.; Lin, Y, Mechanism of high-temperature CO2 sorption on lithium zirconate. Environmental Science & Technology 2003,37, (9),1999-2004.
    120. Ochoa-Fernandez, E.; Rusten, H. K.; Jakobsen, H. A.; R(?)nning, M.; Holmen, A.; Chen, D., Sorption enhanced hydrogen production by steam methane reforming using Li2ZrO3 as sorbent:Sorption kinetics and reactor simulation. Catalysis today 2005,106, (1),41-46.
    121. Ding, Y.; Alpay, E., Equilibria and kinetics of CO2 adsorption on hydrotalcite adsorbent. Chemical Engineering Science 2000,55, (17),3461-3474.
    122. Reijers, H. T. J.; Valster-Schiermeier, S. E. A.; Cobden, P. D.; van den Brink, R. W., Hydrotalcite as CO2 sorbent for sorption-enhanced steam reforming of methane. Industrial & Engineering Chemistry Research 2006,45, (8),2522-2530.
    123. Hufton, J.; Mayorga, S.; Sircar, S., Sorption-enhanced reaction process for hydrogen production. Aiche Journal 1999,45, (2),248-256.
    124. Tsuda, T.; Fujiwara, T.; Taketani, Y.; Saegusa, T., Amino silica gels acting as a carbon dioxide absorbent. Chemistry Letters 1992,21, (11),2161-2164.
    125. Tsuda, T.; Fujiwara, T., Polyethyleneimine and macrocyclic polyamine silica gels acting as carbon dioxide absorbents. J. Chem. Soc., Chem. Commun.1992, (22), 1659-1661.
    126. Sakamoto, Y.; Kaneda, M.; Terasaki, O.; Zhao, D. Y.; Kim, J. M.; Stucky, G.; Shin, H. J.; Ryoo, R., Direct imaging of the pores and cages of three-dimensional mesoporous materials. Nature 2000,408, (6811),449-453.
    127. Kleitz, F.; Liu, D.; Anilkumar, G. M.; Park, I. S.; Solovyov, L. A.; Shmakov, A. N.; Ryoo, R., Large cage face-centered-cubic fm3m mesoporous silica:Synthesis and structure. The Journal of Physical Chemistry B 2003,107, (51),14296-14300.
    128. Alberius, P. C. A.; Frindell, K. L.; Hayward, R. C.; Kramer, E. J.; Stucky, G. D.; Chmelka, B. F., General predictive syntheses of cubic, hexagonal, and lamellar silica and titania mesostructured thin films §. Chemistry of Materials 2002,14, (8), 3284-3294.
    129. Yang, P.; Zhao, D.; Chmelka, B. F.; Stucky, G. D., Triblock-copolymer-directed syntheses of large-pore mesoporous silica fibers. Chemistry of Materials 1998,10, (8),2033-2036.
    130. Yang, P.; Deng, T.; Zhao, D.; Feng, P.; Pine, D.; Chmelka, B. F.; Whitesides, G. M.; Stucky, G. D., Hierarchically ordered oxides. Science 1998,282, (5397), 2244-2246.
    131. Matos, J. R.; Mercuri, L. P.; Kruk, M.; Jaroniec, M., Synthesis of large-pore silica with cage-like structure using sodium silicate and triblock copolymer template. Langmuir 2002,18, (3),884-890.
    132. Kruk, M.; Celer, E. B.; Jaroniec, M., Exceptionally high stability of copolymer-templated ordered silica with large cage-like mesopores. Chemistry of Materials 2004,16, (4),698-707.
    133. Iijima, S., Helical microtubules of graphitic carbon. Nature 1991,354, (6348), 56-58.
    134. Zhu, Z. Z.; Wang, Z.; Li, H. L., Functional multi-walled carbon nanotube/polyaniline composite films as supports of platinum for formic acid electrooxidation. Applied Surface Science 2008,254, (10),2934-2940.
    135. Ebbesen, T. W., Carbon nanotubes:preparation and properties. CRC:1997.
    136. Monthioux, M.; Smith, B.; Burteaux, B.; Claye, A.; Fischer, J.; Luzzi, D., Sensitivity of single-wall carbon nanotubes to chemical processing:an electron microscopy investigation. Carbon 2001,39, (8),1251-1272.
    137. Krishen, K., New technology innovations with potential for space applications. Acta Astronautica 2008,63, (1-4),324-333.
    138. Smart, S.; Cassady, A.; Lu, G.; Martin, D., The biocompatibility of carbon nanotubes. Carbon 2006,44, (6),1034-1047.
    139. Gommans, H. H. A., J.W.; Tashiro, H.; Park, J.; Magnuson, J.; Rinzler, A.G., Fibers of aligned single-walled carbon nanotubes:Polarized Raman spectroscopy. Journal of Applied Physics 2000,88, (5),2509-2514.
    140. Chen, P.; Wu, X.; Lin, J.; Tan, K., High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science 1999,285, (5424),91-93.
    141. Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M., Chemistry of carbon nanotubes. Chemical Reviews-Columbus 2006,106, (3),1105.
    142. Taguchi, A.; Schuth, F., Ordered mesoporous materials in catalysis. Microporous and mesoporous materials 2005,77,1-45.
    143. Anwander, R., SOMC@ PMS. Surface organometallic chemistry at periodic mesoporous silica. Chemistry of Materials 2001,13, (12),4419-4438.
    144. Chang, A. C. C.; Chuang, S. S. C.; Gray, M. M.; Soong, Y., In-situ infrared study of CO2 adsorption on SBA-15 grafted with (A-(aminopropyl) triethoxysilane. Energy & Fuels 2003,17, (2),468-473.
    145. Zheng, F.; Tran, D. N.; Busche, B. J.; Fryxell, G. E.; Addleman, R. S.; Zemanian, T. S.; Aardahl, C. L., Ethylenediamine-modified SBA-15 as regenerable CO2 sorbent. Industrial & Engineering Chemistry Research 2005,44, (9),3099-3105.
    146. Harlick, P. J. E.; Sayari, A., Applications of pore-expanded mesoporous silicas.3. Triamine silane grafting for enhanced CO2 adsorption. Industrial & Engineering Chemistry Research 2006,45, (9),3248-3255.
    147. Kim, S.; Ida, J.; Guliants, V. V.; Lin, J. Y. S., Tailoring pore properties of MCM-48 silica for selective adsorption of CO2. The Journal of Physical Chemistry B 2005,109, (13),6287-6293.
    148. Liang, Z.; Fadhel, B.; Schneider, C. J.; Chaffee, A. L., Stepwise growth of melamine-based dendrimers into mesopores and their CO2 adsorption properties. Microporous and mesoporous materials 2008,111, (1),536-543.
    149. Knofel, C.; Descarpentries, J.; Benzaouia, A.; Zelenak, V.; Mornet, S. Llewellyn, P.; Hornebecq, V., Functionalised micro-/mesoporous silica for the adsorption of carbon dioxide. Microporous and mesoporous materials 2007,99, (1), 79-85.
    150. Xu, X.; Song, C.; Andresen, J. M.; Miller, B. G.; Scaroni, A. W., Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture. Energy & Fuels 2002,16, (6),1463-1469.
    151. Xu, X.; Song, C.; Miller, B. G.; Scaroni, A. W., Influence of moisture on CO2 separation from gas mixture by a nanoporous adsorbent based on polyethylenimine-modified molecular sieve MCM-41. Industrial& Engineering Chemistry Research 2005,44, (21),8113-8119.
    152. Franchi, R. S.; Harlick, P. J. E.; Sayari, A., Applications of pore-expanded mesoporous silica.2. Development of a high-capacity, water-tolerant adsorbent for CO2. Industrial & Engineering Chemistry Research 2005,44, (21),8007-8013.
    153. Xu, X.; Song, C.; Miller, B. G.; Scaroni, A. W., Adsorption separation of carbon dioxide from flue gas of natural gas-fired boiler by a novel nanoporous "molecular basket" adsorbent. Fuel processing technology 2005,86, (14),1457-1472.
    154. Yue, M. B. S., L.B.; Cao, Y.; Wang, Y.; Wang, Z.J.; Zhu, J.H., Efficient CO2 capturer derived from as-synthesized MCM-41 modified with amine. Chemistry-A European Journal 2008,14, (11),3442-3451.
    155. Son, W. J.; Choi, J. S.; Ahn, W. S., Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials. Microporous and mesoporous materials 2008,113, (1),31-40.
    156. Yue, M. B.; Sun, L. B.; Cao, Y.; Wang, Z. J.; Wang, Y.; Yu, Q.; Zhu, J. H., Promoting the CO2 adsorption in the amine-containing SBA-15 by hydro xyl group. Microporous and mesoporous materials 2008,114, (1-3),74-81.
    157. Xu, X.; Song, C.; Andresen, J. M.; Miller, B. G.; Scaroni, A. W., Preparation and characterization of novel CO2. Microporous and mesoporous materials 2003,62, (1-2),29-45.
    158. Barrett, E. P.; Joyner, L. G.; Halenda, P. P., The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. Journal of the American Chemical Society 1951,73, (1),373-380.
    159. Merel, J.; Clausse, M.; Meunier, F., Experimental investigation on CO2 post-combustion capture by indirect thermal swing adsorption using 13X and 5A zeolites. Industrial & Engineering Chemistry Research 2008,47, (1),209-215.
    160. Khatri, R. A.; Chuang, S. S. C.; Soong, Y.; Gray, M., Carbon dioxide capture by diamine-grafted SBA-15:A combined Fourier transform infrared and mass spectrometry study. Industrial & Engineering Chemistry Research 2005,44, (10), 3702-3708.
    161. Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D., Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society 1998,120, (24),6024-6036.
    162. Matranga, C.; Chen, L.; Smith, M.; Bittner, E.; Johnson, J. K.; Bockrath, B., Trapped CO2 in carbon nanotube bundles. The Journal of Physical Chemistry B 2003, 107,(47),12930-12941.
    163. Belin, T.; Epron, F., Characterization methods of carbon nanotubes:a review. Materials Science and Engineering B 2005,119, (2),105-118.
    164. Stevens, W. J. J.; Mertens, M.; Mullens, S.; Thijs, I.; Van Tendeloo, G.; Cool, P.; Vansant, E. F., Formation mechanism of SBA-16 spheres and control of their dimensions. Microporous and mesoporous materials 2006,93, (1),119-124.
    165.史克英;池玉娟;金效齐;徐敏;袁福龙;付宏刚,改性中孔分子筛SBA-16薄膜的合成及表征.化学学报2005,63,(10),885-890.
    166. Stamatin, I.; Morozan, A.; Dumitru, A.; Ciupina, V.; Prodan, G.; Niewolski, J.; Figiel, H., The synthesis of multi-walled carbon nanotubes (MWNTs) by catalytic pyrolysis of the phenol-formaldehyde resins. Physica E:Low-dimensional Systems and Nanostructures 2007,37, (1),44-48.
    167. Peigney, A.; Laurent, C.; Flahaut, E.; Bacsa, R.; Rousset, A., Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 2001,39, (4), 507-514.
    168.魏建文.介孔二氧化硅改性及其吸附CO2研究[D].浙江大学,2009.
    169.刘亚敏.新型固体胺吸附分离烟气中二氧化碳.浙江大学,2011.
    170. Fisher II, J. C.; Tanthana, J.; Chuang, S. S. C, Oxide - supported tetraethylenepentamine for CO2 capture. Environmental progress & sustainable energy 2009,28, (4),589-598.
    171. Bhagiyalakshmi, M.; Yun, L. J.; Anuradha, R.; Jang, H. T., Utilization of rice husk ash as silica source for the synthesis of mesoporous silicas and their application to CO2 adsorption through TREN/TEPA grafting. Journal of Hazardous Materials 2010,175, (1-3),928-938.
    172. Jang, D.I.; Park, S.J., Influence of amine grafting on carbon dioxide adsorption behaviors of activated carbons. Bull. Korean Chemisty Society 2011,32, (9),3377-3381.
    173. Fujiwara, A.; Ishii, K.; Suematsu, H.; Kataura, H.; Maniwa, Y.; Suzuki, S.; Achiba, Y., Gas adsorption in the inside and outside of single-walled carbon nanotubes. Chemical Physics Letters 2001,336, (3),205-211.
    174. Eklund, P. C.; Holden, J. M.; Jishi, R. A., Vibrational modes of carbon nanotubes; Spectroscopy and theory. Carbon 1995,33, (7),959-972.
    175. Hiura, H.; Ebbesen, T.; Tanigaki, K.; Takahashi, H., Raman studies of carbon nanotubes. Chemical Physics Letters 1993,202, (6),509-512.
    176. Tsai, C. L.; Chen, C. F., Characterization of bias-controlled carbon nanotubes. Diamond and Related Materials 2003,12, (9),1615-1620.
    177. Geankoplis, C. J., Transport Processes and Unit Operations. Prentice Hall, Inc,USA:1993.
    178.傅献彩;沈文霞;姚天扬,物理化学(下册).高等教育出版社:北京,1990.
    179.叶振华,化学吸附分离过程.中国石化出版社:北京,1992.
    180. Kamiuto, K.; Abe, S., Effect of desorption temperature on CO2 adsorption equilibria of the honeycomb zeolite beds. Applied energy 2002,72, (3-4),555-564.
    181. Agnihotri, S.; Rood, M. J.; Rostam-Abadi, M., Adsorption equilibrium of organic vapors on single-walled carbon nanotubes. Carbon 2005,43, (11), 2379-2388.
    182. Vaidya, P. D.; Kenig, E. Y., CO2-Alkanolamine reaction kinetics:A review of recent studies. Chemical Engineering & Technology 2007,30, (11),1467-1474.
    183. Serna-Guerrero, R.; Da'na, E.; Sayari, A., New insights into the interactions of CO2 with amine-functionalized silica. Industrial & Engineering Chemistry Research 2008,47, (23),9406-9412.
    184. Choi, S.; Drese, J. H.; Eisenberger, P. M.; Jones, C. W., Application of amine-tethered solid sorbents for direct CO2 capture from the ambient air. Environmental Science & Technology 2011,45, (6),2420-2427.
    185. Drese, J. H.; Choi, S.; Lively, R. P.; Koros, W. J.; Fauth, D. J.; Gray, M. M. L.; Jones, C. W., Synthesis-structure-property relationships for hyperbranched aminosilica CO2 adsorbents. Advanced Functional Materials 2009,19, (23), 3821-3832.
    186. He, L.; Fan, M.; Dutcher, B.; Cui, S.; Shen, X.; Kong, Y.; Russell, A. G.; McCurdy, P., Dynamic separation of ultradilute CO2 with a nanoporous amine-based sorbent. Chemical Engineering Journal 2012.
    187. Nikulshina, V.; Gebald, C.; Steinfeld, A., CO2 capture from atmospheric air via consecutive CaO-carbonation and CaCO3-calcination cycles in a fluidized-bed solar reactor. Chemical Engineering Journal 2009,146, (2),244-248.
    188. Osafune, K.; Marsh, H., Gasification kinetics of coal chars in carbon dioxide. Fuel 1988,67, (3),384-388.
    189. Levenspiel, O., Chemical reactions engineering. New York,1998; Vol.67, p 02.
    190. Orbey, N.; Dogu, G.; Dogu, T., Breakthrough analysis of noncatalytic solid gas reactions:Reaction of SO2 with calcined limestone. The Canadian Journal of Chemical Engineering 1982,60, (2),314-318.
    191. Ding, Y.; Alpay, E., Adsorption-enhanced steam-methane reforming. Chemical Engineering Science 2000,55, (18),3929-3940.
    192. Yasyerli, S.; Dogu, G.; Ar, I.; Dogu, T., Activities of copper oxide and Cu-V and Cu-Mo mixed oxides for H2S removal in the presence and absence of hydrogen and predictions of a deactivation model. Industrial & Engineering Chemistry Research 2001,40, (23),5206-5214.
    193. Hwang, K. S.; Han, L.; Park, D. W.; Oh, K. J.; Kim, S. S.; Park, S. W., Adsorption of carbon dioxide onto PDA-CP-MS41 adsorbent. Korean journal of chemical engineering 2010,27, (1),241-248.
    194. Farooq, S.; Ruthven, D., Numerical simulation of a kinetically controlled pressure swing adsorption bulk separation process based on a diffusion model. Chemical Engineering Science 1991,46, (9),2213-2224.
    195. Bird, R. B., Transport phenomena. Applied Mechanics Reviews 2002,55, R1.
    196. Park, J.-H.; Beum, H.-T.; Kim, J.-N.; Cho, S.-H., Numerical analysis on the power consumption of the PSA process for recovering CO2 from flue gas. Ind. Eng. Chem. Res.2002,41,(16),4122-4131.
    197. Pilarczyk, E.; Schroter, H., New PSA-processes with carbon molecular sieves for recovery of carbon dioxide and methane. Elsevier Science Publishers BV: Amsterdam, The Netherlands:1990.
    198. Ko, D.; Siriwardane, R.; Biegler, L. T., Optimization of a pressure-swing adsorption process using zeolite 13X for CO2 sequestration. Industrial & Engineering Chemistry Research 2003,42, (2),339-348.
    199. Schladt, M. J.; Filburn, T. P.; Helble, J. J., Supported amine sorbents under temperature swing absorption for CO2 and moisture capture. Industrial & Engineering Chemistry Research 2007,46, (5),1590-1597.
    200.杜大庆.空间站中分子筛清除二氧化碳技术研究.天津大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700