无汞可充碱锰电池正极材料二氧化锰的制备及电解液添加剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以研究开发具有实用价值和应用前景的无汞可充碱锰电池正极材料为主要目的,采用化学分析、X-射线衍射分析(XRD)、扫描电镜(SEM)、充放电性能测试、动电位扫描等多种化学与电化学研究手段及现代波谱技术,选择高锰酸钾(KMnO_4)法和碳酸锰(MnCO_3)热分解两种方法,对无汞可充碱锰电池正极活性物质二氧化锰的制备、掺杂及应用进行了重点研究,同时从理论上分析和探讨了二氧化锰经化学掺杂改性后对其充放电机理和充放电性能的影响规律。本文还对无汞可充碱锰电池电解液及其添加剂进行初步的研究和探索。
     高锰酸钾(KMnO_4)氧化法制备化学二氧化锰,是将一定浓度的高锰酸钾溶液与氯化锰溶液直接反应而得到二氧化锰粉末。该方法具有流程短、能耗低、工艺条件易于控制等优点。通过试验,得到制备化学改性二氧化锰的最佳工艺参数为:反应温度为85℃;反应时间为1小时;硝酸浓度为0.5~1mol/L;锰盐为MnCl_2;掺杂物为Bi(No)_3;Mn:Bi的摩尔比为6~10。充放电性能测试表明:该法制备的化学二氧化锰电化学性能优于电解二氧化锰;掺Bi的改性二氧化锰经过10次全充全放破坏性充放电循环后,放电容量还有首次放电容量的70%,10次累积放电容量是未掺杂样品的3.26倍。X-射线衍射结果表明:MnO_2样品是β-MnOOH为主的混合晶相。但高锰酸钾(KMnO_4)氧化法存在一个问题,就是生产出来的改性化学二氧化锰的振实密度难以提高,达不到电池材料高振实密度、高填充性的要求。
     为进一步提高改性化学二氧化锰的振实密度并改善其电化学性能,还研究了碳酸锰(MnCO_3)热分解法制备化学二氧化锰。该方法是先用碳酸氢铵作沉淀剂,以前一次的产物作为下一次反应的晶种,累计沉淀,制备出高振实密度的晶种碳酸锰,再改用碳酸钠作为沉淀剂,这样既提高了碳酸根的利用率,又达到了高振实密度的目的;制出的碳酸锰在高温、湿空气气氛下氧化分解成粗二氧化锰;再通过氯酸钠氧化生成最终成品。通过试验,得到制备化学改性二氧化锰的最佳工艺参数为:视密
    
    中南大学硕士研究生毕业论文
    度达2 .00g/cm’以上的晶种加人量为理论产量的50%(质量百分数);碳
    酸锰沉淀温度为40‘C;沉淀时间为1 .5小时;焙烧温度以375OC一390
    ℃最佳;碳酸锰焙烧时间为8小时;空气中水汽含量约为47%;精制时
    分批加人固体粉末的氯酸钠进行氧化,其用量为理论量的11。%,反应温
    度为90℃,反应2 .5一3小时;掺杂物为Bi(N0)。;Mn:Bi的摩尔比6一
    1。。该方法制备的化学改性二氧化锰振实密度达到了电解二氧化锰的要
    求,1 .79/Cm,以上,而且电化学性能与高锰酸钾(KMn04)氧化法制备的
    样品相似,10次累积放电容量明显高于EHD。x一射线衍射测定表明:制
    备出的MnoZ晶型为活性最高的y型。扫描电镜分析表明:如。2样品为球
    形细颗粒状。
     在无汞可充碱锰电池电解液加入有机添加剂,通过析氢试验、短路
    试验、电化学性能测试等,研究电解液添加剂对电池性能的影响。试验
    结果表明:在电解液中加人0 .1%的TEA,缓蚀效率达到了73 .81%,抑
    制锌枝晶的生长,短路时间达到52 .8小时;电解液选用gmol/L KOH(zn。
    饱和)最为合适。同时研究了充放电制度对电池循环性的影响,发现先
    小电流恒流充电,再恒压充电,这样有利于电池的可逆性和容量的保持。
     经过理论上的分析和探讨,掺杂后化学二氧化锰表现出良好的循环
    性能,其原因可能是由于:掺杂改变了二氧化锰的成分和结构,掺Bi
    改善了二氧化锰的晶体骨架结构的稳定性,使咖02具有“敞开”式结构,
    提高了H一的扩散能力以及抑制晶格膨胀的发生,避免Mn02转变为稳定、
    致密的结构,使二氧化锰在深度放电和浅度放电下都显示出良好的可充
    性。有机添加剂的作用可能是:它能通过吸附作用,在锌表面形成一层
    薄膜,阻止并减少。H一离子与HZO分子向锌粉表面接触,抑制锌的自腐
    蚀及枝晶生长。
The preparation, modification and application of cathode active materials MnO2 were studied in this paper for developing mercury-free rechargeable manganese dioxide electrode material with practical prospects. These samples prepared by KMnO4 oxidation of MnCl2 solution and MnCO3 thermal decomposition were studied by chemical analysis , X-ray diffraction (XRD), scanning electron microscope(SEM), potential dynamic sweep, galcanostatic cycles method and other chemical methods in combination with modern spectrum techniques. The mechanism and disciplinarian of charge-discharge characteristic were also analyzed and discussed theoretically. The additives in electrolyte were primarily studied.
    The method of preparing chemical manganese dioxides by KMnO4 oxidation of MnCl2 salts in HNO3 solution had the merits of brief flow, low energy consume and simple technical condition. The optimum factors concluded from experiments were as following: reaction temperature was 85 C; reaction time was 1 hour; concentration of HNO3 was 0.5~1mol/L; manganese salt was MnCl2; dopant was Bi(NO)3; Mn:Bi was about 6~10. The experiment results showed that the accumulative capacities of 10 cycles of Bi-MnO2 were 300% higher than that of ordinary MnO2. XRD indicated that the samples mainly belonged to mixed crystal of -MOOH as the main phase. But the samples of KMnO4 oxidation had low density.
    The optimum factors concluded from experiments of MnCO3 thermal decomposition were as following: deposition temperature was 40 C ; deposition time were 1.5 hours; thermal temperature was 375C~390C; thermal time were 8 hours and so on. The tapped density of the MnO2 powder could be increased more than 1.7g/cm3 and the
    
    
    
    
    rechargeability was also excellent. XRD indicated that the samples mainly belonged to crystal of -type structure. SEM indicated that the samples were the global granule microstrure.
    The effects of additives in electrolyte on the electrochemical performances of zinc electrode were investigated, through the hydrogen collection experiment, short circuit experiment and cyclic voltammetry method. The experiment results showed that the rechargeability of the alkaline zinc-manganese battery with 0.1% TEA in electrolyte was improved obviously and additives inhibited corrosion and dendrite of zinc electrode.
    Through the theoretical analysis and discussion, the reasons for excellent electrochemical behavior of modified MnO2 was like that the component and structure of modified MnO2 was changed, so that the MnO2 had a good rechargeability both in deep and shallow discharge regions.
引文
[1] 夏熙,李清文.MnO_2电极可充性问题的探讨(上).电源技术,1992,22(4):177~180
    [2] 郭炳琨,李新海,杨松青.化学电源—电池原理与制造技术.长沙:中南工业大学出版社,2000
    [3] 董保光.化学电源工艺学.哈尔滨:哈尔滨工业大学出版社,1988
    [4] 吕鸣祥编.化学电源.天津:天津大学出版社,1992
    [5] K.V.Kordesch主编,夏熙,袁光钰译.电池组(第一卷,二氧化锰).北京:轻工业出版社,1980
    [6] 彭成红,刘澧浦.高功率可充碱性锌锰电池的研制.电池,1996,26(3):109~110
    [7] 毛永志,贾铮,张翠芬.无汞二级碱锰电池缓蚀剂的研究.电池,1996,26(6) 257~259
    [8] L Binder, K Kordesch, P Urdl. J Electrochem Soc, 1996, 143 (1): 13
    [9] A Kozawa, J F Yeager. J Electrochem Soc, 1968, 112: 960
    [10] A Kozawa, R A Powers. J Electrochem Soc, 1966, 115: 122
    [11] 陈书阁.γ型化学二氧化锰的合成.无机盐工业,1997,(3):17~20
    [12] 夏熙,袁光钰译.电池组二氧化锰.北京:轻工业出版社,1997.19~34.
    [13] 谢亚勃,马子川,郑世钧.化学二氧化锰合成方法进展.河北师范大学学报,2001,25(1):96~99
    [14] Kozawa A. Manganese dioxide symposium, Vol 1, 1975
    [15] 张其昕.国外二氧化锰的生产研究概况与展望.金属矿山,1982,(12):23~26
    [16] Shiramoto T. Manufacture of MnO_2 from MnCO_3. Jpn Koho, 74109297, 1974-10-17
    [17] Ellis C, Wells A A. US patent, 1275666
    [18] Welsh Jay Y. Brit patent, 855810, 1960
    [19] Terome T, Mueuch. Battery research develop. Conf Fort Monmouth, 78~82
    [20] Takahshi K. Dry cell and battery industry and power technology with emphasis on powered manganese dioxide. Electrochim Acta, 1981, 26: 1476
    
    
    [21] Nossen E S. Preparation of MnO_2 by heat treatment of Mn(NO_3)_2. Electrochim Acta, 1954, 13: 1321
    [22] Molchanova P, Kozinnavil V, Markova M. Study of the process for obtaining manganese dioxide during thermal decomposition of manganese nitrate. Electrochim Acta, 1977, (2): 48~51
    [23] Markov S S, Belyaeya L B. Preparation of MnO_2 by thermal decomposition of manganese nitrate. Electrochim Acta, 1979, (2): 16~19
    [24] Welsh J Y. Preparation of activated MnO_2. US 8002555, 1980
    [25] Faber P. Manufacture of MnO_2 by thermal decomposition of Mn(NO_3)_2. Chem Ing Tech, 1977, 49:333~339
    [26] Fuji Electrochemical Co. Preparation of highly activated MnO_2. Jpn Kokai Koho, 81164017, 1981-12-16
    [27] 藤田吉雄.日本公开特许,昭49-23195,1973
    [28] Kretschmer F G. Germ Offen, 2333532, 1975
    [29] Markov S S. US patent 513937, 1976
    [30] Rheinisch-Westfall. Germ Offen, 2454012, 1976
    [31] 东洋曹达公司.日本特许公报,昭53-97998,1978
    [32] 富士电气公司.日本特许公报,昭56-164017,1981
    [33] Chemetals Corp. US patent, 4310494, 1982
    [34] 日本电气公司.日本公开特许,昭57-74972,1982
    [35] 山阳电气公司.日本公开特许,昭40-736,1965
    [36] 郭小福.二氧化锰合成.中国专利,CN 1051335,1991-05-15
    [37] 粟有恒.化学法制取二氧化锰的研究.湘潭大学自然科学学报,1990,12(2):92~95
    [38] 粟有恒,陈大元,孙振强.化学法制取二氧化锰的研究.湘潭大学自然科学学报,1989,11(2):40~44
    [39] 张碧泉,朱则善,张其昕.一种新型化学二氧化锰的研究.福建师范大学学报,1988,4(1):53~61
    [40] Yamamoto, Sadaki J. Manufacture of MnO_2. Jpn Kokai Tokkyo Koho, 0769640, 1995-03-14
    [41] Wang Enoch I. Precipitation process for manufacturing battery-grade MnO_2 for cathodes of electrochemical cells. US 9539136, 1995-02
    [42] Kanungo S B. Preparation of battery-grade MnO_2. J Chem Technol
    
    Biotechnol, 1991, 50 (1): 91~100
    [43] Wang Enoch I. Manufacture of α-MnO_2 for electrochemical cells. US 5227890, 1994-01-11
    [44] Giovanoli R, Feitkecht W, Geogerc P. Preparation of manganese dioxide by oxidation of MnSO_4. Chimia, 1976, 30: 268~273
    [45] Kanoh G, Makashi M, Takaoka M. Preparation of MnO_2 through oxidation of Mn(NO_3)_2. J Mater Chem, 1980, (2): 134~137
    [46] 张其星.电池级二氧化锰的生产.中国专利,CN 1034185,1989-7-36
    [47] Yamamoto, Sadaaki. Manufacture of MnO_2. Jpn Kokai Tokkyo Koho, 0769640, 1995-03-14
    [48] Calu, Niclae. Activated MnO_2 preparation. Rom, RO 87570, 1985-09-30
    [49] Gnener J W. Preparation of MnO_2 by reduction of Mn(Ⅶ). Am Mineral, 1943, 28: 496~501
    [50] 李亚栋,李成韦,李龙泉.二氧化锰纳米晶的水热合成.高等学校化学学报,1997,18(9):1436~1437
    [51] 李亚栋,李成韦,钱逸泰.不同形态二氧化锰超微粒子的制备.应用化学,1997,14(2):93~95
    [52] Ralph W, Moulton. US patent, 2459714, 1949
    [53] B F Goodrich Co. Brit patent, 674313, 1952
    [54] B F Goodrich Co. US patent, 2822243, 1958
    [55] Stepanov V A. US patent, 710955,1980
    [56] Wadsley A D. Solid oxides and hydroxides of manganese. J Am Chem Soc, 1950, 73: 856~860
    [57] Mckenzie R M. Preparation of chemical MnO_2 from Mn(OH)_2. Mineral Mag, 1971, 38: 493~498
    [58] Beley M, Brent J P. Mechanism of formation of MnO_2 varieties with high electrochemical reactivity. Electrochim Acta, 1973, 18: 1003~1011
    [59] Yamamoto, Sadaaki. Manufacture of manganese dioxide having high specific surface area. Jpn Kokai Tokkyo Koho, JP 07118018, 1995-03-09
    [60] Tanabe Isao, Miyamoto Nobuaki. Production of synthetic γ-MnO_2. Jpn Kokai Tokkyo Koho, Jm 62278129, 1987-12-03
    [61] Yamamoto, Sadaaki. Manufacture of MnO_2. Jpn Kokai Tokkyo Koho, JP 0769640,1995-03-14
    
    
    [62] Ohtsuka A. Preparation of γ-MnO_2 in wet process. Electrochim Acta, 1957, 25: 486~488
    [63] Hrenet J. Reactive manganese dioxide. French patent, 1306706, 1962
    [64] Pescarlo S, Bianchi V. Manganese dioxide for dry batteries. Italian patent, 583224, 1968
    [65] Moore W G. MnO_2 for dry cells. US parent, 3414440, 1965
    [66] 梅先春,唐晓密.国外化学二氧化锰生产工艺综述.中国锰业,1988,6(3)39~44
    [67] Sully A H. Metallurgy of the rarer metals, No 3, manganese, 1955
    [68] Kirk-Othmer. Encyclopedia of chemical technology , 1967, 13 (2): 19~30.
    [69] Dean R S. Min Engng, 1952, 4 (1): 55~60
    [70] Welsh J Y, mateson D W. J of metals, 1957, 6
    [71] Welsh J Y. US patent, 3011867, 1961
    [72] 田边伊佐雄.电器化学及工业物理化学.1981,(3):175~178
    [73] Tanabe Isao 2 international symposium on MnO_2, 1981
    [74] 田边伊佐雄.日本公开特许,昭57-77030,1982
    [75] 雷佩琼,鹿玉埋,徐国宪.山东大学学报(自然科学版),1987
    [76] 刘澧浦,余爱琼.可充碱性锌锰电池进展.电池,1991,21:25~27
    [77] K Kordesch, J Gsellman, M Peri, K Tomentscchger, R Chemelli. Electrochim Acta, 1981, 26:1495~1499
    [78] F Fillaux, C H Cachet, H Ouboumour, J Tomkinson, C Levy-Clement, L T Yu. J Electrochem Soc, 1993, 140 (3): 585~591
    [79] F Fillaux, C H Cachet, H Ouboumour, J Tomkinson, C Levy-Clement, L T Yu. J Electrochem Soc, 1993, 140 (3): 592~594
    [80] R G Burns, V M Burns. Proc Inter Symp on MnO_2, 1975
    [81] H S Wroblowa, N Gupta, Y F Yao. J Electroanal Chem, 1987, 238: 93~96
    [82] H S Wroblowa, N Gupta. J Electroanal Chem, 1987, 223: 107~109
    [83] 舒东,夏熙.改性电解锰制备及可充性研究.电池,1993,23(2):51~54
    [84] 张胜利,张金林.碱液中改性二氧化锰的可逆性.电池,1993,23(3):116~118
    [85] 杉森正敏.日本公开许昭,49-30296,1974
    [86] T Nohma, Y Yamamoto, K Nishio, N Furukawa. J Power Sources, 1990, 32:
    
    373
    [87] L Binder, K Kordesch, P Urdl. J Electrochem Soc, 1996, 143 (1): 13~17
    [88] 童庆松,张其昕.可充碱锰电池用电解锰的研究(Ⅱ).电池,1993,23(6):251~257
    [89] 张胜利,宋文顺,夏同驰.电解二氧化锰在碱液中的可逆性.电池,1992,22(1):9~12
    [90] S Fletecher. MnO_2 electrode theory and practice for electrodic appliction, 1985
    [91] 福原隆二.日本特许昭,77-41846
    [92] J Gsellmana, Malati M A, Rophael M W, Bhayat I. J Electrochim Acta, 1981, 26: 238~242
    [93] T Valand. J Power Sources, 1967,(1): 65~69
    [94] J P Brenet. C R Acad sci, 1985, 247:783~789
    [95] J P Chevillot, J P Brenet. C R Acad sci, 1959, 49: 1869
    [96] 张云波,周焕均.电池,1983,3:4~7
    [97] 李国栋等.武汉大学学报(自然科学版),1981,4:78~83
    [98] 李娟,夏熙,李清文.掺铋MnO_2纳米粉体的合成及其可充性.电池,1999,29(2):47~50
    [99] 夏熙.纳米微粒作为电池活性材料的前景.电池,1998,28(6):251~254
    [100] 夏熙.可充碱锰电池发展与展望.电池,1994,24(2):78~83
    [101] 徐保伯.干电池工业的热点-无汞电池.电池,1994,24(6):273~275
    [102] 耿世昌,刘月娟.环保型碱性锌锰电池生产工艺的研究.电池,1998,28(6):278~282
    [103] 王建明,钱亚东,张莉等.可充锌电极存在的问题及解决途径.电池,1999,29(2):76~80
    [104] Frank R Mclarnon, Elton J Cairns. J Electrochem Soc, 1991, 138(2): 645~649
    [105] H Y Kang, C C Ling. Electrochim Acta, 1968, 13: 277~283
    [106] Yuichi Yato. J Power Sources, 1992, 38: 317320
    [107] F Manfeld. J Electrochem Soc, 1970, 117: 588~592
    [108] US patent, 5034291
    [109] 戚道铎,周定,周德瑞.碱性锌锰电池中的有机代汞缓蚀剂.电源技术,1997,
    
    21(3):127~133
    [110] 张宝岩,王荫东.碱性溶液中锌电极添加剂的研究.电源技术,1992,(4):5~8
    [111] B Sajdl, K Micvka, P Krtil. Electrochim Acta, 1994, 38 (8): 2005~2009
    [112] A Kozawa 原著,夏熙译.二氧化锰手册.成都:四川科学技术出版社,1994,110~113
    [113] A J Bard著,谷林英译.电化学方法原理及应用.北京:化学工业出版社,1984
    [114] 周伟航.电化学测量.上海:上海科技出版社,1985
    [115] 南安普顿电化学组,柳厚田译.电化学中的仪器方法.上海:科学出版社,1984
    [116] 王志兴.[博士学位论文].长沙:中南工业大学,1997,108
    [117] 刘永辉.电化学测试技术.北京:北京航空学院出版社,1987
    [118] 刘建华.[博士学位论文].长沙:中南工业大学,1998,10
    [119] 查全性.电极过程动力学导论(第二版).北京:科学出版社,1987
    [120] A M Bond. J Electroanal Chem, 1988, 245: 71~76
    [121] C S Cha, C M Li. J Electroanal Chem, 1994, 368: 47~50
    [122] 夏熙,李清文MnO_2电极可充性问题的探讨(下).电池,1992,22(5):216~219
    [123] 姚震江,沈奥,黄镭.碳酸锰热分解法制备电池用二氧化锰.中国锰业,1986,4(5):42~48
    [124] 王成刚,朱军,韩景智等.碳酸锰热解过程的动力学.中国有色金属学报,2000,10(1):113~115
    [125] 谵曙永.碳酸锰热解生成二氧化锰的试验研究.中国锰业,1991,9(6):21~24
    [126] 赵秦生,王成刚,王大辉等.化学二氧化锰制备中氯酸钠氧化热力学分析.中国锰业,1998,16(1):38~41
    [127] Despic A R, Diggle J, Bockris J O M. J Electrochem Soc, 1968, 115: 507~511
    [128] Arthur E Martell, Melvin Calvin. Chemistry of the metal chelate compounds.科学出版社,1964
    [129] 夏熙.中国化学电源50年(Ⅰ).电池,1999,29(5):209~216
    [130] Yatendra Sharma, Madzlan Aziz, Jamil Yusof. J Power Sources, 2001, 94: 129~131

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700