监测大气环境二氧化硫浓度的硅传感技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化硫(SO2)的大量排放对环境造成了严重污染,采用有效手段动态监测SO2的含量则是控制SO2排放的根本保证。由于现行SO2监测方法存在诸多问题,迫切需要价格低廉、灵敏度高、选择性好、抗电磁干扰能力强、可实时在线监测SO2的新型传感技术。多孔硅是一种具有以纳米硅原子簇为骨架构成的海绵状结构、比表面积高和生物相容性好的新型功能材料,正日益受到人们重视。本文以不同掺杂类型的单晶硅片作为研究对象,采用电化学阳极氧化法制备多孔硅并对其进行稳定化处理,利用多种仪器对多孔硅的理化性质、结构、SO2传感性能等进行实验研究。主要的工作和结论如下:
     1) 研究了不同掺杂类型、电化学阳极氧化条件和稳定化处理方法等对多孔硅性能的影响;采用荧光光谱仪、扫描电子显微镜(SEM)、原子力显微镜(AFM)、红外光谱(FT-IR)等仪器表征多孔硅的膜厚、孔隙率、表面形态、结构、光致发光、耐蚀性等性质;获取了多孔硅最佳制备工艺条件和稳定化处理条件。
     2) 开展了多孔硅对SO2传感的定性、定量研究,证明新鲜浸蚀的多孔硅和稳定化处理的多孔硅均对SO2气体表现出良好的光激荧光猝灭特性,多孔硅荧光峰猝灭幅度与SO2浓度之间呈正相关;根据SEM、耐碱性实验和SO2传感实验结果可知,n-Si制备的多孔硅经稳定化处理后膜层完整、不炸裂、稳定性好、传感SO2气体灵敏度高,比p-Si更适宜作为环境中SO2气体的传感材料。
    3) 计算了不同实验条件下的Stern-Volmer 常数KS数值的大小。当SO2浓度在0-0.25mL·L-1范围时,多孔硅传感过程服从Stern-Volmer方程。其中:经紫外(UV)光氧化处理的多孔硅的Stern-Volmer常数为0.5;经氢化硅烷化处理的多孔硅的Stern-Volmer常数为0.7。当SO2浓度较高时,多孔硅传感SO2的过程不符合Stern-Volmer线性方程。
    4) 环境中的NOx、COx、N2等基本不干扰二氧化硫测定,即多孔硅对SO2呈现良好的选择性。
Sulphur dioxide (SO2) is a main contaminant in air and also the pollutant primarily associated with acid rain. The principal sources of SO2 are from the combustion of fossil fuel in domestic premises, and more importantly, non-nuclear power station. In many countries, the economical losses resulting from sulphur dioxide and acid rain are very great, which makes monitoring SO2 in environment is a critical part in pollution prevention, industrial and agricultural contamination regulations. At present, several methods and instruments are available to monitor SO2 concentration both in gaseous and in liquid media using different systems including colorimetric, amperometric, conductometric, gas chromatography, flame photometry, surface acoustic wave (SAW) gas sensor, tin dioxide gas sensor as well as electrochemical sensors based on high temperature solid electrolyte, liquid electrolyte, solid polymer electrolyte, etc. But these techniques have their own characteristics and limits, new approaches to the detection and analysis of SO2 appear to be in dire need.
    As a novel functional material, porous silicon is constituted by a nano-crystalline skeleton (quantum sponge) immersed in a network of pore, and has a very large internal surface area and good bio-compatibility. So far, chemical properties, physical properties and optical properties of the material have been studied extensively. Because porous silicon can be easily synthesized directly from the same single-crystal silicon wafers, it seems ideal for Si-based opto-electronic devices, bio- and chemical sensors, mass spectrometry, new material support, biocompatible materials and in vivo electronics etc. In this dissertation, porous silicon is formed by electrochemical anodization of p- or n-type single-crystal silicon materials. In order to hinder oxidization process of porous silicon in air, either hydrosilylation or photochemical oxidization is used to stabilize porous silicon, whose principle is based on silicon hydride bonds of porous silicon are replaced by silicon alkyls or silicon dioxide. Furthermore, its structure, properties and sensing process are studied experimentally. The main points of this dissertation are as following:
     1) The effect of dopant of single-crystal silicon, anodization parameters, stabilization methods on porous silicon formation is studied extensively. By fluorescent spectrometer, SEM, AFM, FT-IR, etc., the properties of porous silicon such as porosity, thickness, structure, morphology, photoluminescence, anti-corrosion ability, are measured, the
    
    corresponding optimal conditions of fabrication and stabilization for porous silicon are obtained. Analyzed these experimental results, it is proved that porous silicon generating from n-type silicon wafer is more stable than that of p-type silicon.
     2) According to the experimental results of porous silicon sensing SO2 qualitatively and quantitatively, it is discovered that photoluminescence quenching values of porous silicon oxidized by n- or p-type single-crystal silicon wafers is positively correlated with concentration of SO2. Moreover, stabilization method based on white-promoted hydrosilylation is superior to photochemical oxidization.
    3) The corresponding Stern-Volmer constant KS is also calculated according to the experimental results of photoluminescent quenching process. Within the concentration range from 0 to 0.25mL·L-1, the quenching process is in accord with Stern-Volmer equation. The Stern-Volmer conatant KS of UV oxidation porous silicon is equal to 0.5,and that of hydrosilylation porous silicon is 0.7. Within high concentration range, the quenching process isn't in accord with Stern-Volmer equation.
    4) The other gas such as N2, COx, NOx in monitoring environment cann't disturb the sensing process of SO2.
引文
[1] 肖文德,吴志泉. 二氧化硫脱出与回收[M]. 北京. 化学工业出版. 2001:1-12
    [2] 郭东明. 硫氮污染防治与工程技术及其应用[M]. 北京. 化学工业出版. 2001:1-6
    [3] 雷振东,吴创之,陈勇等. 我国燃煤二氧化硫污染的控制技术及其应用[J].煤炭转化. 1998.21(4): 7-11
    [4] 国家环境保护总局. 燃煤二氧化硫排放污染防治技术政策. 中国环保产业. 2002.3: 12-13
    [5] 俞誉福,叶明吕,郑志坚. 环境化学导论[M]. 上海. 复旦大学出版社. 1997: 1-409
    [6] 缪天成. 我国治理二氧化硫的历程和建议[J]. 硫酸工业. 2000. 1: 1-9
    [7] 张凡,张伟,杨霓云等. 半干半湿法烟气脱硫技术研究[J]. 环境科学研究. 2000. (1): 2-13
    [8] 霍雪萍. 控制二氧化硫排放的几条途径[J]. 西山科技. 2002. 12(3):18-20
    [9] 徐明. 烟气二氧化硫污染控制技术发展及现状[J]. 安徽师范大学学报. 2001.24(2): 187-189
    [10] 金蘋,金辉文. 二氧化硫的污染防治技术[J]. 江苏环境科技. 1998. (3): 45-46
    [11] 李军旗. 工业二氧化硫治理新方法[J].环境科学与技术. 1998. (1): 33-34
    [12] 刘孜. 我国二氧化硫和酸雨污染防治工作取得阶段性成果[J]. 电力需求侧管理. 2001. 3(3): 19-20
    [13] 崔九思,王钦源,王汉平. 大气污染检测方法[M]. 北京. 化学工业出版社. 1997: 1-1284
    [14] 奚旦立,孙裕生,刘秀英. 环境监测[M]. 北京. 高等教育出版社. 1995: 1-424
    [15] 易江. 我国二氧化硫和烟尘测试技术的进展[J]. 现代仪器科学. 1998. (6): 6-15
    [16] 魏培永,韩建强. SO2气体传感器的新进展[J]. 传感器技术. 2001. 20(3): 1-3
    [17] J.F. Currie, A. Essalik. J-C. Marusic. Micromachined thin film solid state electrochemical CO2, NO2, SO2 gas sensors[J]. Sensors and Actuators. 1999. B59: 235-241
    .[18] S. Zhuikov. Development of dual sulfur oxides and oxygen solid state sensor for "in situ" measurements[J]. Fuel. 2000. 79: 1255-1265
    [19] Chiou-Yen, Chiou.Tse-Chuan Chou. Amperometric SO2 gas sensors based on solid polymer electrolytes[J]. Sensors and Actuators. 2002. B87: 1-17
    [20] Guoyue Shi. Min Luo. Jian Xue.et. al. The study of PVP/Pd/IrO2 modified sensor for amperometric determilnation of sulfur dioxide[J]. Talanta . 2001. 55:241-247
    [21] L.T. Canham. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers[J]. Appl. Phys. Lett. 1990. 57(10): 1046-1048
    [22] V .Lehman, U.Gosele. Porous silicon formation: A quantum wire effect[J]. Appl. Phys. Lett. 1991. 58(5): 856-857
    
    
    [23] G. Hasse, M. Christophersen, J. Carstensen., et. al. New insights into Si elctrochemistry and pore growth by Transient measurements and impedance spectroscopy[J]. Phys. Stat. Sol. 2000 . a182(23): 23-29
    [24] Cheng Xuan, Lin Chang-jiang. Elctrochemical investigation of semiconductor silicon wafer[J]. Electrochemistry. 2000. 6(3): 258-263
    [25] V. Mulloni. L, Pavesi. Electrochemically oxidised porous silicon microcavities[J]. Materials Science and Engineering. 2000. (B69-70): 59-65
    [26] M.T. Kelly, J.K.M. Chun, A.B. Bocarsly. High efficiency chemical etchant for the formation of luminescent porous silicon[J]. Appl. Phys. Lett. 1994. 64(13): 1693-11695
    [27] 鲍希茂. 发光多孔硅[J]. 物理学进展. 1993.13(1-2):280-289
    [28] O. Bisi, S. Ossicini, L. Pavesi. Porous silicon: a quantum sponge structure for silicon based optoelectronics[J]. Surface Science Reports. 2000. 38: 1-126
    [29] K.D. Hirschman, L. Tsybesk, S.P. Duttagupta, et. al. Silicon-based visible light-emitting devices integrated into microelectronic circuits[J]. Nature. 1996. 384: 338-340
    [30] MT. Kelly, J.K.M. Chun, A.B. Bocarsly. A silicon sensor for SO2[J]. Nature. 1996.382: 214-215
    [31] M.T. Kelly, A.B. Bocarsly. Effects of SO2 and I2 on the photoluminescence of oxidized porous silicon[J]. Chem. Mater. 1997. 9: 1659-1664
    [32] M.T. Kelly, A.B. Bocarsly. Mechanisms of photoluminescenct quenching of oxidized porous silicon/applications to chemical sensing[J]. Coordination Chemistry Reviews. 1998.171: 251-259
    [33] 施介宽. 大气环境及其保护[M]. 上海. 华东理工大学出版社. 2001: 1-142
    [34] 何丽. 二氧化硫及其酸雨(雾)对人体的危害[J]. 湖北气象. 1999. 5: 42-44
    [35] 郑淑颖. 二氧化硫污染对植物影响的研究进展[J]. 生态科学. 2000. 19(1): 59-64
    [37] 杨新兴,高庆先,姜振远等. 我国酸性物质的大气排放对环境和气候的影响[J]. 大气污染与控制. 1999. 16(4): 180-181
    [36] 郑炳云. 二氧化硫的污染及治理[J]. 福建环境. 2001. 18(3): 13-15
    [38] 刘彬. 酸雨的形成、危害及防治对策[J]. 环境科学与技术. 2001. (4):21-23
    [39] 张士功,张华. 酸雨对我国生态环境的危害及防治对策[J]. 中国农业资源与区别. 2001. 22(1): 41-44
    [40] 付修勇. 酸雨的形成与危害[J]. 聊城师院学报. 2000. 13(3):67-69
    [41] 吴风武, 何治柯, 罗庆尧等. 二氧化硫分析研究进展[J].分析科学学报. 2000.16(3): 248-252
    [42] 李万海,齐爱玖,张松滨. 用三乙醇胺为吸收液测定大气中二氧化硫[J]. 吉林化工学院学报. 2002. 19(2): 16-19
    [43] 刘锐,王宇峰,刘汉初. 还原光度法测定大气中二氧化硫[J]. 环境工程. 2001. 19(2): 40-41
    [44] 张华. 碘量法测定废气中二氧化硫含量准确度的研究[J]. 科技情报开发与经济. 2002.12(3):
    
    122-123
    [45] 张新祥,张胜利,陈荣等. 荧光光度法测定二氧化硫的基础研究[J]. 光谱学与光谱分析. 1999. 19(6): 878-879
    [46] 许汉英,王柯敏,王大宁等. 高灵敏度二氧化硫光纤传感器的研究[J]. 高等学校化学学报. 1998. 19(9):1401-1404
    [47] M.A.R. Taha, M.J. Miller, S.S.M.hassan, et. al. Optical sensor for sulfur dioxide based on fluorescence quenching[J]. Talanta. 1999. (50): 491-498
    [48] F.X.. Meinev, W.A. Jaeschke. The chemical emitting mechanism of SO2. Int. J. Environ. Anal. Chem. 1981. 10:51
    [49] M.Yamada, T.Nakada, S.Suzuki. The determint of SO2 based on chemical emitting. Anal. Chim. Acta. 1983. 147: 401-404
    [50] D.A. Paulis, M.R. Milani. Colorimetric Determination of Sulfur Oxide in Air [J]. Microchemical Journal.1999. (62):273-281
    [51] 吴风武,何治柯,孟辉. 三邻菲咯琳钌-亚硫酸根-过二硫酸钾化学发光法测定空气中的二氧化硫[J]. 分析化学. 2000. 28(6):709-711
    [52] 方卢秋. 硫酸铈-亚硫酸根-荧光素流动注射化学发光法测定空气中的SO2[J]. 分析化学. 2002. 306: 762
    [53] 龙绮云. 离子色谱法测定大气中二氧化硫方法的探讨[J].铁道劳动安全卫生与环保. 2001. 28(2): 128-130
    [54] 查河霞, 缪霞. 离子色谱法测定车间空气中二氧化硫[J]. 安全、环境和健康. 2002. 2(4): 17-19
    [55] S. Suganuma, M. Watanabe.T, Kobayashi, et. al. SO2 gas sensor utilizing stabilized zirconia and sulfate salts with a new working mechanism[J]. Solid State lonics. 1999. 126: 175-179
    [56] C.D. Eastman, T.H. Etsell. Thick/thin film sulfur oxide chemical sensor[J]. Solid State lonics. 2000. 136-137: 639-645
    [57] 鲜跃仲, 薛建.张文等. 新型二氧化硫气体电化学传感器的研究[J].高等学校化学学报. 2000. 21(9): 1375-1376
    [58] 于香波,王玉江,华凯峰等. 改性Nafion膜在全固态SO2气体传感器中的应用[J]. 分析化学. 2002(4): 328
    [59] B.S.Ebarvia, C.A.Binag, F.Sevilla Ⅲ. Surface and potentiometric properties of a SO2 sensor based on a hydrogel coated pH-FET[J]. Sensors and Actuators. 2001.B76: 644-652
    [60] D.R. Shankaran, S.S. Narayanan. Chemical modified sensor for amperometric determination of sulfur dioxide[J]. Sensors and actuators. 1999. B55: 191-194
    [61] A.W.E. Hodgson, D. Pletcher, S. Sotiropoulos. A new approach to the design of amperometric gas
    
    sensors[J]. Sensors and Actuators .1998. B59: 181-185
    [62] R. Knake, R. Guchardi, P.C. Hauser. Quantitative analysis of gas mixtures by voltammetric sensing[J]. Analytica Chimica Acta.2002. (224109): 1-9
    [63] C. Vinegoniy, L. Pavesi. Porous silicon microcavities[M]. 1999: 1-49
    [64] M.P. Stewart, J.M. Buriak. Chemical and Biological applications of porous silicon technology[J]. Adv.Mater. 2000. 12(12): 859-869
    [65] M.J. Sailor, E.J. Lee. Surface chemistry of luminescenct silicon nanocrystallites[J]. Adv.Mater. 1997. 9(7): 783-793
    [66] A.G. Gullis, L.T. Canham, P.D.J. Caicott. The structure and luminescence properties of porous silicon[J]. J. Appl. Phys. 1997. 83(3): 909-965
    [67] R.A.Wind. Fabrication of nanoperiodic surface structures by controlled etching of dislocations bicrystals[J]. Appl.Phys.Lett. 2001.78(15): 2205-2207
    [68] M.P. Stewart, E.G. Robins, T.W.Geders, et. al. Three methods for stabilization and functin\onalization of porous silicon surface via hydrosilylation and electrografting reactions[J]. Phys.Stat.Sol. 2000. a182(109): 109-115
    [69] J.M. Buriak. Silicon-Carbon bonds on porous silicon syrfaces[J]. Adv.Mater. 1999. 11(3): 265-297
    [70] Jae Hee Song, M.J. Sailor. Functionalization of nanocrystalline porous silicon surface with Aryllithium reagents: Formation of silicon-carbon bonds by cleavage of Silicon-Silicon Bonds[J]. J.Am.Chem.Soc. 1998. (120): 2376-2381
    [71] J.E. Bateman, R.D. Eagaling, D.R. Worrall, et. al. Alkylation of porous silicon by direct reaction with Alkenes and alkynes[J]. Angew. Chem. Int.Ed.. 1998. 37(19): 2693-2685
    [72] 李新建, 张裕恒. 发光不衰减的多孔硅[J]. 物理. 1999.28(4): 51-53
    [73] C. Tsai, K.-H. Li, J. Sarathy, et. al. Thermal treatment studies of the photoluminescence intensity of porous silicon[J]. Appl. Phys. Lett. 1991.59(22): 2814-2816
    [74] H. Nishitani, H. Nakata, Y. Fujiware, et. al. Light-induced degradation and recovery of visible photoluminescence in porous silicon[J]. Appl.Phys.Lett. 1992. 31: L577-L579
    [75] 李谷波, 张甫龙, 范洪雷等. 获得多孔硅蓝绿光发射的新方法[J]. 四川工业学院学报. 2000. 19(2): 1-7
    [76] Jae Hee Song, M.J. Sailor. Dimethyl sulfoxide as a mild oxidizing agent for porous silicon and its effect on photoluminescence[J]. Inorg.Chem. 1998.37:3355-3360
    [77] J.C. Barbour, D. Dimos, T.R. Guiliinger, et. al. Control of photoluminescence from porous silicon[J]. Nanotechnology. 1992. 3: 202-204
    [78] 黄远明, 薛青, 翟保改等. 正电子辐照多孔硅的研究[J]. 核技术. 1998. 21(2): 106-107
    [79] R.C. Anderson, R.S. Muller, C.W. Tobias. Chemical surface modification of porous silicon[J].
    
    J.Electrochem.Soc. 1993.140(5): 1393-1396
    [80] 李宏建. 彭景翠. 颜永红等. 多孔硅的表面碳膜钝化[J]. 发光学报. 2000. 21(2): 104-108
    [81] Y. Fukuda, Wei Zhuo, K. Furuya, et. al. Photoluminescence change of as-prepared and porous silicon with NaOH treatment[J]. J. Electrochem. Soc. 1999.146(7): 2697-2701
    [82] J.L. Coffer, S. Lilley, R.A. Martin. The effect of Lewis base chemisorption on the luminescence of prous silicon[J]. Mat. Res. Sym. Proc. 1993. 283: 305-310
    [83] J.L. Coffer, S. Lilley, R.A. Martin. Surface reactivity of luminescent porous silicon[J]. J. Appl. Phys. 1993.74(3):2094-2096
    [84] T. Maehama, A. Yonamine, T. Sonegawa, et. al. Measurements of porosity of porous silicon using X-ray refraction effect[J]. J. Appl. Phys. 2000.39: 3649-3656
    [85] 李雪梅, 魏希文. 多孔硅的发光机制综述[J]. 半导体杂志. 1994. 19(1):24-29
    [86] M.V. Wolkin, J. Jorne, P.M. Fauchet. Electronic states and luminescence in porous silicon quantum dots : the role of oxygen[J]. Physical Review Letters. 1999. 82(1):197-200
    [87] F. Zhou, J.D. Head. Role of Si=O in the photoluminescence of prous silicon[J]. J.Phys.Chem.. B2000. (104): 9981-9986
    [88] L. Boarino, C. Baratto, F. Geobaldo, et. al. NO2 monitoring at room temperature by a porous silicon gas sensor[J]. Materials Science and Engineering. 2000.70: 210-214
    [89] C. Baratto, G. Faglia, E. Comini, et. al. A novel porous silicon sensor for detection of sub-ppm NO2 concentrations[J]. Sensors and Actuators. 2001. B77: 62-66
    [90] J. Harper, M.J. Sailor. Detection of nitric oxide and nitrogen dioxide with photoluminescent porous silicon[J]. Anal.Chem. 1996. 66: 3713-3717
    [91] J. Harper. M.J. Sailor. Photoluminescence quenching and the ohotochemical oxidation of porous silicon by molecular oxygen[J]. Langmuir. 1997. 13: 4652-4658
    [92] 刘刚, 于军, 郑远开,et. al. PS湿敏二极管特性研究[J]. 华中理工大学学报. 1999.27(1): 46-50
    [93] R.C. Anderson, R.S.Muller, C.W.Tobias. Investigation of porous silicon for vapor sensing[J]. Sensors and Actuators. 1990. A21-A23: 835-839
    [94] M.T. Kelly, J.K.M. Chun, A.B. Bocarsly. General Bronsted Acid behavior of porous silicon: a mechanistic evaluation of proton-gated quenching of photoemission from oxide-coated porous silicon[J]. J.Phys.Chem.. 1997. B101: 2702-2708
    [95] J.K.M. Chun, A.B. Bocarsly, T.R. Cottrell, et. al. Proton gated emission from porous silicon[J]. J. Am. Chem. Soc. 1993.115: 3024-3025
    [96] A.B. Bocarsly, J.K.M. Chun, M.T.Kelly. Selective detection of SO2(g) at the P-type porous silicon-gas interface[J]. 1994: 78-90
    [97] M.T. Kelly, A.B. Bocarsly. Mechanisms of photoluminescenct quenching of oxidized porous
    
    silicon/Applications to chemical sensing[J]. Coordination Chemistry Reviews. 1998.171: 251-259
    [98] V. Mulloni, Z. Gaburro, L.Pavesi. Porous silicon microcavities as optical and electrical chemical sensors[J]. Phys.Stat.Sol. 2000. (a)182: 479-484
    [99] Jun Gao, Ting Gao, M.J.Sailor. Porous-silicon vapor sensor based on laser interometry[J]. Appl.Phys.Lett. 2000. 77(6): 901-903
    [100] P.A. Snow, E.K. Squire, P.St. Russell. Vapor Sensing using the optical properties of porous silicon Bragg mirrors[J]. J. Appl. Phys. 1999.86(4): 1781-1784
    [101] S. Chan, P.M. Fauchet, Y. Li, et. al. Porous silicon microcavities for biosensing applications[J]. Phys. Stat. Sol. 2000. (a)182: 541-546
    [102] ]K.-P.S. Dancil, D.P. Greiner, M.J.Sailor. Development of a porous silicon based Biosensor[J]. Mat.Res.Soc.Symp.Proc. 1999. 536: 557-562
    [103] J.Drott, K. Lindstromt, L. Rosengrent, et. al. Porous silicon as the carrier matrix in misrostructured enzyme reactors yieding high enzyme activities[J]. J.Micromech.Microeng.. 1997. 7: 14-23
    [104] Zhouxin Shen, J.J. Thomas, C. Averbuj, et. al. Porous silicon as a versatile piatform for laser desorption/ionization mass spectrometry[J]. Anal.Chem.. 2001. 73: 612-619
    [105] R.A. Kruse, Xiuling li, P.W.Bohn, et. al. Experimental factors controlling analyte ion generation in laser: desorption/ionization mass spectrometry on porous silicon[J]. Anal.Chem. 2001. 73: 3639-3645
    [106] 黄春晖,李富友,黄岩谊. 光电功能薄膜[M]. 北京. 北京大学出版. 2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700