聚氨酯纳米复合泡沫材料的制备及表征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本学位论文首先介绍聚氨酯泡沫材料的最新研究进展,对纳米材料以及纳米复合材料的特点、制备、性能、应用等进行讨论,着重对高岭土无机粘土材料的结构特点、活化理论及其在聚合物材料中的应用进行了详细的探讨。在掌握聚氨酯材料、纳米复合材料、无机粘土材料尤其是高岭土粘土材料的最新研究进展的基础上提出本论文研究的思想。
     本学位论文选用纳米SiO2纳米TiO2、纳米ZnO、以及凹凸棒、高岭土制备出五种聚氨酯纳米复合泡沫材料,讨论了引入纳米粒子对聚氨酯泡沫材料制备条件的影响,如引入不同类型的纳米粒子对聚氨酯泡沫材料合成过程中两种催化剂的影响等,确定了针对不同纳米材料的适宜催化剂使用量。同时,对所得一系列复合材料的结构与性能进行了表征。结果表明聚氨酯/高岭土纳米复合泡沫材料的整体性能良好。基于材料制备成本考虑,将聚氨酯/高岭土纳米复合体系研究作为本学位论文的重点研究目标。
     考虑到高岭土层间距小、几乎无膨胀性、比表面积、空隙率和吸附容量都不大等不利于插层等特点,本学位论文从高岭土的活化处理、插层客体的选择、合适的有机物对高岭土前驱体的有机化修饰等方面开展了研究。迄今为止,文献所报道的高岭土的插层研究,或者破坏了高岭土的片层结构或者插层时间特别长,严重阻碍了高岭土在制备高性能插层聚合物材料方面的应用。因此,本文应用机械化学原理与方法,首次采用低速、湿法球磨技术来制备高岭土前驱体,在保证高岭土片层结构不被破坏的前提下,突破了高岭土插层时间长的瓶颈,快速地一步实现高岭土的纳米化、有机化。同时选择三乙醇胺作为有机修饰剂对高岭土前驱体进行二次插层,进一步有机化,使其带有更多的可反应官能团,为其在聚氨酯材料中应用奠定基础。
     将所得有机化高岭土与聚醚复合,制备出聚醚多元醇/插层高岭土纳米复合材料。采用机械化学方法解决了高岭土纳米片层团聚的难题,所得的功能性聚醚体系稳定均一、可在室温下存储三个月以上。其在聚氨酯/高岭土纳米复合泡沫材料制备中既提供良好分散的纳米粒子又提供可反应性聚醚组分,同时,这种含有纳米高岭土的功能性聚醚还可以拓展到其它的应用领域中,如保温、防水、弹性体等。
     所得聚醚多元醇/插层高岭土纳米复合材料与聚氨酯泡沫单体原位聚合复合,一步法制备聚氨酯/高岭土纳米复合泡沫材料并进行了相关的表征研究。结果显示,高岭土加入后可以极大的提高聚氨酯泡沫的热性能,氧指数得到提高,尤其是其熔滴行为得到了很大的改善,提高了材料的阻燃性能。同时,发现聚氨酯/高岭土纳米复合泡沫材料的化学稳定性、生物稳定性以及耐流体磨损性等性能都得到很大的提高。本学位论文研究提供了一种新型的聚氨酯泡沫载体,既增加其作为生物载体的使用寿命,又提高了生物负载量,扩大了聚氨酯泡沫载体材料的应用空间。
     最后,在兰州三鑫海绵厂进行了聚氨酯/高岭土纳米复合泡沫材料的工业化试验研究。工业化试验样品经航天五一零所国家低温容器质量监督检验中心检测,各项性能都能达到国家标准、多种性能远远优于国家标准。聚氨酯/高岭土纳米复合泡沫材料的成本分析表明,与其它纳米材料相比,所得有机化纳米高岭土材料具有良好的价格优势,其聚氨酯/高岭土纳米复合材料的成本与纯的聚氨酯材料相当,有着良好的应用价值与发展前景。
As an important plastic material, polyurethane foam is widely used in industry, building and many other aspects. Recently, the Development Trend of polyurethane foam is older products modification, new product exploitation and so on. The development of polyurethane foam, and the properties, preparation, development and application of Nanotechnology (nanometer), were introduced in this review, especially the structure, intercalation theories and the activation of kaolinite, as well as the application of kaolinite on preparation of kaolinite/organic composites were also introduced. At last the background and ideal of our research were gained from this review.
     In this paper, firstly, five polyurethane nanocomposite foams were prepared based on five nano-particles:SiO2, TiO2, ZnO, Attapulgite and Kaolinite. The nano-composites were obtained by in situ polymerization of isocyanates, polyether polyol and nano-particles. The preparation process was affected by the introduced nanopartical, especially the catalyst. These five polyurethane nanocomposite foams characterization were conducted using X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscope (SEM). The results confirmed that these nanocomposites with a nano-morphology, at the same time many properties of composites such as mechanical properties, thermodynamic performances were modified markedly. At the same time, the results show that the thermodynamic performance of polyurethane/clay nanocomposite foam was the best in these five nanocomposites.
     A novel and facile approach for the preparation of exfoliated/delamination kaolinite was reported in this work. Kaolinite was put into a globe mill containing dimethylsulfoxide (DMSO) and mechanochemically activated by grinding for periods of time, and then samples activated were treated for several hours at 120℃to get the precursors of kaolinite. The resulting precursors were characterized by using X-ray powder diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), and X-ray photoelectron spectroscopy (XPS). Experimental results indicate that the method based on globe mill can greatly shorten the intercalation time, meanwhile, the clay layers are well exfoliated/delamination with the help of mechanochemical effect. At the same time the clear shift of the energy of the A1 2p peak in the treated samples indicated that the DMSO molecules are bonded to the A12(OH)4 octahedral sheets by hydrogen bond. There is potential for the exfoliated/delamination kaolinite prepared by this facile method to be used in industrial manufacturing of specialty materials.
     A novel intercalation nanocomposite based on polyurethane (PU)/kaolinite was prepared by a simple in-situ, one step polymerization in the presence of organically modified kaolinite (layered silicates). The crude kaolinite (Ko) was firstly modified with dimethylsulfoxide-methanol systems by mechanical chemical method, polyether polyol was then mixed with kaolinite by mechanical chemical method also. The polyurethane/kaolinite nanocomposite foam was characterized by means of X-ray diffraction, scanning electron microscope, transmission electron microscope, and thermal gravimetric analysis. Experimental results indicate that the clay layers of kaolinite in nanocomposites are well distributed and delaminated. The thermal properties, chemical resistance, biological resistance of the nanocomposites are improved in a large extent.
     Finally, the industrial test of polyurethane/kaolinite nanocomposite foam was put into practice in LanZhou SanXin foams factory successfully. The product was characterized in China supervision and test center for product quality of aeronautical 510 research institute. At the same time, the economic cost of organically modified kaolinite and polyurethane/kao nanocomposite foam was considered.
引文
[1]朱吕民,刘益军等.聚氨酯泡沫塑料.北京:化学工业出版社,2005.
    [2]杨鼎文.国外非光气法制造TD1和MD1动向.辽宁化工,1996,(1)
    [3]张福生.异氰酸酯TDI、MDI等合成技术.辽宁化工,1996,(2):14-16.
    [4]李绍雄,刘益军.聚氨酯树脂及其应用,北京:化学工业出版社,2002.
    [5]李俊贤主编.塑料工业手册·聚氨酯,北京:化学工业出版社,1999.
    [6]Guter Oertel, Polyurethane Handbook.2nd ed.Munich, Vienna, New York:Hansers Publishers,1994.
    [7]方秀华.中国聚氨酯协会第八次年会论文集,1996,6.
    [8]G.厄特尔编著.聚氨酯手册,北京:中国石化出版社,1992.
    [9]Frisch Kurt C聚氨酯的最新技术进展,聚氨酯中国95国际会议论文集,1995,4.
    [10]Paul F Bruins.Plyurethane Technology,1969.
    [11]大卫.新型聚醚聚氨酯鞋底.聚氨酯中国95国际会议论文集,北京,1995,339.
    [12]韩怀强.聚合物多元醇合成和应用.聚氨酯工业,2001,16:1-5.
    [13]Torsten P, etal. Novel delayed action catalysts for shoe sole and microcellular applications, UTECH 2003 Europe, March.
    [14]Dimitroff M A. New catalyst and surfactant additives developed for microcellular polyurethane foam systems in shoe soling applications. Plyurethanes 2002 Conference, October:511-526.
    [15]张田林,杨东芳,李再峰.高活性阻燃聚醚多元醇的合成.聚氨酯工业,2003,187:14-17.
    [16]柯扬船,皮特.斯壮主编.聚合物-无机纳米复合材料.北京:化学工业出版社,2003.
    [17]徐国财,张立德.纳米复合材料.北京:化学工业出版社,2002.
    [18]倪星云,姚兰芳,沈军,周斌.纳米材料制备技术.北京:化学工业出版社,2008.
    [19]张立德.纳米材料.北京:化学工业出版社,2001.
    [20]倪星云.纳米材料理化性能与应用.北京:化学工业出版社,2006.
    [21]张立德.纳米材料科学.北京,科学出版社,2001.
    [22]曹茂盛.纳米材料导论.哈尔滨工业大学出版社,2001.
    [23]申永良.现代化工.1999,19(9):46.
    [24]张喜梅,陈玲,李琳等.现代化工,2000,20(7):13.
    [25]Xin Wang,Daoyong Chen,Weihua Ma,et al. Journal of Applied Polymer Science,1999,71:665.
    [26]L Wang,L X Feng, S L Yang. Journal of Applied Polymer Science,1999,71:2087.
    [27]王昕,谭训彦,尹衍声等.陶瓷学报,2000,21(2):107.
    [28]刘福春,韩恩厚,柯伟.材料保护,2001,34(2):1.
    [29]张立德,牟季美.纳米材料和纳米结构.北京,科学出版社,2001.
    [30]Colvert P. Nature.1996,383(26):300.
    [31]贺鹏,赵安赤.高分子通报,2001,1:74.
    [32]曹珍元.化工新型材料,2000,28(11):3.
    [33]洪伟良,刘剑洪,田德余.化学研究应用,2000,12(2):132.
    [34]徐国财,刑宏龙,闵凡飞.涂料工业,1999,19(7):3.
    [35]王荣国等.复合材料概论,哈尔滨工业大学出版社,2001.
    [36]朱晓光,漆宗能.材料研究学报,1997,11(6):623.
    [37]董建华.材料导报,1999,13(5):2.
    [38]王德喜,何黎虹.塑料,2000,29(3):11.
    [39]熊传溪,闻获江.材料导报,1999,13(3):60.
    [40]徐光宪.化学通报,1997,7:55.
    [41]Qian Xue-Feng, Yin Jie,Huang Jun-Chao, et al. Material Chemistry & Physics.2001, 68(1-3):95.
    [42]徐国财,马家举,刑宏龙.应用化学,2000,17(4):450.
    [43]Conslaves K E, Carlson G. Polymer Materials science & Engineering.1995,73:298.
    [44]A Usuki, Y Kojoma, et al. Polymer Preprint,1987,28:447.
    [45]漆宗能,马永梅,张世民.“纳米技术在化工及塑料行业应用研讨会”资料,北京,2001.
    [46]H S Zhou, T Wada, H Sasabe. Applied Physic Letters,1996,68(9):1288.
    [47]张洁,王旭晖,崔一平等.功能材料,2000,31(6):649.
    [48]Gelgali Girish, Ramesh C, Lele Ashish. Macromolecules,2001,34(4):852.
    [49]冯西桥.科学通报,2001,46(4):348.
    [50]Hackett E, Manias E, Giannelis E P. Polymer,2000,42:2161.
    [51]钦征骑,钱杏南,贺盘发.新型陶瓷材料手册.江苏,江苏科学技术出版社,1996:33-34.
    [52]王林江,吴大清.化工矿物与加工,2001,5:29-32.
    [53]刘岚,罗远芳,贾德民.合成橡胶工业,2002,25(3):190-193.
    [54]R. M. Torres Sa'nchez, E. I. Basaldella, and J. F. Marco. Journal of Colloid and Interface Science.1999,215:339-344.
    [55]张博,硕士毕业论文.兰州大学,化学化工学院,2007.
    [56]吕维忠,刘波,吴奕光等.电子元件与材料.2007,3(10):1001.
    [57]石海信,化学世界.2006,10:78.
    [58]F. Franco et al. Journal of Colloid and Interface Science.2004,274:107.
    [59]Luis A. P'erez-Maqueda et al. Journal of the European Ceramic Society.2005,25:1463.
    [60]Erzsebet Horvath, Ray L. Frost, Eva Mako, Janos Kristof, Tamas Cseh. Thermochimica Acta.2003,404:227-234.
    [61]R.L. Frost et al. Applied Clay Science.2002,20:177-187.
    [62]P.J. Sanchez-Soto et al. J. Am. Ceram. Soc.2000,83(7):1649.
    [63]F. Gonzalez-Garcia et al. Clay miner.1992,26:549.
    [64]R L Frost, J Kristof, E Horvath et al. Spectrochim. Acta A,2000,56(9):1711-1729.
    [65]J Kristof, E Horvath, R L Frost, et al. J. Therm. Anal. Calorim.,2000,63(1):279-289.
    [66]P.J.R.Uwins, I.D.R.Mackinnon, J.GThompson et al. Clay.Clay Miner.,1993,41:707-717.
    [67]陈祖熊,颜卫等.建筑材料学报,2000,3(2):151-155.
    [68]陈祖熊,颜卫等.建筑材料学报.2000,3(3):240-245.
    [69]R L Frost, J Kristof, G N Paroz et al. J. Colloid Interf. Sci.,1998,208(1):216-225.
    [70]R L Frost, J T Kloprogge, J Kristof et al. Clay. Clay Miner.,1999,47:732-741.
    [71]S Satokawa,R Miyawaki,S Tomura et al.Clay Sci.,1997,10:231-239.
    [72]李伟东,黄建国,许承晃.华侨大学学报(自然科学版),1994,15(1):48-52.
    [73]R L Frost, J Kristof, E Horvath et al.Clay Miner..2000,35:443-454.
    [74]J G Thompson, C Cuff. Clay. Clay Miner.,1985,33:490-500.
    [75]J M Adams, G Waltl.Clay. Clay Miner.,1980,28:130-134.
    [76]R.L.Frost, J.Kristof, G.N.Paroz et al. J. Colloid Interf. Sci.,1998,204(2):227-236.
    [77]R.L.Frost, J.Kristof, T.H.Tran. Clay Miner.,1998,33:605-617.
    [78]P Sidheswaran, S V R Mohan, P Ganguli et al. Indian J. Chem. A,1987,26:994-998.
    [79]李学强,夏华.非金属矿,2002,25(4):22-24.
    [80]李伟东,黄建国,许承晃.复合材料学报.1994,11(1):23-28.
    [81]Y. Sugahara, S.Satokawa, C.Kato. Clay. Clay Miner.,1988,36(4):343-348.
    [82]厦华,佟健,侯常娥.矿物岩石.2001,21(12):7-10.
    [83]Y Sugahara, S Satokawa, K Kauroda et al. Clay. Clay Miner.,1990,38:137-143.
    [84]A.Matsumura, Y.Komori, Y.Sugahara et al.Bull Chem Soc Japan,2001,74(6):1153-1158.
    [85]J.E.Gardolinski, L.C.M.Carrera, M.P.Cantao. J. Mater. Sci.,2000,35(12):3113-3119.
    [86]何天白,胡汉杰等.功能高分子与新技术.北京,化学工业出版社,2001:220-221.
    [87]J Tunney, C Detellier. Can. J. Chem.,1997,75(11):1766-1772.
    [88]H Wang, C C Zeng, M Elkovitch et al. Polym. Eng. Sci.,2001,41(11):2036-2046.
    [89]Marvin Rice D. et al. Impact properties of reinforced RIM fascia [J].Journal of cellular Plastics,1983,(19):114.
    [90]罗忠富,黄锐,芦艾等.纳米CaCO3增强增韧DHPE复合材料的研究[J].中国塑料,2000,(8):25.
    [91]Zoran S. Petrovic et al. Structure and properties of polyurethane-silica nanocomposites [J]. Journal of Applied Polymer Science,2000,(76):133.
    [92]Arun Prasath R. et al. Synthesis and characterization of metal-containing polyurethane and polyurethane-ureas [J]. European Polymer Journal,1999,(35):1939.
    [93]芦艾,黄锐,王建华等.纳米碳酸钙对硬质聚氨酯泡沫塑料力学性能的影响[J].中国塑料,2001,15(8):28.
    [94]Wang Z, Pinnavaia T J. Nanolayer Reinforcement of Elastomer Polyurethane. Chem Mater, 1998,10(7):3769-3771.
    [95]Chen T K. Tien Y I, Wej K H. Synthesis and characterization of novel segmented polyurethane/clay nanocomposites. Polymer,2000,41(4):1345-1353.
    [96]Wang Z, Pinnavaia T J. Nanolayer reinforcement of elasto-meric polyurethane [J]. Chem. Mater.1998,10(12):3769-3771.
    [97]Zilg C, Thomann R, Muhaupt R et al. Polyurethane nanocomposites containing laminated anisotropyic nanoparticles derived from organophilic layerd silicates [J]. Adv.Mater.1999,11(1):49-52.
    [98]Yao K J, Song M, Hourston D J, et al.Polymer/layered clay nanocomposites; [J].Polymer,2002,43(3):325-329.
    [99]Hu Y, Song L, Xu J et al. Synthesis of polyurethane/clay intercalated nanocomposites [J]. Colloid Polymer Science,2001,279(8):819-822.
    [100]马继盛等.聚氨酯弹性体/蒙脱土纳米复合材料的合成性能与结构.高分子学报,2001,3:34.
    [101]Simone Semenzato, Alessandra Lorenzetti, et al. A novel phosphorus polyurethane FOAM/montmorillonite nanocomposite:Preparation, characterization and thermal behaviour. Applied Clay Science,2009,44:35-42.
    [102]G. Harikrishnan, T. Umasankar Patro, and D. V. Khakhar. Polyurethane Foam-Clay Nanocomposites:Nanoclays as Cell Openers.Ind. Eng. Chem. Res.2006,45,7126-7134.
    [103]Tamer A. Elbokl, Christian Detellier. Journal of Physics and Chemistry of Solids,2006, 67(5-6):950-955.
    [l]Frisch Kurt C聚氨酯的最新技术进展.聚氨酯中国’95国际会议论文集,1995,4.
    [2]Paul F Bruins.Plyurethane Technology.1969.
    [3]秦志燕,巴启仪.新型高分子量聚醚,聚氨酯工业,1996,11(4):7.
    [4]朱吕民.我国聚氨酯泡沫塑料工业面临的挑战和机遇.第八次聚氨酯泡沫塑料交流会论文集.2003,1-14.
    [5]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001.
    [6]Colvert P. Nature,1996,383(26):300.
    [7]倪星云.纳米材料理化性能与应用.北京:化学工业出版社,2006.
    [8]朱吕民,聚氨酯合成材料.江苏科学技术出版社,2002.
    [9]王松.硕士论文,聚氨酯泡沫体孔结构控制研究.国防科技大学,2002.
    [10]朱吕民,刘益军等.聚氨酯泡沫塑料,北京:化学工业出版社,2005.
    [11]G.厄特尔编著.聚氨酯手册.北京:中国石化出版社,1992.
    [12]张博.硕士毕业论文.兰州大学化学化工学院,2007.
    [13]吴励行.现代仪器分析在聚氨酯中的应用.红外光谱在聚氨酯研究和生产中的应用(一).聚氨酯工业[J].2000,15(1):48-52.
    [14]宋建华,章永化等.直接由SiO2低温合成含硅聚氨酯及其结构表征.高分子学报[J].2001(6):811-813.
    [15]周杰,刘宁,李云,马毅杰.凹凸棒石粘土的显微结构特征,硅酸盐通报,1999:6.
    [16]G. Harikrishnan, T. Umasankar Patro, D. V. Khakhar, Polyurethane Foam-Clay Nanocomposites:Nanoclays as Cell Openers, Ind. Eng. Chem. Res.2006,45,7126-7134.
    [17]Mondal, P.,Khakhar, D. V. Rigid Polyurethane-Clay Nanocomposite Foams:Preparation and Properties. J. Appl. Polym. Sci., in press.
    [18]马鹏程,硕士毕业论文.兰州大学,纳米复合聚氨酯泡沫载体及其固定微生物研究,2004.
    [19]G. Harikrishnan, T. Umasankar Patro, D. V. Khakhar. Polyurethane Foam-Clay Nanocomposites:Nanoclays as Cell Openers. Ind. Eng. Chem. Res.2006,45,126-7134.
    [20]L. Nielsen, J. Macromol. Sci. Chem.1967, A1,929.
    [21]K. Haraguchi, T. Takeshita, Adv. Mater.2002,14,1120.
    [22]K. Haraguchi, T. Takehisa, S. Fan.Macromolecules,2002,35,10162.
    [23]K. Haraguchi, T. R. Farnworth et al. Macromolecules,2003,36,5732.
    [24]M. Shibayama et al. Macromolecules.2004,37,9606.
    [25]M. Shibayama, T. Karino et al. Macromolecules.2005,38,10772.
    [26]Tamer A. Elbokl and Christian Detellier. Journal of Physics and Chemistry of Solids, 2006,67(5-6):950-955.
    [1]Tamer A. Elbokl and Christian Detellier. Journal of Physics and Chemistry of Solids, 2006,67(5-6):950-955.
    [2]钦征骑,钱杏南,贺盘发.新型陶瓷材料手册.江苏:江苏科学技术出版社,1996:33-34.
    [3]H.H. Murray, Clay Miner.1999,34:39-49.
    [4]E.F. Aglietti, J.M. Porto L'opez, E. Pereira, Int. J. Miner. Proc.1986,16:125-133.
    [5]T. Vengris, R. Binkiene, A. Sveikauskaite.Appl. Clay Sci.2001,18:183-190.
    [6]G. Suraj, C.S.P. Iyer, M. Lalithambika.Appl. Clay Sci.1998,13:293-306.
    [7]Y. Sugahara, S.Satokawa, C.Kato. Clay. Clay Miner.,1988,36(4):343-348.
    [8]厦华,佟健,侯常娥.矿物岩石.2001,21(12):7-10.
    [9]Y Sugahara, S Satokawa, K Kauroda et al. Clay. Clay Miner.,1990,38:137-143.
    [10]李伟东,黄建国,许承晃.复合材料学报.1994,11(1):23-28.
    [11]A.Matsumura, Y.Komori, Y.Sugahara et al.Bull Chem Soc Japan,2001,74(6):1153-1158.
    [12]Juhasz, A. Z., Opoczky, L.,1990. Mechanical activation of minerals by grinding: pulverising and morphology of particles. Academic Press Budapest, Hungary.
    [13]I.J. Lin, S. Naviv, D.J.M. Grodzian, Mater. Sci. Eng.1979,39:193-209.
    [14]J.M. Criado, M. Gonz'alez, M. Macias, Thermochim. Acta.1988,135:219-223.
    [15]S. Yariv, I. Lapides, J. Mater. Syn. Proc.2000,8:223-233.
    [16]Kristof, E., Juhasz, A.Z., Vassanyi, I.. The effect of mechanical treatment on thecrystal structure and thermal behavior of kaolinite. Clays Clay Miner.1993,41:608-612.
    [17]Mako E, Frost, R. L., Kristof, J., Horvμth, E.. The effect of quartz content on the mechanochemical activation of kaolinite. J. Colloid Interface Sci.2001,244:359-364.
    [18]Valaskova, M., Rieder, M., Matejka, V., Capkova, P., Sliva, A.. Exfoliation/delamination of kaolinite by low-temperature washing of kaolinite-urea intercalates. Appl. Clay Sci.2007,35:108-118.
    [19]Ray L. Frost, Eva Makoy, Janos Kristofz et al. Mechanochemical Treatment of Kaolinite, Journal of Colloid and Interface Science,2001,239:458-466.
    [20]Ray L. Frost, Janos Kristof, Eva Mako,et al. Modification of the Hydroxyl Surface of Kaolinite through Mechanochemical Treatment Followed by Intercalation with Potassium Acetate. Langmuir 2002,18:6491-6498.
    [21]Carmen Vizcaynoa, Ricardo Castelloa, Irene Ranza et al. Some physico-chemical alterations caused by mechanochemical treatments in kaolinites of different structural order.Thermochimica Acta.2005,428:173-183.
    [22]Eva Kristof, A. Zoltan Juhasz, Istvan Vassanyi. The effect of mechanical treatment on the crystal structure and thermal behavior of kaolinite, Clays and Clay Minerals,1993, 41:608-512,.
    [23]Thompson, J.G., Cuff, C.. Crystal structure of kaolinite:dimethylsulfoxide intercalate. Clays Clay Miner.1985,33:490-500.
    [24]Robie, R.A., Hemingway, B.S.. Heat capacities of kaolinite from 7 to 380 K and of DMSO-intercalated kaolinite from 20 to 310 K; the entropy of kaolinite Al2Si2O5(OH)4. Clays Clay Miner.1991,39:362-368.
    [25]Hayashi, S.. NMR study of dynamics and evolution of guest molecules in kaolinite/dimethyl sulfoxide intercalation compound. Clays Clay Miner.1997,45, 724-732.
    [26]李彦锋,孙德文,张博,潘晓兵.插层型有机纳米高岭土及其制备和在制备聚氨酯纳米复合泡沫材料中的应用.专利公开号:CN101544853,2009.
    [27]XianRu Zhang, Zheng Xu. Materials Letters.2007,67(7):1478-1482
    [28]Youjun Deng, G. Norman White, Joe B. Dixon. Effect of Structural Stress on the Intercalation Rate of Kaolinite. J. Colloid Interface Sci.2002,250:379-393.
    [29]Bo Zhang, Yanfeng Li, Xiaobing Pan, Xin Jia, Xiaolong Wang. Intercalation of acrylic acid and sodium acrylate into kaolinite and their in situ polymerization. Journal of Physics and Chemistry of Solids.2007,68:135-142.
    [30]Torres Sanchez, R. M., Basaldella, E.I., Marco, J. F.. The effect of thermal and mechanical treatments on kaolinite:characterization by XPS and IEP measurements. J. Colloid Interface Sci.1999,215:339-344.
    [1]朱吕民,聚氨酯合成材料.江苏,江苏科学技术出版社,2002.
    [2]王松.硕士论文,聚氨酯泡沫体孔结构控制研究.国防科技大学,2002.
    [3]G. Harikrishnan, T. Umasankar Patro, D. V. Khakhar, Ind. Eng. Chem. Res. Polyurethane Foam-Clay Nanocomposites:Nanoclays as Cell Openers,2006,45:7126-7134.
    [4]马鹏程.硕士毕业论文.兰州大学,纳米复合聚氨酯泡沫载体及其固定微生物研究,2004.
    [5]L. Nielsen, J. Macromol. Sci. Chem.1967, A1,929.
    [6]K. Haraguchi, T. Takeshita, Adv. Mater.2002,14,1120.
    [7]K. Haraguchi, T. Takehisa, S. Fan, Macromolecules.2002,35,10162.
    [8]K. Haraguchi, T. R. Farnworth et al. Macromolecules.2003,36,5732.
    [9]M. Shibayama, J. Suda, et al. Macromolecules 2004,37,9606.
    [10]M. Shibayama, T. Karino, S. Miyazaki, S. Okabe, T. Takeshi, K. Haraguchi, Macromolecules 2005,38,10772.
    [11]Nakajima-Kambe et al. Microbial degradation of polyurethane, poluester polyurethanes and polyether polyurethanes. Appl. Microbiol. Biotechnol.1999,51:134-140.
    [1]徐国财,张立德.纳米复合材料.化学工业出版社.2002.03.
    [2]张志坤,崔作林.纳米技术与纳米材料.国防工业出版社,2000.10.
    [3]生瑜,朱德钦,陈建定.聚合物基无机纳米复合材料的制备方法Ⅱ.直接分散法和同时形成法.高分子通报[J].2001,5:7-12.
    [4]吴励行.现代仪器分析在聚氨酯中的应用,红外光谱在聚氨酯研究和生产中的应用(一).聚氨酯工业[J].2000,15:48-52.
    [5]宋建华,章永化,刘安华,龚克成,直接由Si02低温合成含硅聚氨酯及其结构表征.高分子学报[J].2001,6:811-813.
    [6]Ledoux RL, White JLJ. Infrared studies of hydrogen bonding interaction between kaolinite surfaces and intercalated potassium acetate, hydrazine, formamide, and urea. J Colloid Interface Sci.1996,21:127-152.
    [7]GB/T2918《塑料试样状态调节和试验的标准环境》,1998.
    [8]GB 6343《泡沫塑料和橡胶表观(体积)密度的测定》,1995.
    [9]GB/T 10802《软质泡沫聚合物材料》,2006.
    [10]GB/T 6344《软质泡沫聚合物材料拉伸强度和断裂伸长率的测定》,2008.
    [11]GB/T 6344《软质泡沫聚合物材料拉伸强度和断裂伸长率的测定》,2008.
    [12]GB/T 6669《软质泡沫聚合物材料压缩永久变形的测定》,2001.
    [13]GB/T 10807《软质泡沫聚合物材料硬度的测定》,2006.
    [14]GB/T 10808《软质泡沫塑料撕裂性能试验方法》,2006.
    [15]GB/T 3399《塑料导热系数试验方法护热平板法》,1982.
    [16]QJ 1521《固体材料深低温比热容测试方法》,1988.
    [17]QJ 1558《真空中材料挥发性能测试方法》,1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700