介孔材料的定向设计合成及其催化应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于具有高的比表面积、规则有序的孔道排列、可调的孔径大小、较窄的孔径分布以及大的孔容等一系列特性,近年来介孔材料已经引起了各方面的广泛关注,并且已经成为纳米结构材料和催化领域中最为活跃的研究领域之一。本论文针对目前介孔材料研究领域内的三个前沿方向,即:硅基介孔材料的定向控制合成、非硅基多元介孔材料的合成、以及介孔材料的功能化,相应地开展了一系列研究,并探索了所合成的非硅基介孔材料的一些催化应用。主要研究内容如下:
     在硅基介孔材料的定向控制合成方面(论文第2章),首先研究了温度对于MSU介孔材料合成过程的调控作用,关于在低于冰点的低温条件下进行MSU介孔材料的合成,目前尚未见有文献报道;在高于表面活性剂浊点温度的高温下进行MSU介孔材料的合成则被学术界认为是不可能的。我们的研究在国际上首次成功地在远低于冰点温度和远高于浊点温度条件下合成出了MSU介孔材料,从而将MSU介孔材料的合成温度范围拓展到了-25~140℃的范围。并且通过调节合成温度,实现了对所合成MSU的孔径、孔容、比表面积、孔道结构、以及微观形貌等织构性能的定向控制。发现在高温下所合成的MSU介孔材料具有多级孔分布,探讨了其可能的形成机理。接着研究了添加小分子添加剂环己烷对于MSU介孔材料合成过程的调控作用。发现通过调节环己烷在合成体系中的含量,也可以达到定向控制MSU的孔道和形貌等织构特征的目的。相对于温度控制的定向合成,在环己烷存在的情况下,高温下出现二级孔道的现象得到了较好的抑制。随着合成体系中环己烷添加量的增加,所合成出的介孔材料从蠕虫状结构向层状结构转变,同时,其形貌也由原来的实心球形转变成了空心囊泡,即实现了从MSU-1向MSU-V的转变。这种结果未见有文献报道。最后研究了合成温度对于MCM-41孔道结构和形貌的影响。研究结果表明,在低至-10℃的温度下仍然可以合成出具有完好孔道结构的MCM-41介孔材料。相对于较高温度下的合成,低温条件下所合成的MCM-41具有更小的颗粒度和更加连续的形貌。提出了合成温度影响MCM-41微观形貌的可能机理。
     在非硅基介孔材料的合成与应用(论文的第3~7章)方面,在第3章中,以AEO9为表面活性剂模板,利用凝胶-溶胶路线成功地合成出了具有孔径分布均一和比表面大等特点的Ti-O-Co二元复合非硅基介孔材料Meso-Ti-Co。对Meso-Ti-Co进行了详细的表征,证实其具有介孔材料的完整的特征,Co物种完全进入孔壁骨架内部。考查了Meso-Ti-Co的合成工艺,给出了最佳工艺条件。通过自行设计的装置,考查了各介孔材料的催化氧化环己烷的催化性能。结果表明使用介孔催化剂转化率和选择性均要高于其他同类别催化剂,环己烷的转化率可以达到7.97%,环己醇和环己酮的选择性达到93.69%。催化剂的重复性非常好。
     在第4章中,采用MSU介孔材料作为硬模板,通过纳米复制的方法成功地合成出了Ti-O-Co二元介孔材料。得到的Ti-O-Co二元介孔材料孔道结构同模板相似,表征显示Co已经进入骨架。将该系列材料进行光催化氧化降解甲基橙染料实验,发现无论是在紫外灯下还是太阳光下,介孔Ti-O-Co二元复合材料具有比普通二氧化钛高得多的活性。
     在第5章中,开发了一种合成Ti-Ag介孔材料的新方法,即高分子网络模板法。该方法以三乙醇胺为碱催化剂催化甘油聚合生成聚甘油高分子网络以及TBOT的水解,自身即可形成介观结构。Ag离子与三乙醇胺的配位,降低了三乙醇胺的碱度,通过改变Ag离子的含量,可以调节聚甘油高分子网络的聚合度和交联度。通过超分子组装,得到一系列不同Ag/Ti比的Ti-Ag氧化物介孔材料。对其进行表征,结果显示,Ti-Ag氧化物介孔材料具有良好的孔隙性和高比表面积。Ag/Ti比较低时,Ag嵌入到了组成介孔孔壁的锐钛矿TiO2晶格中;Ag/Ti比较高时,部分Ag以金属簇的形式嵌于孔壁中。以具代表性的革兰氏阳性细菌和阴性细菌,真菌为实验菌种,利用该材料进行光催化杀菌,发现该材料是高效、广谱、MIC很小的抗菌剂。Ti-Ag氧化物介孔材料良好的光催化杀菌性能得益于其介孔结构以及锐钛矿TiO2与Ag金属簇之间的协同光催化作用。
     在第6章中,基于第5章所开发的高分子网络模板法,进一步合成了含有其它过渡金属的Ti-M氧化物多元非硅基介孔材料。检测结果显示M组分进入了骨架,所有产物都具有介孔孔道结构,比表面积大,孔壁由锐钛矿纳米晶粒构成。分别取相应的Ti-M氧化物介孔材料进行催化氧化反应,发现这些材料用于光催化氧化环己烷反应,可以达到2.8%的转化率,比前人研究的最好结果增加了近10倍;当将该系列材料用于乳酸脱水和氧化制备丙酮酸和丙烯酸的时候,也比普通的负载型催化剂要高得多,并且由于M金属组分处于骨架中,其在反应前后不会流失,催化剂的催化性能重复性非常好。
     在第7章中,成功合成了两种典型的具有磁性的壳-核纳米的硅基多孔材料。一种是具有微孔孔道的钛硅分子筛TS-1磁性材料,通过其对磁核的包覆,合成出来了壳核磁性纳米MTS颗粒。在该体系中得到的MTS颗粒与普通TS-1相比,颗粒要小很多,是典型的纳米颗粒,氮气吸附试验结果表明产物仍具有发达的微孔体系。将MTS应用到苯酚催化氧化制备苯二酚的反应中,其催化性能相对于纯的TS分子筛要高一些,重复性也非常好。同时,反应后的MTS可以很好的利用磁场回收,这对于成本高,价格贵的TS分子筛而言具有非常重要的意义。第二种是具有介孔孔道的硅基MSU介孔磁性材料MMSU,在证实其具有较好的磁性的同时,该材料仍然具有极高的比表面积和均一的介孔分布。
Because of their high specific surface area, large pore volume, ordered pore array, adjustable and narrowly pore size distribution, mesoporous materials have been paid much attentions in the fields of both the material and catalysis science for the past decade. Significantly large progresses were already attained on the studies of mesoporous materials, with numerous papers being published in various kinds of journals all over the world. A few aspects of this kind of materials, such as, the directionally controlled synthesis of mesoporous silica, the synthesis of non-silica mesoporous materials and the functionalization of mesoporous materials, however, are still waiting for further exploration. These topics constitute, in fact, the difficulties and focuses currently in the filed of mesoporous materials and are what the present dissertation was concerned about. Besides, some catalytic applications of the non-silica mesoporous materials synthesized in this dissertation were also addressed.
     The first part of the dissertation, i.e., the chapter 2, dealt mainly with the directionally controlled synthesis of mesoporous silica.
     Temperature is one of the most important influencing factors for the synthesis of mesoporous materials. MSU-type mesoporous materials are usually synthesized at a temperature ranging of above the ice point of water and below the cloud point of surfactant. No report on the synthesis of MSU at a temperature below the ice point of water could be found in literatures, and it was even believed that a MSU mesostructure could not be generated when the temperature was higher than the cloud point of the surfactant. In this dissertation, it was found, however, that the applicable range of temperature for the synthesis of MSU could be extended largely to that from far below the ice point of water (-25 oC) to much higher than the cloud point (140 oC). The textural properties of the MSU synthesized had been regulated by changing the synthesizing temperature. The MSU synthesized at a temperature higher than the cloud point of surfactant was identified to possess a multimodal mesoporous structure. A possible mechanism had been proposed for the above variation of mesoporous structure with the temperature.
     The effect of addition of small molecular additive, cyclohexane, to the batch for the synthesis of MSU was, for the first time, investigated systematically. The addition of cyclohexane had been proved to be cable of another approach, besides changing the synthesizing temperature, to regulate the textural properties of MSU. It was observed that, with the increase of the amount of cyclohexane, the MSU synthesized suffered from a transformation from a wormlike mesostructure to a lamellar one, while its morphology changed from solid balls to hollow vesicles, being an indicative of a transformation of MSU-1 to MSU-V. For the temperature higher than the cloud point of surfactant, the MSU synthesized in the presence of cyclohexane displayed a monomodal mesoporous structure, being in contrast to a multimodal one synthesized in the absence of cyclohexane.
     The control of the textural properties of MCM-41 had been achieved by changing the synthesizing temperature. It was found that MCM-41 could be synthesized at a temperature as low as -10 oC. The textural properties of MCM-41 changed continuously with temperature, and the crystal size of the MCM-41 synthesized at a low temperature had a much smaller particle size and smooth surface than at a high temperature. To interpret the change of the textural properties with temperature, a possible mechanism had been proposed.
     The second part of this dissertation, involving chapters 3~7, were concerned about the synthesis of non-silica mesoporous materials and their and catalytic applications and the.
     In chapter 3, mesoporous Ti-Co oxides were synthesized via the sol-gel route, being a supramolecular assembly of the surfactant AEO9. The mesoporous Ti-Co oxides synthesized were identified to possess a high specific surface area, narrowly distributed pore size and a pore wall consisting of the Co-incorporated anatase crystals. The mesoporous Ti-Co oxides had been employed, for the first time, as the catalysts for the oxidation of cyclohexane and a considerable high performance were achieved. An as high as 8.0 % conversion of cyclohexane at a 93.7 % selectivity to KA oil (cyclohexanol and cyclohexanone) had been obtained under the optimal conditions.
     In chapter 4, mesoporous Ti-Co oxides were synthesized via a replication route, using MSU as the hard template. The mesoporous Ti-Co oxides synthesized were identified to possess a similar mesostructure with the hard template. The pore wall of the mesostructure comprised of the Co-incorporated anatase crystals. When employed as the photocatalysts for the degradation of dye, the mesoporous Ti-Co oxides presented a much higher activity than the pure TiO2, under whether UV or sunlight irradiation.
     In chapter 5, mesoporous Ti-Ag oxides were synthesized via a supramolecular assembly of polyglycerol, using TBOT and AgNO3 as inorganic sources and glycerol and triethanolamine as organic sources. The template polyglycerol was in situ generated, being catalyzed by the triethanolamine. Because of the coordination with Ag+ ion, the alkalinity of triethanolamine was reduced, and thus, the degrees of the polymerization and crosslinking of polyglycerol could be regulated by changing the molar ratio of Ag/Ti. Through this way, a series of mesoporous Ti-Ag oxides with various Ag/Ti molar ratios had been synthesized. The characterizations to the mesoporous Ti-Ag oxides mesoporous showed that these materials possessed a considerably high BET specific surface area and porosity, with their pore walls consisting of Ag-containing anatase crystals. It was found that, at a lower Ag/Ti molar ratio, the Ag+ ions were incorporated into the framework of the anatase, while at a higher Ag/Ti molar ratio, a part of the Ag+ ions segregate as Ag clusters from the framework of anatase, covering partially the surfaces of the anatase crystals. The mesoporous Ti-Ag oxides synthesized had been employed as the photocatalysts in the antibacterial experiments, using several typical bacteria. It was shown that these mesoporous materials possessed a broad-spectrum antibacterial performance, with a high efficiency and low MIC, which is benefited from the mesostructures and the concerted photocatalysis between the anatase crystals and Ag clusters.
     In chapter 6, numerous mesoporous Ti-M oxides were synthesized using the method developed in chapter 5. All the Ti-M oxides were identified to posses a mesostructure, with a high BET specific surface area, uniform mesopores and narrow pore size distribution. It suggests that the novel method developed in chapter 5 is of appreciable universality. The catalytic performances of the mesoporous Ti-O-M oxides synthesized had been evaluated by a few reactions, such as, the photocatalytic oxidation of cyclohexane, the dehydration of lactic acid to acrylic acid and the oxidative dehydrogenation of lactic acid to pyruvic acid. For the photocatalytic oxidation of cyclohexane, an as high as 2.8 % conversion of cyclohexane, being ten times of the best result ever reported in literatures. For the dehydration of lactic acid to acrylic acid and the oxidative dehydrogenation of lactic acid to pyruvic acid, much higher performances were obtained over the mesoporous Ti-M oxide catalysts than over the supported M/Ti oxide catalysts. It was also found that the mesoporous Ti-M oxide catalysts displayed a considerable stability during the above reaction, with almost no leaching of the active metal component M, due to the incorporation of the component M into the framework of the anatase crystals.
     The third part of the dissertation, i.e., the chapter 8, dealt mainly with the functionalization of mesoporous materials. Two kinds of magnetic core-shell mesostructured materials, namely MTS and MMSU, were prepared respectively by covering the nano-sized magnetic cores, cobalt ferrite, with a sol containing the TS-1 precursors or a sol conventionally used for the synthesis of MSU. The materials prepared were characterized by means of XRD, DRS UV-Vis, SEM, N2-physorption and magnetism determination. It was shown that the MMSU had a morphology of micro-ball with an average diameter of ca. 400 nm and the shell of the micro-ball consisted of the nano-sized MSU particles. The MTS had a morphology of elliptic micro-ball with an average of ca. 200-300 nm, and the shell of the elliptic micro-ball consisted of the nano-sized TS-1 crystals. Both the MMSU and MTS were determined to possess a high BET specific surface area, large pore volume and obvious magnetism. The MTS was also employed as the catalyst for the oxidation of phenol to dihydroxybenzene, and a slightly higher activity was observed over the MTS than over the conventional TS-1. After the reaction, the MTS could be readily recovered by a magnet.
引文
[1] IUPAC Manual of symbols and terminology. Journal of Pure Apply Chemistry,1972, 31: 578-579
    [2] Vanderpool C D, Chiola V, et a1. Process for producing low-bulk density silica. US patent 3556725, 1969-02-01
    [3] Di R F, Cambon H, Dutartre R, et a1. A 28-year-old synthesis of micelle-templated mesoporous silica. Microporous Materials, 1997, 10, (4-6): 283-286
    [4] Yanagisawa T, Shimizu T, Kuroda K, et a1. The preparation of alkyltrimethyl ammonium-kanemite complexes and their conversion to microporous materials. Bulletin of the Chemical Society of Japan, 1990, 63(4): 988-992
    [5] Inagaki S, Fukushima Y, Kuroda K. Synthesis of highly ordered mesoporous materials from a layered polysilicate. Chemical Communications, 1993,(8): 680-682
    [6] Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359, (6397): 710-712
    [7] Beck J C, Vartuli W J, Roth M E, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 1992, 114(27):10834-10843
    [8] Corma A, From microporous to mesoporous molecular sieve materials and their uses in catalysis. Chemical Reveiew, 1997, 97(6):2373-2419
    [9] Zhao X S, Lu G Q. Modification of MCM-41 by surface silytation with trimethylchlorosilane and adsorption study. Journal of Physical and Chemistry B, 1997,101(9):9436-9440
    [10] Moller K, Bein T. Inclusion chemistry in periodic mesoporous hosts. Chemistry of Materials,1998, 10(10):950-2963
    [11] Ying J Y, Mehnert C P, Wong M S. Synthesis and applications of supermolecular-templated mesoporous materials. Angewandte Chemie International Edition in English, 1996,35(5):515-518
    [12] Clark J H, Macqwmie J. Catalyst of liquid phase organic reactions usingchemically modified mesoporous inorganic solids. Chemical Communications, 1998, (8): 853-860
    [13] Firouzi A, Kumar D, Bull L M, et al. Cooperative organization of inorganic-surfactant and biomimetic assemblies. Science, 1995, 267(5201): 1138-1143
    [14] Huo Q S, Margolese D I, Ulrike C, et al. Generalized synthesis of periodic surfactant/inorganic composite materials. Nature,1994,368 (6469): 317-321
    [15] He J, Yang X, Evans D G, et al. New methods to remove organic templates from porous materials. Materials Chemistry and Physics,2003, 77(6): 270-275
    [16] Bourlinos A B, Karakassides M A, Petridis D. Synthesis and characterization of iron-containing MCM-41 porous silica by the exchange method of the template. The Journal of Physical Chemistry B, 2000, 104, (18): 4375-4380
    [17] Tian B Z, Liu X Y,Yu C Z, et. al. Microwave assisted template removal of siliceous porous materials. Chemical Communications, 2002, (12):1186–1187
    [18] Cassiers K, Van Der Voort P, Vansant E F. Synthesis of stable and directly usable hexagonal mesoporous silica by efficient amine extraction in acidified water. Chemical Communications, 2000, (10):2489–2490
    [19] Kawiand S, Lai M W. Supercritical fluid extraction of surfactant template from MCM-41. Chemical Communications, 1998, (8): 1407-1408
    [20] Srivastava D N,Perkas N,Gedanken A, et al. Sonochemical synthesis of mesoporous iron oxide and accounts of its magnetic and catalytic properties. The Journal of Physical Chemistry B, 2002, 106(8): 1878-1883.
    [21] Kaneda M, Tsubakiyama T, Carlsson A, et al. Structural study of mesoporous MCM-48 and carbon networks synthesized in the spaces of MCM-48 by electron crystallography. Journal of Physical Chemistry B, 2002, 106 (6): 1256-1266
    [22] Jun S, Joo S H, Ryoo R, et al. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. Journal of the American Chemical Society, 2000, 122(43): 10712-10713
    [23] Laha S C, Ryoo R. Synthesis of thermally stable mesoporous cerium oxide with nanocrystalline frameworks using mesoporous silica templates.Chemical Communications, 2003, (17): 2138-2139
    [24] Zhu K K, Yue B, Zhou W Z, et al. Preparation of three-dimensional chromium oxide porous single crystals templated by SBA-15. Chemical Communications, 2003, (1): 98-99
    [25] Zhu K K, He H Y, Xie S H, et al. WO3 nanowires synthesized by templating method. Chemical Physics Letters , 2003, 377(3-4): 317-321
    [26] Wang Y Q, Yang C M, Schmidt W, et al. Weakly ferromagnetic ordered mesoporous Co3O4 synthesized by nanocasting from vinyl-functionalized cubic Ia3d mesoporous silica. Advance Materials, 2005, 17(1): 53-56
    [27] Tian B Z, Liu X Y, Yang H F, et al. General synthesis of ordered crystallized metal oxide nanoarrays replicated by microwave-digested mesoporous silica. Advance Materials, 2003, 15(16): 1370-1374
    [28] Yang H F, Shi Q H, Tian B Z, et al. One-step nanocasting synthesis of highly ordered single crystalline indium oxide nanowire arrays from mesostructured frameworks. Journal of the American Chemical Society, 2003, 125(16): 4724-4725
    [29] Yang H F, Zhao D Y. Synthesis of replica mesostructures by the nanocasting strategy. Journal of Materials Chemistry , 2005, 15 (12): 1217-1231
    [30] Kang M, Yi S H, Lee H I, et al. Reversible replication between ordered mesoporous silica and mesoporous carbon. Chemical Communications, 2002, (13):1944-1945
    [31] Lu A H, Schmidt W, Taguchi A, et al. Taking nanocasting one step further: replicating CMK-3 as a silica material. Angewandte Chemie International Edition in English, 2002, 41(18): 3489-3492
    [32] Kim J Y, Yoon S B, Yu J S. Template synthesis of a new mesostructured silica from highly ordered mesoporous carbon molecular sieves. Chemistry of Materials, 2003, 15 (10): 1932-1934
    [33] Dong A G, Ren N, Tang Y, et al. General synthesis of mesoporous spheres of metal oxides and phosphates. Journal of the American Chemical Society, 2003, 125(17): 4976-4977
    [34] Roggenbuck J, Tiemann M. Ordered mesoporous magnesium oxide with high thermal stability synthesized by exotemplating using CMK-3 carbon. Journal of the American Chemical Society, 2005, 127(4): 1096-1097
    [35] Chen C Y, Li H X, Davis M E, Studies on mesoporous materials: I.Synthesis and characterization of MCM-41. Microporous Materials, 1993, 2(1):17-26
    [36] Chen C Y, Burkett S L, Li H X, et al. Studies on mesoporous materials II. Synthesis mechanism of MCM-41. Microporous Materials, 1993, 2(1): 27-34
    [37] Monnier A, Schüth F, Huo Q S, et al. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science, 1993, 261(5126): 1299-1303
    [38] Huo Q S, Margolese D I, Ulrike C, et al. Generalized synthesis of periodic surfactant/inorganic composite materials. Nature, 1994, 368(6469): 317-321
    [39] Huo Q S, Leon R, Petroff P M, et al. Mesostructure design with gemini surfactants: supercage formation in a three-dimensional hexagonal array. Science,1995, 268(5215):1324-1327
    [40] Zhao D Y, Feng J B, Hun Q S, et al. Triblock copolymer synthesis of mesoporous silica with periodic 50 to 300 angstrom pores. Science,1998, 279:548-552
    [41] Zhao D Y, Huo Q S, Feng J B, et al. Nonionic triblock and star diblock copolymer and oligomeric surfactants synthesis of highly ordered, hydrothermally stable mesoporous silica structures. Journal of the American Chemical Society,1998, 120(24): 6024-6036
    [42] Tanev P T, Pinnavaia T J. A neutral templating route to mesoporous molecular sieves. Science, 1995, 267(5199):865-867
    [43] Tanev P T, Chibwe M, Pinnavaia T J, Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds. Nature,1994, 368(6469):321-324
    [44] Bagshaw S A, Prouzet E, Pinnavaia T J, Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants. Science, 1995, 269(5228):1242-1244
    [45] Prouzet E, Cot F, Nabias G, et al. Assembly of mesoporous silica molecular sieves based on nonionic ethoxylated sorbitan esters as structure directors. Chemistry of Materials, 1999, 11(6): 1498-1503
    [46] Ryoo R, Rim J M, Coo C H, et al. Disordered molecular sieve with branched mesoporous channel network. Journal of Physical Chemistry, 1996, 100(45):17718-17724
    [47] Yu C Z, Yu Y H, Zhao D Y. Highly ordered large caged cubic mesoporous silica structures templated by triblock PEO-PBO-PEO copolymer. Chemical Communicationss, 2000, (7): 575-576
    [48] Liu X Y, Tian B Z, Yu C Z, et al. Room-Temperature synthesis in acidic media of large-pore three-dimensional bicontinuous mesoporous silica with Ia3d symmetry. Angewandte Chemie International Edition, 2002, 114, (20): 4032-4034
    [49] Antonelli D M, Ying J Y. Synthesis of hexagonally packed mesoporous TiO2 by modified sol-gel method. Angewandte Chemie International Edition in English, 1995, 34(18): 2014-2 017
    [50] Antonelli D M, Ying J Y. Synthesis of a Stable hexagonally packed mesoporous niobium oxide molecular sieve through a novel ligand-assisted templating mechanism. Angewandte Chemie International Edition in English, 1996, 35, (4): 426-430
    [51] Yang P D, Zhao D Y, Margolese D I, et al. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature, 1998, 396(6707): 152-155
    [52] Antonelli D M, Ying J Y. Synthesis and characterization of hexagonally packed mesoporous tantalum oxide molecular sieves. Chemistry of Materials, 1996, 8(4): 874-881
    [53] Bernd S, David G, Torsten B, et al. Highly crystalline cubic mesoporous TiO2 with 10nm pore diameter made with a new block copolymer template. Chem Mater, 2004,16(8): 2948-2952
    [54] Cameron N S, Corbierre M K, Eisenberg A. Asymmetric amphiphilic block copolymers in solution: A morphological wonderland. Canadian Journal of Chemistry, 1999, 77(8): 1311~1326
    [55] Tian Z R, Tong W, Wang J Y, et al. Manganese oxide mesoporous structure: Mixed-valent semiconducting catalysts, Science, 1997, 276(5314): 926-930
    [56]洪昕林,张高勇,杨恒权,等.介孔锰氧复合物的表面活性剂模板合成与孔结构分析.日用化学工业, 2002, 32(6): 6-8
    [57] Tao L, Sun C G, Huang C J, et al. A redox-assisted supramolecular assembly of manganese oxide nanotube. Materials Research Bulletin, 2006, 41: 2035-2040
    [58]薛同,介孔氧化锰电容器材料的制备及性能研究.石油化工应用,2007, 26(6):23-26
    [59] Lu G Y, Miura N, Yamazoe N. High-Temperature sensors for NO and NO2 based on stabilized zirconia and spinal-type oxide electrodes. Journal of Materials Chemistry, 1997, 7(8): 1445-1 449
    [60] Tanabe K, Yamaguchi T. Acid-Base bifunctional catalysis by ZrO2 and its mixed oxides. Catalysis Today, 1994, 20 (2): 185-197
    [61] Inoue M, Kominami H, Inui T. Novel synthetic method for the catalytic use of thermally stable zirconia: thermal decomposition of zirconium alkoxides in organic media. Applied Catal A: General, 1993, 97(1): L25-L30
    [62]赵军平,王树国,巩雁军,等.高等学校化学学报,2000, 21(12): 1797-1800
    [63] Schuth F, Ciesla U, Schachat S, et al., Ordered mesoporous silicas and zirconias: control on length scales between nanometer and micrometer. Materials Research Bulletin,1999, 34 (3): 483-494
    [64] Knowles J A, Hudson M J. Preparation and characterisation of mesoporous, high surface area Zirconium(IV) oxides. Chemical Communicationss, 1995, (24): 2083-2084
    [65] Hudson M J, Knowles J A. Preparation and characterisation of mesoporous high-surface-area zirconium (IV) oxide. Journal of Materials Chemistry, 1996, 6 (1): 89-95
    [66] Wong M, Antonelli D, Ying J. Synthesis and characterization of phosphated mesoporous Zirconium oxide. Nanostructured Materials,1997, 9 (2): 165-168
    [67] Scott O, Ozin A. Coombs N, Synthetic hollow aluminophosphate microspheres. Advanced Materials, 1995, 7, (11):931-935
    [68] Kimura T, Sugahara Y, Kuaroda K. Synthesis of mesoporous aluminophosphates and their adsorption properties. Microporous and Mesoporous Material, 1998, 22(1-3): 115-126
    [69] Zhao X S, Lu G Q. Whittaker A K, et al. Influence of synthesis parameters on the formation of mesoporous SAPOs. Microporous Mesoporous Mater, 2002, 55(1): 51-52
    [70] Basab C, Alex C P. Viswanathan B, Physico-chemical and MAS NMR characterization of mesoporous SAPOs. Applied Catalysis, 1998, 167(2): 173-181
    [71] Stein A, Fendorf M, Jarvie T P, et al. Salt-gel synthesis of porous transition-metal oxides. Chemistry of Materials, 1995,7(2): 304-313
    [72] Holland B T, Isbester P K, Blanford C F, et al. Synthesis of ordered aluminophosphate and galloaluminophosphate mesoporous materials with anion-exchange properties. Journal of the American Chemical Society,1997,119(29): 6796-6803
    [73] Tian B Z, Liu X Y, Tu B, et al. Self-adjusted synthesis of ordered stable mesoporous minerals by Acid–base pairs. Nature Materials, 2003, 2(3):159-163
    [74] Braun P V, Osener P, Stupp S L. Semiconducting superlattices templated by molecular assemblies. Nature, 1996,380(6572): 325-328
    [75] Braun P V, Osener P, Tohverandetal V. Nanostructure templating in inorganic solids with organic lyotropic liquid crystals. Journal of the American Chemical Society, 1999, 121(32): 7302-7309
    [76] Rangan K K, Trikalitis P N, Canlas C, et al. Hexagonal pore organization in mesostructured metal tin sulfides built with [Sn2S6]4-cluster. Nano Letters, 2002, 2 (5):513-517
    [77] Jiang T, Ozin G A. Tin(IV) sulfide–alkylamine composite mesophase: a new class of thermotropic liquid crystals. Journal of Materials Chemistry, 1997, 7(11): 2213-2222
    [78] Fr?baand M, Oberender N. First synthesis of mesostructured thiogermanates. Chemical Communicationss,1997, (17): 1729-1730
    [79] Li J Q, Nazar L F. Mesostructured iron sulfides. Chemical Communications., 2000, (76): 1749-1750
    [80] Ling Y H, Min Y, Xiao M, et al. Fabrication of Ordered Macroporous CdS and ZnS by Colloidal Crystal Template Chinese Chemical Letters, 2002, 13(2): 181-182
    [81] Rana R K, Zhang L Z, Yu J C, et al. Mesoporous structures from supramolecular assembly of in situ generated ZnS nanoparticles. Langmuir, 2003, 19(14): 5904-5911
    [82] Mal N K, Ichikawa S, Fujiwara M. Synthesis of a novel mesoporous tin phosphate, SnPO4. Chemical Communications, 2002, (2): 112-113
    [83] Christian S, Auroux A, Gervasini A. et al. Hexagonal and cubic thermally stable mesoporous Tin(IV) phosphates with acidic and Catalytic properties. Angewandte Chemie, 2002, 114 (9): 1664-1667
    [84] Liu P, Lee S H, Tracyc E, et al. Preparation and lithium insertion properties of mesoporous vanadium oxide. Advance Materials, 2002, 14(1): 27-30
    [85] Yu A, Frech R. Mesoporous tin oxides as lithium intercalation anode materials. J Power Sources, 2002, 104 (1): 97-100
    [86] Chen F L, Liu M L. Preparation of mesoporous tin oxide for electrochemical applications. Chemical Communications, 1999, 18: 1829-1830
    [87] Cheng W, Baudrin E, Dunn B, et al. Synthesis and electrochromic properties of mesoporous tungsten oxide. Journal of Materials Chemistry, 2001, 11 (1): 92-97
    [88] Banerjee S, Santhanam A, Dhathathreyan A, et al. Synthesis of ordered hexagonal mesostructured nickel oxide. Langmuir, 2003, 19 (13): 5522-5525
    [89] Ruckenstein E, Chao Z S. Synthesis of mesoporous V-Mg-O Nanofibers. Nano Letters, 2001, 1(12):739-742
    [90] Chao Z S, Ruckenstein E. V-Mg-O Prepared via Mesoporous Pathway: a Low-Temperature Catalyst for the Oxidative Dehydrogenation of Propane to Propene. Catalysis Letters, 2004, 94(3-4): 217-221
    [91] Chao Z S, Ruckenstein E. Non-Catalytic and Catalytic Conversion of Ethane over V-Mg Oxide Catalysts Prepared via Solid Reaction or via Mesoporous Precursors. Journal of Catalysis, 2004, 222(1): 17-31
    [92] Chao Z S, Ruckenstein E. A comparison of Catalytic Oxidative Dehydrogenation of Ethane over Mixed V-Mg Oxides and over Those Prepared via a Mesoporous V-Mg-O Pathway. Catalysis Letters, 2003, 88 (3-4): 147-154
    [93] Wu G D, Wang X L, Chen B, et al. Fluorine-modified mesoporous Mg-Al mixed oxides: Mild and stable base catalysts for O-methylation of phenol with dimethyl carbonate. Applied Catalysis A: General 2007, 329 (1): 106-111
    [94] Camblor M A, Corma A, Martinez A, et al. Synthesis of a titaniumsilicoaluminate isomorphous to zeolite beta and its application as a catalyst for the selective oxidation of large organic molecules, Chemical Communications, 1992, (8): 589-590
    [95] Corma T, Navarro M T. Perez-Pariente Synthesis of an ultralarge poretitanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons, Chemical Communications, 1994, (1): 147-148
    [96] Hua Z L, Shi J L, Zhang W H, et a1. Mater. Lett., Direct synthesis and characterization of Ti-containing mesoporous silica thin films. Materials Letter, 2002, 53(4-5): 299-304
    [97] Wang X X, F Lefebvre, J Patarin, et a1. Synthesis and characterization of zirconium containing mesoporous silicas: I. Hydrothermal synthesis of Zr-MCM-41-type materials. Microporous and Mesoporous Materials, 2001, 42(2-3): 269-276
    [98] Gontier S, Tuel A. Novel zirconium containing mesoporous silicas for oxidation reactions in the liquid phase. Applied Catalysis A: General, 1996, 143(1): 125-135
    [99] Keddy K M, Moudrakovski I. Sayari A, Synthesis of mesoporous vanadium silicate molecular sieves. J Chem Soc, Chemical Communications, 1994, (9):1059-1060
    [100] Kawi S, Te M. MCM-48 supported chromium catalyst for trichloroethylene oxidation. Catalysis Today, 1988, 44(1-4): 101-109
    [101] Zhang W Z, Wang J L, Tanev P T, et a1. Catalytic hydroxylation of benzene over transition-metal substituted hexagonal mesoporous silicas. Chemical Communications, 1996, (8): 979-980
    [102] Brdgeault J M, Piquemal J Y, Briot E, et al. New approaches to anchoring or inserting highly dispersed tungsten oxo(peroxo) species in mesoporous silicates. Microporous and Mesoporous Materials, 2001, 44-45: 409-417
    [103] Zhao D Y, Goldfarb D. Synthesis of mesoporous manganosilicates: Mn-MCM-41, Mn-MCM-48 and Mn-MCM-L. Journal of the Chemical Society, Chemical Communications, 1995, (8):875-876
    [104] Das T K, Chaudhari K, Chandwadkar A J, et al. Synthesis and catalytic properties of mesoporous tin silicate molecular sieves. Journal of the Chemical Society, Chemical Communications, 1995, (24): 2495-2496
    [105]孙建敏,孟样举,肖丰收,等. Cu修饰的MCM-41的合成、表征及对芳烃羟化反应催化作用的研究.高等学校化学学报, 2000, 21(9): 1451-1454
    [106] Reddy J S, Sayari A. Oxidation of propylamine over titanium silicate molecular sieves. Applied Catalysis A: General, 1995,128(2)231-242
    [107] Gonter S, Tuel A. Liquid-Phase Oxidation of Aniline over VariousTransition-Metal-Substituted Molecular-Sieves. Journal of Catalysis, 1995,157(1): 124-132
    [108] Corma A, Iglesias M, Sanchez F. Large pore Ti-zeolites and mesoporous Ti-silicalites as catalysts for selective oxidation of organic sulfides. Catalysis Letters, 1996,39(3-4): 153-156
    [109] Tanev P T, Chibwe M, Pinnavaia T J. Titanium-Containing Mesoporouse Molecular Sieves for Catalytic Oxidation of Aromatic Compounds. Nature, 1994, 368: 321-323
    [110] Gontier S, Tuel A. Synthesis and Characteriziton of Ti-Containing Mesoporous Silicas. Zeolites, 1995,15(3): 601-610
    [111] Wang X X, Wang Y, Tang Q H, et al. MCM-41-supported iron phosphate catalyst for partial oxidation of methane to oxygenates with oxygen and nitrous oxide. Journal of Catalysis, 2003. 217(2): 457-467
    [112] Yang W, Wang X X, Guo, Q, et al. Superior catalytic performance of phosphorus-modified molybdenum oxide clusters encapsulated inside SBA-15 in the partial oxidation of methane. New Journal of Chemistry, 2003, 27(9): 1301-1304
    [113] Lin B M, Wang X X, Guo Q, et al. Excellent catalytic performances of SBA-15-supported Vanadium oxide for partial oxidation of methane to formaldehyde. Chemistry Letters, 2003, 32(9): 860-861
    [114]涂彩华,王爱琴,郑明远,等.一种新的高活性CO氧化催化剂Ag/SBA-15,催化学报, 2005, 26(8): 631-633
    [115] Segura Y, Cool P, Van Der Voort P, et a1. TiOx-VOx mixed oxides on SBA-15 support prepared by the designed dispersion of acetylacetonate complexes: Spectroscopic study of the reaction mechanisms. Journal of Physical Chemistry B, 2004, 108(12): 3794-3800
    [116] Segura Y, Chmielarz L, Kustrowski P. Characterization and reactivity of vanadia-titania supported SBA-15inthe SCR of NO with ammonia. Applied Catalysis B: Environmental, 2005, 61(1-2): 69-78
    [117] Segura Y, Cool P, Kustrowski P, et a1. Characterization of vanadium and titanium oxide supported SBA-l5. Journal of Physical Chemistry B, 2005, 109(24): l2071-12079
    [118] Corma A, Martinez S V, Schnoeveld E. Alkylation of benzene with short-chain olefins over MCM-22 zeolite: catalytic behaviour and kinetic mechanism. Journal of Catalysis, 2000, 192(1): 163-173
    [119] Kloestra K R, Bekkum H. Base and acid catalysis by the alkali-containing MCM-41 mesoporous molecular sieve. Journal of the Chemical Society, Chemical Communications, 1995,(10): 1005-1006
    [120] Corma A, Martinez A, Martinezsoria V, et a1. hydrocracking of vacuum gasoil on the novel mesoporous MCM-41 aluminosilicate catalyst. Journal of Catalysis,1995,153(1): 25-31
    [121] Reddy K M, Song C S. Synthesis of mesoporous zeolites and their application for catalytic conversion of polycyclic aromatic hydrocarbons. Catalysis Today,1996, 31(1-2): 137-144
    [122] Kozhevnikov I V, Sinnema A, Jansen R J J, et a1. New acid catalyst comprising heteropoly acid on a mesoporous molecular sieve MCM-41. Catalysis Letters, 1995,30(2-3): 241-242
    [123] Díaz I, Márquez-Alvarez C, Mohino F. combined alkyl and sulfonic acid functionalization of MCM-41-type silica: Part 1. synthesis and characterization. Journal of Catalysis, 2000,193(2): 283-294
    [124] Choudary B M, Kantam M L. Sreekanth P, Knoevenagel and aldol condensations catalysed by a new diamino-functionalised mesoporous material. Journal of Molecular Catalysis A: Chemical, 1999,142 (3):361-365
    [125] Rodriguez I, Iborra S, Rey F, et a1. Heterogeneized Br?nsted base catalysts for fine chemicals production: grafted quaternary organic ammonium hydroxides as catalyst for the production of chromenes and coumarins. Applied Catalysis A: General,2000 (194-195):241-252
    [126] Zhang Z, Dai S, Fan X, et al. Controlled Synthesis of CdS nanoparticles inside ordered mesoporous silica using ion-exchange reaction. The Journal of Physical Chemistry B, 2001, 105(29): 6755-6758
    [127] Coffer J L, Beauchamp G, Zerga T W. Porous silica glasses doped with quantum-confined cadmium selenide. NonCrystal Solids, 1992, 142: 208-213
    [128] Hartmann M,Kevan L. Transition-Metal Ions in Aluminophosphate and silicoaluminophosphate molecular sieves: location, interaction with adsorbates and catalytic properties. Chemical Reviews, 1999, 99(3): 635-664
    [129] Zhang J, Han B,Hou Z, et al. Novel method to load nanoparticles into mesoporous materials: impregnation of MCM-41 with ZnS by compressedCO_2. Langmuir,2003, 19(18): 7616-7620
    [130] Feng X, Fryxell G E, Wang L Q, et a1. Funetionalized monolayers on ordered mesoporous supports. Science, 1997, 276(5314): 923-926
    [131] Deere J, Magner E, Wall J G, et a1. Adsorption and activity of proteins onto mesoporous silica. Analysis Letters, 2003, 85(1-2): 19-23
    [132] McKenzie K J. Marken F. Accumulation and reactivity of the redox protein cytochrome C in mesoporous films of TiO2 phytate. Langmuir, 2003, 19(10): 4327-4331
    [133] Leon R, Margolese D, Stucky G D, et al. Nanocrystalline filaments in the pores of a mesosilicate. Physical Review B 1995, 52(4): R2285-R2288
    [134] Olson G H, Stucky G D, Vartulk J C, et al. Sensor device containing mesoporous crystalline material, US patent NO. 5364797, 1994-11-15
    [135] Beck J S, Kuehl G H, Olson G H et al. M41S materials having nonlinear optical properties, US patent NO. 5348687, 1994-09-20
    [136] Yang P D, Deng T, Zhao D Y, et al. Hierarchically ordered oxides. Science 1998, 282(5397):2244-2246
    [137] Ryoo R, Ko C H, Kruk M. Block-copolymer-templated ordered mesoporous silica: Array of uniform mesopores or mesopore-micropore network? Journal of Physical Chemistry B, 2000, 104(48): 11465-11471
    [138] Liu Z, Sakamoto Y, Ohsuna T, et al. TEM studies of platinum nanowires fabricated in mesoporous silica MCM-41. Angewandte Chemie-International Edition, 2000, 39(17): 3107-3110
    [139] Kruk M, Jaroniec M, Ko C H, et al. Characterization of the porous structure of SBA-15. Chemistry of Materials, 2000, 12(7):1961-1968
    [140] Miyazawa K, Inagaki S, Control of the microporosity within the pore walls of ordered mesoporous silica SBA-15. Chemical Communications, 2000, (21):2121-2122
    [141] Imperor-Clerc M, Davidson P, Davidson A. Existence of a microporous corona around the mesopores of silica-based SBA-15 materials templated by triblock copolymers. Journal of the American Chemical Society, 2000, 22(48): 11925-11933
    [142] Zhang Z T, Han Y, Zhu L, et al. Strongly acidic and high-temperature hydrothermally stable mesoporous aluminosilicates with ordered hexagonal structure. Angewandte Chemie-International Edition, 2001, 40(7):1258-1262
    [143] Sun Y, Han Y, Yuan L, et al. Microporosity in ordered mesoporous aluminosilicates characterized by catalytic probing reactions. Journal of Physical Chemistry B, 2003, 107 (8): 1853-1857
    [144] Chen F, Zhang M, Han Y, et al. Characterization of microporosity in ordered mesoporous material MAS-7 by 129Xe NMR spectroscopy. Journal of Physical Chemistry B 2004, 108(12): 3728-3734
    [145] Liu Y, Zhang W, Pinnavaia T J. Steam-stable aluminosilicate mesostructures assembled from zeolite type Y seeds. Journal of the American Chemical Society 2000, 122(36): 8791-8792
    [146] Liu Y, Zhang W, Pinnavaia T J. Steam-stable MSU-S aluminosilicate mesostructures assembled from zeolite ZSM-5 and zeolite beta seeds. Angewandte Chemie-International Edition 2001, 40(7): 1255-1258
    [147] Zhang Z, Han Y, Xiao F S. Mesoporous aluminosilicates with ordered hexagonal structure, strong acidity, and extraordinary hydrothermal stability at high temperatures. Journal of the American Chemical Society 2001, 123 (21): 5014-5021
    [148] Han Y, Wu S, Sun Y, et al. Hydrothermally stable ordered hexagonal mesoporous aluminosilicates assembled from a triblock copolymer and preformed aluminosilicate precursors in strongly acidic media. Chemistry of Materials 2002, 14(3): 1144-1148
    [149] Liu Y, Pinnavaia T J. Assembly of hydrothermally stable aluminosilicate foams and large-pore hexagonal mesostructures from zeolite seeds under strongly acidic conditions. Chemistry of Materials, 2002, 14(1): 3-5
    [150] Liu Y, Pinnavaia T J. Aluminosilicate mesostructures with improved acidity and hydrothermal stability. Journal of Materials Chemistry 2002, 12(11): 3179-3190
    [151] Xiao F S, Han Y, Yu Y, et al. Hydrothermally stable ordered mesoporous titanosilicates with highly active catalytic sites. Journal of the American Chemical Society, 2002, 124(6): 888-889
    [152] Han Y, Li N, Zhao L, et al. Understanding of the high hydrothermal stability of the mesoporous materials prepared by the assembly of triblock copolymer with preformed zeolite precursors in acidic media. Journal of Physical Chemistry B, 2003, 107(31): 7551-7556
    [153] Jacobsen C J H, Madsen C, Houzvicka J. et al. Mesoporous zeolite single crystals. Journal of the American Chemical Society 2000, 122(29): 7116-7117
    [154] Kim J S, Ree M, Shin T J, et al. X-ray absorption and NMR spectroscopic investigations of zinc glutarates prepared from various zinc sources and their catalytic activities in the copolymerization of carbon dioxide and propylene oxide. Journal of Catalysis 2003, 218 (1): 209-219
    [155] Bernasconi S, van Bokhoven J A. Krumeich F, et al. Formation of mesopores in zeolite beta by steaming: A secondary pore channel system in the (001) plane. Microporous and Mesoporous Materials 2003, 66 (1): 21-26
    [156] Holland B T. Transformation of mostly amorphous mesoscopic aluminosilicate colloids into high surface area mesoporous ZSM-5. Microporous and Mesoporous Materials, 2006, 89, (1-3): 291-299
    [157] Kruk M, Jaroniec M, Ryoo R, et al. Characterization of ordered mesoporous carbons synthesized using MCM-48 silicas as templates. Journal of Physical Chemistry B, 2000, 104, (33): 7960-7968
    [158] Shin H J, Ryoo R, Kruk M, et al. Modification of SBA-15 pore connectivity by high-temperature calcination investigated by carbon inverse replication. Chemical Communications 2001, (4): 349-350
    [159] Joo S H, Jun S, Ryoo R, Synthesis of ordered mesoporous carbon molecular sieves CMK-1. Microporous and Mesoporous Materials 2001, 44-45: 153-158
    [160] Sakthivel A, Huang S, Chen W, et al. Preparation of ordered mesoporous aluminosilicate using carbon mesoporous materials as template. Studies in Surface Science and Catalysis, 2004, 154 (A): 394-399
    [161] Sakthivel A, Huang S J, Chen W H, et al. Replication of mesoporous aluminosilicate molecular sieves (RMMs) with zeolite framework from mesoporous carbons (CMKs). Chemistry of Materials, 2004, 16, (16): 3168-3175
    [162] Sonwane C G, Li Q. Molecular simulation of RMM: Ordered mesoporous SBA-15 type material having microporous ZSM-5 walls. Journal of Physical Chemistry B, 2005, 109, (38): 17993-17997
    [163] Corma A, Kan Q, Navarro M T, et al. Synthesis of MCM-41 with different pore diameters without addition of auxiliary organics. Chemistry of Materials, 1997, 9(10): 2123-2126
    [164] Prouzet E, Boissieère C. A review on the synthesis, structure andapplications in separation processes of mesoporous MSU-X silica obtained with the two-step process. Comptes Rendus Chimie, 2005, 8(3-4) 579-596
    [165] Che S A, Sakamoto Y, Terasaki O, et al. Control of crystal morphology of SBA-1 mesoporous silica. Chemistry of Materials, 2001, 13 (7):2237-2239
    [166] Lin H-P; Mou C-Y. Structural and Morphological Control of cationic surfactant-templated mesoporous silica. Accounts of Chemical Research, 2002, 35(11): 927-935
    [167] Wang A, Kabe T. Fine-tuning of pore size of MCM-41 by adjusting the initial pH of the synthesis mixture. Chemical Communications, 1999, (9):2067-2068
    [168]庞雪蕾,唐芳琼.不同酸对介孔二氧化硅球表面形貌和介相结构的影响.无机化学学报,2004,20 (8):895-900
    [169] Hashimoto K, Wasada K, Osaki M, et al. Photocatalytic oxidation of nitrogen oxide over titania–zeolite composite catalyst to remove nitrogen oxides in the atmosphere. Applied Catalysis B: Environmental, 2001, 30(3-4): 429-436
    [170] Buciuman F C, Patcas F, Hahn T. A spillover approach to oxidation catalysis over copper and manganese mixed oxides. Chemical Engineering and Processing 1999, 38(4-6): 563-569
    [171] Chen H, Sayari A, Adnot A, et al. Composition–activity effects of Mn-Ce-O composites on phenol catalytic wet oxidation. Applied Catalysis B: Environmental, 2001, 32(3): 195-204
    [172] Léonard A, Vantomme A, Bouvy C, et al. Highly ordered mesoporous and hierarchically nanostructured meso-macroporous materials for nanotechnology, biotechnology, information technology and medical applications. Nanopages, 2006, 1 (1): 1-44
    [173] Tuel A. Modification of mesoporous silicas by incorporation of heteroelements in the framework. Microporous and Mesoporous Materials 1999, 27(2-3): 151-169
    [174] Vorontsov A V, Dubovitskaya V P. Selectivity of photocatalytic oxidation of gaseous ethanol over pure and modified TiO2. Journal of Catalysis 2004, 221(1): 102-109
    [175] Wu J C S, Chen C H. A visible-light response vanadium-doped titaniaanocatalyst by sol-gel method. Journal of Photochemistry and Photobiology A: Chemistry 2004, 163(3): 509-515
    [176] Yuan M J, Shan Z, Tian B Z, et al. Preparation of highly ordered mesoporous WO3-TiO2 as matrix in matrix-assisted laser desorption/ionization mass spectrometry. Microporous and Mesoporous Materials 2005, 78(1): 37-41
    [177] Shyue J J, DeGuire M R. Single-Step Preparation of Mesoporous, Anatase-Based Titanium-Vanadium Oxide and Its Application. Journal of the American Chemistry Society, 2005, 127(36): 12736-12742
    [178] Perkas N, Palchik O, Brukental I, et al. A Mesoporous Iron-Titanium Oxide Composite Prepared Sonochemically. Journal of Physical Chemistry B, 2003, 107(34): 8772-8778
    [179] Mohammadi M R, Fray D J. Sadrnezhaad S K, et al. A simple particulate sol-gel route to synthesize nanostructural TiO2-Ta2O5 binary oxides and their characteristics. Materials Science and Engineering: B, 2007, 142(1): 16-27
    [180] Liu Z M, Zhang J L, Han B S, et al. Solvothermal synthesis of mesoporous Eu2O3-TiO2 composit. Microporous and Mesoporous Materials, 2005, 81(1-3):169-174
    [181] Liu J, Feng X D, Fryxell G E, et al. Hybrid mesoporous materials with functionalized monolayers. Advanced Materials, 1998, 10, (2): 161-165
    [182] De Vos D E, Dams M, Sels B F, et al. Ordered mesoporous and microporous molecular sieves functionalized with transition metal complexes as catalysts for selective organic transformations. Chemical Reviews, 2002, 102, (10): 3615-3640
    [183] Chandra D,Jena B K,Raj C R, et al. Functionalized mesoporous cross-linked polymer as efficient host for loading gold nanoparticles and its electrocatalytic behavior for reduction of H2O2. Chemistry of Materials, 2007, 19, (25): 6290-6296
    [184] Patra C R, Ghosh A, Mukherjee P, et al. Formation and stabilization of gold nanoparticles in organo-functionalized MCM-41 mesoporous materials and their catalytic applications. Nanoporous Materials Iii, 2002, 141: 641-646
    [185] Glomm W R, Oye G. Walmsley J, et al. Synthesis and characterization of gold nanoparticle-functionalized ordered mesoporous materials. Journal ofDispersion Science and Technology, 2005, 26, (6): 729-744
    [186] Nooney R I. Kalyanaraman M,Kennedy G, et al. Heavy metal remediation using functionalized mesoporous silicas with controlled macrostructure. Langmuir,2001, 17, (2): 528-533
    [187] Park J H, Park J K; Shin H Y The preparation of Ag/mesoporous silica by direct silver reduction and Ag/functionalized mesoporous silica by in situ formation of adsorbed silver. Materials Letters, 2007, 61, (1): 156-159
    [188] Li Y, Yan B, Yang H. Construction, characterization, and photoluminescence of mesoporous hybrids containing europium(III) complexes covalently bonded to SBA-15 directly functionalized by modiried beta-diketone. Journal of Physical Chemistry C, 2008, 112, (10): 3959-3968
    [189] Ghosh A, Patra C R, Mukherjee P, et al. Entrapment and stabilization of cadmium sulphide (CdS) nanoclusters formed inside propylthiol functionalized MCM-41 mesoporous materials. Nanoporous Materials Iii,2002, 141: 647-652
    [190] Kim J,Kim H S,Lee N, et al. Multifunctional Uniform Nanoparticles Composed of a Magnetite Nanocrystal Core and a Mesoporous Silica Shell for Magnetic Resonance and Fluorescence Imaging and for Drug Delivery. Angewandte Chemie-International Edition, 2008, 47, (44): 8438-8441
    [191] Zhao W R, Gu J L, Zhang L X, et al. Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure. Journal of the American Chemical Society, 2005, 127, (25): 8916-8917
    [192]刘冰,王德平,黄文等.核壳结构磁性复合纳米粒的制备及研究进展.材料导报, 2007, 21(Ⅷ): 185-188
    [193] St?ber W, Fink A, Bohn E. Controlled Growth of Monodisperse Silica Spheres In The Micron Size Range. Journal of Colloid And Interface Science 1968, 26(1): 62-69
    [194] Santra S, Tapec R. Theodoropoulou N, et a1. Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: The effect of nonionic surfactants. Langmuir, 2001, 17(10): 2900-2906
    [195] Yi D K, I. ee S S, Georgia C, et a1. Nanoparticle architectures templated by SiO2/Fe2O3 nanocomposites. Chemistry of Materials, 2006, 18(3): 614-619
    [196] Hong X, Li J, Wang M, et a1. Fabrication of magnetic luminescent nanocomposites by a layer-by-layer self-assembly approaches. Chemistry of Materials, 2004, 16(21): 4022-4027
    [197] Zebli B, Susha A S, Sukhorukov G B, et a1. Magnetic targeting and cellular uptake of po lymer microcapsulaes simultaneously functionalized with ma gnetic and 1uminescent nano crystals. Langmuir, 2005, 21(10): 4262-4265
    [198] Lyon J I, Fleming D A, Stone M B, et a1. Synthesis of Fe oxide core/Au shell nanoparticles by iterative hydroxylamine seeding. Nano Letters, 2004, 4(4): 719-723
    [199] Wang L, Luo J, Fan Q, et a1. Monodispersed Core-Shell Fe3O4@Au Nanoparticles. The Journal of Physical Chemistry B, 2005, 109(46): 21593-21601
    [200]王连洲,施剑林,张文华,等.合成温度对介孔氧化硅材料相结构的影响.硅酸盐学报,1999,(6):689-691
    [201]杨春,贾雪平,何农跃,等.酸性条件下纯硅六方介孔分子筛的合成(Ⅱ)合成温度、时间的影响及其与碱性合成的比较.无机化学学报,2001,(2):249-255
    [202]周丽绘,张利中,刘洪来,晶化温度对介孔材料SBA-15结构与形貌的影响.过程工程学报,2006,(3):499-502
    [203] Che S A, Sakamoto Y, Terasaki O, et al. Control of crystal morphology of SBA-1 mesoporous silica. Chemistry of Materials, 2001 13 (7):2237-2239
    [204] Fan J, Yu C Z,Wang L M, et al.Mesotunnels on the silica wall of ordered SBA-15 to generate three-dimensional large-pore mesoporous networks. Journal of the American Chemical Society, 2001, 123 (48): 12113-12114
    [205] Tanev P T, Pinnavaia T J. Mesoporous Silica Molecular Sieves Prepared by Ionic and Neutral Surfactant Templating: A Comparison of Physical Properties. Chemistry of Materials, 1996,8(8):2068-2079
    [206] Kim S S, Pauly T R, Pinnavaia T J. Non-ionic surfactant assembly of wormhole silica molecular sieves from water soluble silicates. Chemical Communications, 2000, (10): 835-836
    [207] Prouzet E, Boissieère C. A review on the synthesis, structure and applications in separation processes of mesoporous MSU-X silica obtained with the two-step process. Comptes Rendus Chimie, 2005, 8(3-4): 579-596
    [208] Kim S S, Pinnavaia T J. A low cost route to hexagonal mesostructured carbon molecular sieves.Chemical Communications, 2001, (23): 2418-2419
    [209] Huo Q S, Feng J L, Schüth F, et al. Preparation of Hard Mesoporous Silica Spheres. Chemistry of Materials, 1997 9 (1): 14-17
    [210] Grun M, Lauer I, Unger K K. The synthesis of micrometer and submicrometer size spheres of ordered mesoporous oxideMCM-41. Advance Materials, 1997, 9(3):254-257
    [211] Cheng Y R, Lin H P, Mou C Y, et al. Control of mesostructure and morphology of surfactant-templated silica in mixed surfactant system. Phys. Chem. Chem, Phys, 1999, 1(21):5051-5058
    [212] Bruinsma P J, Kim A Y, Liu J, et al. Mesoporous silica synthesized by solvent evaporation: spun fibers and spray-dried hollow spheres. Chemistry of Materials,1997, 9911):2507-2512
    [213] Ogawa M. Formation of novel oriented transparent films of layered silica-surfactant nanocomposites. Journal of the American Chemical Society 1994,116 (17): 7941-7942
    [214] Liu C B, Ye X K, Wu Y. Hydroxylation of phenol by iron(II)-phenanthroline (Phen)/MCM-41 zeolite. Catalysis Letters, 1996, 36(3-4 ): 263-264
    [215] Yue Y H, Sun Y, Gao Z. Disordered mesoporous KIT-1 as a support for hydrodesulfurization catalysts. Catalysis Letters, 1997,47 (2):167-171
    [216]范杰,屠波,赵东元.介孔材料的形貌控制及其应用.上海化工,2001,(17): 19-21
    [217]王铁邦.二氧化硅等材料的红外光谱学研究:南京大学博士学位论文.南京:南京大学物理系, 2004,60-67
    [218]范杰.介孔材料结构和孔道的模板合成及其在生物和电池中的应用:复旦大学博士学位论文.上海:复旦大学化学系, 2004, 50-51
    [219] Tanev P T, Pinnavaia T J. Mesoporous silica molecular sieves prepared by ionic and neutral surfactant templating: a comparison of physical properties. Chemistry of Materials, 1996,8(8):2068-2079
    [220] Tanev, P T, Pinnavaia, T J. Biomimetic templating of porous lamellar silicas by vesicular surfactant assemblies. Science, 1996, 271(5253):1267-1269
    [221] Israelachvili J N. Intermolecular and Surface Forces (2nd edn). AcademicPress: London, 1991, 366-393
    [222] Hashimoto K, Wasada K, Osaki M, et al. Photocatalytic oxidation of nitrogen oxide over titania–zeolite composite catalyst to remove nitrogen oxides in the atmosphere. Applied Catalysis B: Environmental, 2001, 30(3-4):429-436
    [223] Buciuman F C, Patcas F, Hahn T. A spillover approach to oxidation catalysis over copper and manganese mixed oxides. Chemical Engineering and Processing 1999, 38(4-6):563-569
    [224] Chen H Y, Sayari A. Adnot A, et al. Composition-activity effects of Mn-Ce-O composites on phenol catalytic wet oxidation. Applied Catalysis B: Environmental 2001, 32(3):195-204
    [225] R.B. Anderson. The Fischer-Tropsch Synthesis, Academic Press, New York, 1984
    [226]李小定,吕小琬,李耀会,等.石油化工行业应用催化剂的现状.湖北化工, 1996, (4):11-13
    [227]王晨,傅尧,刘磊,等. Fe和Co催化的碳-碳偶联反应的最新进展.有机化学, 2007, 27(6): 703-723
    [228] Bessell S. Support effects in cobalt-based fischer-tropsch catalysis. Applied Catalysis A: General 1993, 96(2): 253-268
    [229] Lira E, Lóez C, M Oropeza, et al. HMS mesoporous silica as cobalt support for the Fischer-Tropsch Synthesis: Pretreatment, cobalt loading and particle size effects. Journal of Molecular Catalysis A: Chemical 2008, 281(1-2): 146-153
    [230] Griboval-Constant A, Khodakov A Y, Bechara R, et al. Support mesoporosity: a tool for better control of catalytic behavior of cobalt supported Fischer Tropsch catalysts. In Studies in Surface Science and Catalysis, Elsevier: 2002, 144: 609-616
    [231] Heilbron M A,Vickerman J C. A study of the electron paramagnetic resonance and reflectance spectroscopy of cobalt-containing A, X and Y zeolites. Journal of Catalysis 1974, 33(3):434-447
    [232] Rossin J A, Saldarriaga C, Davis M E. Synthesis of cobalt containing ZSM-5. Zeolites, 1987, 7(4):295-300
    [233] Hoser H. Krzyzanowski S, Studies on isomerization of n-butenes and 3,3-dimethyl-1-butene over cobalt-exchanged zeolite X. Journal of Catalysis, 1975, 38(1-3):366-374
    [234] Tsutsumi K, Fuji S, Takahashi H. Cumene-cracking activity of zeolite catalysts: II. Transition-metal-exchanged zeolites. Journal of Catalysis, 1972, 24(1):8-17
    [235] De Garcia E P, De Goldwasser M R, Parra C F, et al. Oxidative dehydrogenation of cyclohexene over cobalt-exchanged Y-zeolites. Applied Catalysis, 1989, 50(1):55-63
    [236]赵虹,马利勇,周继承,等.钴分子筛催化剂的制备及其分子筛载体对环己烷氧化选择性的影响.分子催化, 2006, 20 (4): 316-321
    [237] Khodakov A Y, Griboval-Constant A, Bechara R, et al. Pore size effects in fischer tropsch synthesis over cobalt-supported mesoporous silicas. Journal of Catalysis, 2002, 206(2):230-241.
    [238] Sujandi, Han S C, Han D S, et al. Catalytic oxidation of cycloolefins over Co(cyclam)-functionalized SBA-15 material with H2O2. Journal of Catalysis, 2006, 243,(2):410-419.
    [239] Xia F, Ou E, Wang L, et al. Photocatalytic degradation of dyes over cobalt doped mesoporous SBA-15 under sunlight. Dyes and Pigments, 2008, 76(1): 76-81
    [240] Yang W S, Xiang H W, Xu Y Y, et al. Characteristics and reactivities of cobalt based mesoporous silica catalysts for fischer-tropsch synthesis. In Studies in Surface Science and Catalysis, Elsevier: 2003,146:693-696
    [241] Infantes-Molina A, Méida-Robles J, Rodríuez-CastellóE, et al. Catalysts based on Co/zirconium doped mesoporous silica MSU for the hydrogenation and hydrogenolysis/hydrocracking of tetralin. Applied Catalysis A: General, 2005, 286(2):239-248
    [242] Infantes-Molina A, Méida-Robles J, Rodríuez-CastellóE, et al. Effect of molybdenum and tungsten on Co/MSU as hydrogenation catalysts. Journal of Catalysis, 2006, 240(2):258-267
    [243] Infantes-Molina A, Méida-Robles J, Rodríuez-CastellóE, et al. Pt, Ir and Pd promoted Co/MSU catalysts for hydrotreating of tetralin: A thiotolerance study. Applied Catalysis B: Environmental, 2007, 73, (1-2):80-192
    [244] Yin J S, Wang Z L. Template-assisted Self-assembly and Cobalt Doping of ordered Mesoporous Titania Nanostructures. Advance Materials, 1999,11(6):469-472
    [245]王积涛,胡青眉.有机化学(第一版).天津:南开大学出版社, 1993, 390-391
    [246]吴照义.环己酮及其发展动向.化学工程师, 2003, 94 (1): 41-42
    [247]贾义霞,高建荣.环己烷催化氧化反应及工艺的研究进展.化工时刊, 2001, 3: 8-13
    [248] Raja R, Ratnasamy P. Oxidation of cyclohexane over copper phthalocyanines encapsulated in zeolites. Catalysis Letters, 1997, 48 (5): 1-10
    [249]谢文莲,李玲,郭灿城.环己烷氧化制环己酮工艺研究进展.精细化工中间体, 2003, 33 (1): 8-10
    [250]谢文莲,田爱国.环己酮生产工艺及研究进展.化工进展, 2003, 4 (2): 421-423
    [251] Sawatari N, Yokota T, Sakaguchi S, et al. Alkane oxidation with air catalyzed by lipophilic N-Hydroxyphthalimides without any solvent. Journal of Organic Chemistry, 2001, 66 (13):7889-7891
    [252] Huang C, Gun Y, Liu X, Wang Y. Structural and optical properties of Ti1?xCoxO2 films prepared by sol–gel spin coating. Thin Solid Films, 2006, 505 (1-2): 141-144
    [253] Younes B, Mohamed K, Mahfoud Z, et al. Titania-Supported cobalt and cobalt–phosphorus catalysts: characterization and performances in ethane oxidative dehydrogenation. Journal of catalysis, 2001, 202 (2): 118-128
    [254] Manivannan A, Seehra M S, Katiyar R S, et al. Magnetism of Co-doped titania thin films prepared by spray pyrolysis. Apply Physical Letters, 2003, 83 (5): 111-118
    [255] Baraton M I, Busca G, Prieto M C, et al. On the vibrational spectra and structure of FeCrO3 and of the ilmenite-type compounds CoTiO3 and NiTiO3. Journal of Solid State Chemistry., 1994, 112 (1): 9-14
    [256] Bersani D, Lottici P P, Ding X Z, Phonon confinement effects in the Raman scattering by TiO2 nanocrystals. Applied Physical Letters, 1998, 72 (1): 73-75
    [257] NIST Standard Reference Database 20, Version 3.4 (Web Version) http://srdata.nist.gov/xps/
    [258] Chu M H, Xue Q L, Yin Y W, et al. Room temperature ferromagnetism of Co-doped TiO2 nanotube arrays prepared by sol–gel template synthesis. Chemical Physics Letters, 2006, 432 (4-6): 468-472
    [259] Wang J, Sun W, Zhang Z H, et al. Sonocatalytic degradation of methyl parathion in the presence of micron-sized and nano-sized rutile titaniumdioxide catalysts and comparison of their sonocatalytic abilities. Journal of Molecular Catalysis A: Chemical, 2007, 272(1-2): 84-90
    [260] Kei I, Akashi K, Masataka, et al. Direct Nanocomposite of crystalline TiO2 particles and mesoporous silica as a molecular selective and highly active photocatalyst. Chemical Communications, 2005, (16): 2131-2132
    [261] Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. The Journal of Physical Chemistry B, 1999, 103 (37):7743-7746
    [262] Wang Y Q, Chen S G, Tang X H, et al. Mesoporous titanium dioxide: sonochemical synthesis and application in dye-sensitized solar cells. Journal of Materials Chemistry. 2001, 11(2):521-526
    [263] Wang Y Q, Tang X H, Yin L, et al. Sonochemical synthesis of mesoporous titanium oxide with wormhole-like framework structures. Advanced Materials, 2000, 12, (16):1183-1186
    [264] Brik Y, Kacimi M, Ziyad M, et al. Titania-supported cobalt and cobalt-phosphorus catalysts: characterization and performances in ethane oxidative dehydrogenation. Journal of Catalysis, 2001, 202, (1): 118-128
    [265] Anpo M, Takeuchi M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. Journal of Catalysis, 2003, 216, (1-2):505-516
    [266] Anpo M. Preparation, characterization, and reactivities of highly functional titanium oxide-based photocatalysts able to operate under UV-visible light irradiation: Approaches in realizing high efficiency in the use of visible light. Bulletin of the Chemical Society of Japan, 2004, 77 (8): 1427-1442
    [267] Iketani K, Sun R D, Toki M, et al. Sol-gel-derived V-TiO2 films and their photocatalytic activities under visible light irradiation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 108 (3):187-193
    [268] Martin S T, Morrison C L, Hoffmann M R. Photochemical mechanism of size-quantized vanadium-doped TiO2 particles. Journal of Physical Chemistry, 1994, 98(51):13695-13704
    [269] Sathish M, Viswanathan B, Viswanath R P, et al. Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst. Chemistry of Materials, 2005, 17(25):6349-6353
    [270] Vorontsov A V, Dubovitskaya V P. Selectivity of photocatalytic oxidation of gaseous ethanol over pure and modified TiO2. Journal of Catalysis, 2004, 221(1):102-109
    [271] Wu J C S, Chen C H. A visible-light response vanadium-doped titania nanocatalyst by sol-gel method. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163(3):509-515
    [272] Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2000, 1(1):1-21
    [273] Maldotti A, Molinari A, Amadelli R. Photocatalysis with organized systems for the oxofunctionalization of hydrocarbons by O2. chemical Reviews,2002, 102, (10): 3811-3836
    [274] Bhatkhande D S, Pangarkar V G, Beenackers A A C M. Photocatalytic degradation for environmental applications-a review. Journal of Chemical Technology & Biotechnology, 2002, 77 (1): 102-116
    [275] Linsebigler A L, Lu G Q, Yates J T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical Reviews, 1995,95 (3):735-758
    [276] Ilisz I, Dombi A. Investigation of the photodecomposition of phenol in near-UV-irradiated aqueous TiO2 suspensions. II. Effect of charge-trapping species on product distribution. Applied Catalysis A: General, 1999, 180(1-2):35-45
    [277] Stathatos E, Petrova T, Lianos P. Study of the efficiency of visible-light photocatalytic degradation of basic blue adsorbed on pure and doped mesoporous titania films. Langmuir, 2001, 17(16): 5025-5030
    [278] Yonezawa Y, Kometani N, Sakaue T, et al. Photoreduction of silver ions in a colloidal titanium dioxide suspension. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 171, (1): 1-8
    [279] Machida M, Norimoto K, Kimura T. Antibacterial activity of photocatalytic titanium dioxide thin films with photodeposited silver on the surface of sanitary ware. Journal of the American Ceramic Society 2005, 88, (1):95-100
    [280] Wang Q, Yu H, Zhong L, et al. Incorporation of silver ions into ultrathin titanium phosphate films: In situ reduction to prepare silver nanoparticlesand their antibacterial activity. Chemistry of Materials 2006, 18, (7):1988-1994
    [281] Ohko Y, Tatsuma T, Fujii T, et al. Multicolour photochromism of TiO2 films loaded with silver nanoparticles. Nat Mater 2003, 2 (1):29-31
    [282] Stathatos E, Lianos P, Falaras P, et al. Photocatalytically deposited silver nanoparticles on mesoporous TiO2 films. Langmuir, 2000, 16(5):2398-2400
    [283] Wang X, Yu J C, Ho C, et al. A robust three-dimensional mesoporous Ag/TiO2 nanohybrid film. Chemical Communicationss, 2005, (17):2262-2264
    [284] Andersson M, Birkedal H, Franklin N R, et al. Ag/AgCl-loaded ordered mesoporous anatase for photocatalysis. Chemistry of Materials, 2005, 17 (6):1409-1415
    [285] Li X S, Fryxell G E, Wang C. The synthesis of Ag-doped mesoporous TiO2. Microporous and Mesoporous Materials, 2008, 111, (1-3):639-642
    [286] Lee C-L, Wan C, Wang Y. Synthesis of metal nanoparticles via self-regulated reduction by an alcohol surfactant. Advanced Functional Materials, 2001, 11, (5): 344-347
    [287] Matsunaga T, Tomoda R, Nakajima T, et al. Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiology Letters, 1985,29 (1-2):211-214
    [288] Wei C, Lin W Y, Zaina Z, et al. Bactericidal activity of TiO2 photocatalyst in aqueous media: toward a solar assisted water disinfection system. Environmental Science and Technology, 1994, 28:934-938
    [289] Fujishima A, Cai R X, Otsuki J, et al. Biochemical application of photoelectrochemistry photo killing of malignant cells with TiO2 powder. Electrochimica Acta, 1993, 38(1):153-157
    [290]倪平,李静,严亮.载银微弧氧化TiO2膜光催化杀菌研究.材料科学与工程学报, 2004, 22( 6): 816-819
    [291] He J H, Ichinose I, Fujikawa S, et al. Reversible conversion of nanoparticles of metallic silver and silver oxide in ultrathin TiO2 films: a chemical transformation in nano-space. Chemical Communicationss, 2002,(17):1910-1911
    [292] David D, Evanoff J, George C. Size-controlled synthesis of nanoparticles. 2. measurement of extinction, scattering, and absorption cross sections. The Journal of Physical Chemistry B, 2004,108 (37):13957-13962
    [293]郭志武,靳海波,佟泽民.环己酮、环己醇制备技术进展.化工进展, 2006,25(8): 852-858
    [294] Sun H, Blatter F, Frei H. Cyclohexanone from cyclohexane and O2 in a zeolite under visible light with complete selectivity. Journal of the American Chemical Society, 1996, 118(29): 6873-6879
    [295] Maldotti A, Molinari A, Bergamini P, et al. Photocatalytic oxidation of cyclohexane by (nBu4N)4W10O32/Fe(III) prophyrins integrated systems. Journal of Molecular Catalysis A: Chemical, 1996, 113(2): 147–157
    [296] Kentaro T, Tsunehiro T, Takash Y. Photo-oxidation of cyclohexane over alumina-supported vanadium oxide catalyst. Journal of Molecular Catalysis A: Chemical, 2001, 165(2): 299–301
    [297] Herrmann J M, Mu W, Pichat P, et al. Mild oxidation of cyclic C6-C10 hydrocarbons in liquid phase at room temperature by heterogeneous photocatalysis. in studies in surface science and catalysis, Elsevier: 1991,59:405-412
    [298] Mu W, Herrmann J M, Pichat P. Room temperature photocatalytic oxidation of liquid cyclohexane into cyclohexanone over neat and modified TiO2. Catalysis Letters, 1989, 3, (1): 73-84
    [299] Lu G X, Gao H X, Suo J S, et al. Catalytic oxidation of cyclohexane into cyclohexanol and cyclohexanone over a TiO2/TS-1 system by dioxygen under UV irradiation. Journal of the Chemical Society, Chemical Communicationss, 1994,(21):2423-2424
    [300] Li X Y, Chen G H, Kutal Y P-L C. Photocatalytic oxidation of cyclohexane over TiO2 nanoparticles by molecular oxygen under mild conditions. Journal of Chemical Technology & Biotechnology, 2003, 78 (12): 1246-1251
    [301] Li X Y, Quan X, Kutal C,. Synthesis and photocatalytic properties of quantum confined titanium dioxide nanoparticle. Scripta Materialia,2004, 50 (4): 499-505
    [302] Su B T, He Y, Li X, et al. Photocatalytic oxidation of cyclohexane on ultra-fine TiO2 particles. Indian Journal of Chemistry, 1997,36:785–788
    [303]全球丙烯酸市场需求强劲反弹. http://www.jiaju.cc/newsshop/news_call/ news_08/2003426/20034267058.htm
    [304]我国丙烯酸市场现状分析. http://www.hifda.gov.cn/content/1/2005/3/10/ 3_2074943.htm
    [305]丙烯酸市场分析与技术进展. http://www.process-chinese.com/article.php? id=609
    [306]丙烯酸市场分析与技术进展. http://www.newmaker.com/disp_art/0/3606.html
    [307] Lira C T, McCrackin P J. Conversion of lactic acid to acrylic acid in supercritical water. Industrial & Engineering Chemistry Research, 1993, 32(11):2608-2613
    [308] Ai M, Ohdan K. Effects of differences in the structures of iron phosphates on the catalytic action in the oxidative dehydrogenation of lactic acid to pyruvic acid. Applied Catalysis A: General, 1997, 165, (1-2): 461-465
    [309] Ai M. Catalytic activity of iron phosphate doped with a small amount of molybdenum in the oxidative dehydrogenation of lactic acid to pyruvic acid. Applied Catalysis A: General, 2002, 234, (1-2): 235-243
    [310] Ai M. Catalytic activity of palladium-doped iron phosphate in the oxidative dehydrogenation of lactic acid to pyruvic acid. Applied Catalysis A: General, 2002, 232, (1-2): 1-6
    [311]吴玉蓉,丁洁莲,林陵,等.环己醇催化脱水制环己烯WO3/MxOy催化剂的研究.工业催化,2008,16, (7): 47-51
    [312]李海霞,殷恒波,胡童杰等.负载型硅钨酸催化1,4-丁二醇环化脱水制备四氢呋喃.精细石油化工,2005,(2): 5-8
    [313]乐英红,高滋.二氧化钛介孔分子筛的合成和表征.化学学报, 2000,58(7):777-780
    [314] Gupta A K, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005, 26(18): 3995-4021
    [315] Meng Y D, Chen D R, Jiao X L. Fabrication and characterization of mesoporous Co3O4 core/mesoporous silica shell nanocomposites. Journal of Physical Chemistry B,2006,110(31):15212-15217
    [316] T Sen, A Sebastianelli, Bruce I J. Mesoporous silica-magn-etite nanocomposite: fabrication and applications in magnetic bioseparat-ions. Journal of the American Chemical Society, 2006,128(22):7130-7131
    [317] Zhao W R,Gu J L,Zhang L X, et al. fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure. Journal of the American Chemical Society, 2006, 127(25):8916-8917
    [318] Hoelderich W F. Zeolites: Catalysts for the synthesis of organic compounds. in: p.a. jacobs and r.a. van santen, editor(s), studies in surface science and catalysis, Elsevier, 1989, 49(iii-xx):69-93

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700