分子自组装合成新型催化材料及其在绿色化学中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绿色化学的核心是“原子经济性”,而提高“原子经济性”的关键手段非催化莫属。就目前来说,关于工业催化剂的设计、制备及其应用已能满足大多数化学反应的需求,但仍难满足人们对理想“绿色化学”的期望,有关新型的高性能结构催化剂设计和制备仍然任重道远,是当前和今后化学工业与材料科学等相关学科的研究重点。目前高性能结构催化剂大多为纳米结构材料,主要采用自组装方法进行合成。本论文致力于以五种结构规整和完善(well-defined)的分子为自组装前体,来进行高性能结构催化剂的定向设计合成,并以所合成的材料为催化剂应用于几种具有工业价值的绿色反应中。希望能通过这些研究工作对以后高性能结构催化剂的开发及在绿色化学中的应用提供科学指导和有益的借鉴。
     本论文的主要研究工作及研究成果如下:
     1、金属掺杂的SBA-15超分子组装合成
     通过表面活性剂超分子组装原位合成了掺杂一系列金属掺杂的SBA-15,考察了酸介质的种类、表面活性剂的种类及其组合、合成体系组成等各种因素对于材料合成的影响,并通过XRD、TEM、DRS UV-Vis等技术对所合成材料的结构和性能进行了详细的表征。在以钨酸钠为钨源、P123为模板、盐酸或磷酸为合成介质的条件下,采用原位合成了W-SBA-15。与盐酸介质中的合成相比较,磷酸介质中合成的W-SBA-15具有更高的孔道有序度、W的掺杂量以及材料的酸量;在混合表面活性剂为模板的合成体系中,离子表面活性剂的加入,使合成体系中的组装驱动力由单一的氢键驱动变为氢键和静电作用,混合胶束与无机物种间的自组装行为加强,从而增加了材料的有序度。其中,W-SBA-15的合成中,CTAB的加入,提高了W在介孔材料中的掺杂量,且在磷酸介质中,合成的材料的形貌比较均一;SDBS的加入,改善了Cr-SBA-15的结晶性能,有效提高了材料的孔道有序性。
     首次将磷酸介质中合成的W-SBA-15应用于H_2O_2/O_2氧化的油酸一步法制备壬二酸反应。当介孔材料中掺杂的W只以四配位形式存在,且W /Si摩尔比为0.025时,壬二酸的收率为43.6%,纯度96.7%。
     2、非离子表面活性剂导向下锰氧化合物纳米管的合成
     分别以非离子表面活性剂脂肪醇聚氧乙烯醚(AEO_9)、壬基酚聚氧乙烯醚(TX-10)为模板,辅以氧化还原,一步法合成了管壁为介孔结构的水锰矿(γ-MnOOH)纳米管,并详细研究了反应原料配比、合成温度以及助还原剂对材料合成的影响,对合成的样品的结构和性能进行了TEM等表征。以KMnO_4为氧化剂、MnCl_2·4H_2O为还原剂以及CH_3CHO为助还原剂,凝胶于100℃下晶化24小时,以TX-10或AEO_9为模板均合成出了水锰矿(γ-MnOOH)纳米管,其中后者表现为竹节状。
     3、PAMAM导向下有机-无机复合材料的合成
     通过发散法分别合成了乙二胺为核心的1.0~3.0代的PAMAM,己二胺为核心的1.0~2.0代PAMAM,对苯二胺为核心的0.5代PAMAM,并采用ESI-MS, ~1H NMR, DTG-TG, FT-IR等技术对其结构进行表征。
     以硝酸镧为无机物种,通过调控PAMAM的核心,并以其为模板,水热调控合成了不同形貌的有机无机复合材料,其中脂肪烃二胺为核的为棒状形貌,芳香烃二胺为核的则为串珠状形貌。以硝酸镧、硝酸铜、硝酸钴、硝酸银为无机前驱体,以EPAMAM-1.0为模板,分别水热合成了La-Co-EPAMAM,La-Cu-EPAMAM,La-Ag-EPAMAM有机-无机复合材料。在EPAMAM-1.0与非离子表面活性剂AEO_9混合模板的存在下,以硝酸镧为无机物种,水热合成了含稀土镧的纳米管。并采用TEM、FT-IR等技术对合成的有机无机复合材料进行了表征。
     将合成的有机-无机复合材料应用于以O_2为氧化剂,环己烷的温和氧化制备KA油的反应中,均具有一定的催化活性,且Co、Cu、Ag的加入使得催化活性进一步提高。不同代数的EPAMAM为模板合成的La~(3+)-PAMAM为催化剂时,催化活性接近,环己烷的转化率为7%左右,KA油的选择性为94%左右;以EPAMAM-1.0为模板合成的La-Co-EPAMAM,La-Cu-EPAMAM,La-Ag-EPAMAM有机无机复合材料的催化活性较单一的La~(3+)-EPAMAM有所提高,环己烷的转化率分别为7.83、7.46、6.33%,KA油的选择性分别为98.4、96.4、94.5%。
     4、TS-1晶核溶液下,离子液体导向TS-1分子筛的合成
     详细地考察了离子液体的种类、碱源、晶化温度、矿化剂等因素对TS-1分子筛合成的影响。结果发现:在以1-乙基-3甲基四氟硼酸咪唑盐(EmimBF4)为模板、正丁胺为碱源、F-为矿化剂、晶化温度为140℃及晶化时间为70小时的条件下,合成出的TS-1具有较高的结晶度。其中,在以HF为矿化剂和酸调节剂、EmimBF4为模板、TS-1晶核溶液存在条件下,合成的TS-1分子筛具有棒状形貌,且分子筛中的Ti全部以四配位形式存在,同时免除了传统TS-1合成工艺中蒸馏去除乙醇以及焙烧脱除模板的过程。
     将含有离子液体EmimBF_4的TS-1应用苯/H_2O_2羟基化制备苯酚的反应中,苯酚的选择性高达100%;应用于苯乙烯/H_2O_2制备苯甲醛和苯乙醛的反应中,仅生成苯甲醛和苯乙醛两个产物。
     5、以冰晶为模板多孔材料的合成
     以冰晶为模板进行了介孔Si-Al氧化物材料和ZSM-5微孔分子筛的绿色合成的探索研究。其中介孔Si-Al氧化物材料分别以硅酸钠、硝酸铝为硅源、铝源,其BET比表面积为46.86 m~2/g,孔体积为0.18 cm~3/g;ZSM-5分子筛以硅溶胶、硫酸铝为硅源和铝源,其骨架中硅铝比小于25,BET比表面积为168.9 m~2/g。冰晶所形成的五元环,与ZSM-5的五元环具有相似的结构,结合本研究中的实验现象和结果,推测了冰晶模板合成ZSM-5的可能机理。
     将合成的ZSM-5经过NH_4NO_3离子交换制备成H-ZSM-5,并将其用作乙醇脱水制备乙烯的催化剂。发现该催化剂与Si/Al=25的商品化HZSM-5相比,具有与相近的催化活性。
“Atom economy”is the core of“green chemistry”and can be achieved by employing high-performanced structuring catalysts. While the design, synthesis and application of catalysts have met the general requirements of most chemical reactions currently in chemical industry, it is still a far way to improve further the reactivities and properties of catalysts under the requirement of“green chemistry”. The construction of high-performanced structuring catalysts is thus constitutes one of the most important hot-points and has been paid much attention from both academic and industrial domains all over the world. A high-performanced structural catalyst, as an advanced functionalized material, is characteristic of its unique architecture constructed with building blocks in certain regularity and specific properties regulated by its structure. As far as to the current technique, the high-performanced structural catalysts are mainly prepared via the molecular self-assembly route, which can generated ordered structures with an ordering in molecular or atomic levels, under weak interactions, such as, hydrogen bond, van der Waals forces and coulomb forces.. This dissertation was concentrated on the directional design of the high-performanced structural catalysts via molecular self-assembly, involving a few templates like nonionic surfactant, block copolymer, PAMAM dendrimers, ionic liquid and ice crystal as the templates. The performances of the prepared catalysts were evaluated by several selected reactions with industrial value.
     The dissertation focuses on the following five parts:
     1. The synthesis of transition metal-modified SBA-15 via supramolecular self-assembly.
     Transition metal-modified SBA-15 has been synthesized via supramolecular self-assembly of surfactants. Influencing factors, such as, the acidity of medium, the nature of surfactant and the batch composition, are investigated systematically. The specimens are characterized by means of XRD, TEM, DRS UV-Vis, BET, SEM, and NH_3-TPD. W-doped SBA-15 has been synthesized by in situ method, using aqueous H_3PO_4 or aqueous hydrochloric acid as acid medium, P123 as template, sodium tungstate and TEOS as tungsten and silicon resources, respectively. Comparing with those by using aqueous hydrochloric acid, the specimens synthesized in presence of H_3PO_4, have got some advantage such as ordered mesoporous channel, the content of W-doped and the acidity. In the synthesis system of M-SAB-15, using P123 and ionic surfactant as mixed template, the assembly forces between the inorganic and organic compounds are hydrogen bone and electrostatic interaction, which caused the stronger assembly between micelles and inorganic species and the as-synthesized specimens have owned more ordered structure. With CTAB adding, the tungsten in gel solution can be effectively incorporated into bone of SBA-15 and especially, the uniform morphologies of samples are obtained in presence of H3PO4. The additions of SDBS efficiently improve the crystallinity of Cr-SBA-15 and order pore channel.
     The catalytic properties of W-SBA-15 using H_3PO_4 as acid medium are first applied in the one-step selective oxidation reaction of oleic acid to azelaic acid, using aqueous hydrogen peroxide and O2 as oxidants. The yield and purity of azelaic acid is 43.6%, 96.7% while the molar ratio of W/Si in the gel is 0.025 and tungsten species in the mesoporous materials only with isolated [WO_4] tetrahedral.
     2. Synthesis of MnO_x nanotube template by nonionic surfactant
     MnOx nanotube with the wall being composed of monoclinic manganite, is first synthesized via a redox-assisted supramolecular assembly, using KMnO_4 and MnCl_2 as inorganic precusors, acetaldehyde an additive and polyoxyethylene (10) nonyl phenyl ether (TX-10) or polyoxyethylene fatty alcohol (AEO_9) as template. The samples are characterized by XRD, TEM, BET, XPS and Raman. The results of BET discuss that the walls of nanotube possess mesoporous pore. The parameters such as the molar ratio of reactants, temperature, and acetaldehyde are studied in details.
     3. Synthesis of Organic/inorganic composites template by PAMAM dendrimers
     A series of PAMAM, including different generations of PAMAM with ethylenediamine-core, generation 0.5~2.0 of PAMAM with hexanediamine-core and generation 0.5 of PAMAM with p-phenylenediamine-core, are successfully prepared by divergent synthesis and characterized by ESI-MS, 1H NMR, DTG-TG, FT-IR. Then, the PAMAM dendrimers are used as template to prepare the organic/inorganic composites.
     The morphologies of the lanthanum-contained organic/inorganic composites, using La(NO_3)_3 as inorganic precursor, can easy controlled by simply change the core of PAMAM. The nanorods are obtained template by the PAMAM with aliphatic diamine as core, while the catenular particles using aromatic diamine core. Bimetallic organic/inorganic composites, such as La-Co-EPAMAM, La-Cu-EPAMAM and La-Ag-PAMAM are synthesized by hydrothermal method using generation 1.0 PAMAM with ethylenediamine-core as template, La(NO_3)_3 , Co(NO_3)_2 , AgNO_3 and Cu(NO3)2 as inorganic precursor, respectively. The La-contained nanotubes are synthesized via hydrothermal method, using La(NO_3)_3 as La resource, EPAMAM-1.0 and AEO9 as mixed-templates. The textures of above specimens are tested by some technical measures, such as TEM, FT-IR and so on.
     The catalytic performances of the above organic/inorganic composites are tested in the oxidation reaction of cyclohexane with molecular oxygen. Compared with La2O3 powders, La-EPAMAM composites template by generation 1.0, 2.0 or 3.0 of PAMAM with ethylenediamine-core have better catalytic activities. The catalytic performances of La-EPAMAM are independent of generation of PAMAM and the conversions of cyclohexane, the selectivity of KA are about 7%, 94%.It is noteworthy that addition of Cu, Co, Ag can promote the activities of the catalysts. Using La-Co-EPAMAM, La-Cu-EPAMAM or La-Ag-PAMAM as catalysts, the conversion of cyclohexane are7.83%, 7.46%, 6.33% and the selectivity of KA are 98.4%, 96.4%, 94.5%。
     4. Synthesis of TS-1 zeolite using ionic liquid and TS-1 nuclei solution as co-template
     The influencing factors of synthesis of TS-1, such as kinds of ionic liquid, alkali source, temperature and mineralizer type, are studied in details. The specimens are characterized by XRD, FT-IR, SEM, TEM and BET. The results show that TS-1 zeolite synthesized under 140℃for 70h, using 1-ethyl-3-methylimidazolium tetrafluoroborate (EmimBF4) and TS-1 nucleic solution as co-template, n-butyl amine as alkali source, F- as mineralizer, has higher crystallinity. Notably, TS-1 zeolites using EmimBF4 and TS-1 nucleic solution as co-template, HF as mineralizer and acid regulator, is first successfully prepared under weak acidic condition with the rod morphology. The results of XRD and DRS UV-Vis show that Titanium species in the TS-1 zeolites only with isolated [TiO_4] tetrahedral. Comparing with the traditional technology of TS-1, the new process is simplified for without distillation for removing ethanol and calcine for removing the organic template.
     As similar as commercial TS-1, TS-1 zeolites contained EmimBF4 have special activities in the reaction using dilute H2O2 as oxidant. The catalytic properties of the synthesized specimens are tested in the reaction of benzene with 30 wt% H2O2 to phenol, styrene with 30 wt% H_2O_2 to phenylacetaldehyde and benzaldehyde, respectively. The selectivity of phenol is 100% in the former reaction and the products only including phenylacetaldehyde and benzaldehyde in the latter.
     5. Green synthesis of porous materials using ice crystal as template
     The green synthesis of Si-Al oxide mesoporous materials and ZSM-5 zeolites are demonstrated. The Si-Al oxide mesoporous materials synthesized by using sodium silicate as Si resource, aluminum nitrate as Al resource, has BET 46.86 m2/g, pore volume 0.18cm3/g. ZSM-5 zeolites using Colloid silica and aluminum sulfate as inorganic precursor, has BET 168.9 m~2/g, lower than ZSM-5 synthesized by organic template. The result of FT-IR indicates the molar Si/Al is lower than 25. The five-membered ring formed by ice crystal is similar to that of ZSM-5. Based on experimental results and phenomena, the mechanism of synthesis of ZSM-5 template by ice crystal is postulated.
     ZSM-5 synthesized by ice template is pretreated by the ionic exchanged method with NH_4NO_3 and then applied in the dehydration of ethanol to ethylene. The results show that the specimen (ice template) has the similar catalyst activity to the commercial HZSM-5.
引文
[1] Anastas P T, Williamson T C. Green Chemistry: Designing Chemistry for the Environment ACS Symposium Series 626th[C]. Washington: J Am Chem Soc, 1996, 1-17
    [2] Anastas P T, Waner T C. Green Chemistry: Theory and Practice[C]. Oxford: Oxford Science Publications, 1998, 336-346
    [3] Hunhy W U, Dittmer J J, Alivisatos A T. Hybrid Nanorod-Polymer Solar Cells[J]. Science, 2002, 295(): 2425-2427
    [4] Kind H, Yang P D. Nanowire Ultraviolet Potodetectors and Optical Switches[J]. Adv Mater, 2002, 14(): 158-160
    [5] Walter E C, Favier F, Penner R M. Palladium Mesowire Arrays for Fast Hydrogen Sensors and Hydrogen-Actuated Switches[J]. Anal Chem, 2002, 74: 1546-1553
    [6] Nishizawa M, Menon V P, Martin C R. Metal Nanotubule Membranes with Electrochemically Switchable Ion-Transport Selectivity[J]. Science, 1995, 268: 700-702
    [7] Everett D H. Mannul of Symbols and Terminology for Physicoshemical Quantities and Units[J]. Coll Surf Chem, 1972, 31(4): 577-638
    [8]徐如人,庞文琴,屠昆岗.沸石分子筛的结构与合成[M].吉林:吉林大学出版社, 1987, 125-128
    [9] Wilson S T, Lok B M, Messina C A, et al. Aluminophosphate Molecular Sieves: a New Class of Microporous Crystalline Inorganic Solids[J]. J Am Chem Soc, 1982, 104(): 1146-1147
    [10] Breck D W. Zeolite Molecular Sieves, Structure, Chemistry and Use: Interscience-Wiley, New York[C]. Anal Chim Acta, 1975,75(2): 493
    [11] Breck D W, Eversole W G, Milton R M. New Synthetic Crystalline Zeolites[J]. J Am Chem Soc, 1956, 78(): 2338-2339
    [12] Barrer R M. Syntheses and Reactions of Mordenite[J]. J Chem Soc, 1948, 10(): 2158-2163
    [13] Barrer R M, Bayntham J W, Bultitude F W, et al. Hydrothermal Chemistry of the Silicates. Part VIII. Low-Temperature Crystal Growth of Aluminosilicates, and of Some Gallium and Germanium Analogues[J]. J Chem Soc, 1959, 81():195-208
    [14] Argauer R J, Landolt G R. Crystalline Zeolite HZSM-5 and Method for Preparing the Same[P]. US 3702866, 1972-11-14
    [15] Davis M E, Saldarriaga C, Montes C, et al. A Molecular Sieve with Eighteen-Membered Rings[J]. Nature, 1988, 331(): 698-699
    [16] Estermann M E, Mccusker L B, Baerlocher C, et al. A Synthetic Gallophosphate Molecular Sieve with a 20-Tetrahedral-Atom Pore Opening[J]. Nature, 1991, 352(): 320-323
    [17] Huo Q, Xu R, Thomas J M, et al. Synthesis and Characterization of a Novel Extra Large Ring of Aluminophosphate JDF-20[J]. J Chem Soc Chem Commun, 1992, 875-876
    [18]阎子峰.纳米催化技术[M].北京:化学工业出版社, 2003, 36-38
    [19] Rabenau A. The Role of Hydrothermal Synthesis in Preparative Chemistry[J]. Angew Chem Int Ed, 1985, 24(): 1026-1040
    [20] Schafer H. Chemical Transport Reactions[M]. New York: Academic Press, 1964
    [21] Bibby D M, Dale M P. Synthesis of Silica-Sodalite from Non-Aqueous Systems[J]. Nature, 1985, 317(): 153-158
    [22]徐家宁,袁宏明,史苏华等. NH4ZnPO4的非水合成与晶体结构[J].高等化学学报, 1998, 11(): 1707-1710
    [23] Gao Q M, Chen J S, Xu R R, et al. Synthesis and Characterization of a Family of Amine-Intercatalated Lamellar Aluminophosphates from Alcoholic System[J]. Chem Mater, 1997, 9(): 457-462
    [24] Cooper E R, Andrews C D, Wheatley P S, et al. Ionic Liquids and Eutectic Mixtures as Solvent and Template in Synthesis of Zeolite Analogues[J]. Nature, 2004, 430(): 1012-1016
    [25] Parnham E R, Wheatley P S, Morris R E. The Ionothermal Synthesis of SIZ-6-a Layered Aluminophosphate[J]. Chem Commun, 2006, 380-382
    [26] Parnham E R, Morris R E. The Ionothermal Synthesis of Cobalt Aluminophosphate Zeolite Frameworks[J]. J Am Chem Soc, 2006, 128(7): 2204-2205
    [27] Parnham E R, Morris R E. 1-Alkyl-3-methyl Imidazolium Bromide Ionic Liquids in the Ionothermal Synthesis of Aluminiumphosphate Molecular Sieves[J]. Chem Mater, 2006, 18(): 4882-4887
    [28] Xu Y P, Tian Z J, Wang S J, et al. Microwave-Enhanced Ionothermal Synthesis of Aluminophosphate Molecular Sieves[J]. Angew Chem Int Ed, 2006, 45():3965-3970
    [29]马英冲,徐云鹏,王少君等.室温离子液体中合成方钠石的研究[J].高等学校化学学报, 2006, 27(4): 739-741
    [30] Cheetham A K, Ferey G, Loiseau T. Open-Framework Inorganic Materials[J]. Angew Chem Int Ed, 1999, 38(): 3268-3292
    [31] Taramasso M, Perego G, Notari B. Preparation of Porous Crystalline Synthetic Material Comprised of Silicon and Titanium Oxides[P]. US 4410501, 1983-10-18
    [32] Kumar S B, Mirajkar S P, Pais G C G, et al. Epoxidation of Styrene over a Titanium Silicate Mmolecular Sieve TS-1 Using Dilute H2O2 as Oxidizing Agent[J]. J Catal, 1995, 156(1): 163-166
    [33] Nijhuis T A, Huizinga B J, Makkee M, et al. Direct Epoxidation of Propene Using Gold Dispersed on TS-1 and Other Titanium-Containing Supports[J]. Ind Eng Chem Res, 1999, 38(): 884-891
    [34] Laufer W, Hoelderich W. Direct Oxidation of Propylene and Other Olefins on Precious Metal Containing Ti-Catalysts[J]. Appl Catal A: General, 2001, 213(2): 163-171
    [35] Chen L Y, Chuah G K, Jaenicke S. Propylene Epoxidation with Hydrogen Peroxide Catalyzed by Molecular Sieves Containing Framework Titanium[J]. J Mole Catal A: Chem, 1998, 132(2-3): 281-292
    [36] Kumar R, Laha S C. Highly Selective Epoxidation of Olefinic Compounds over TS-1 and TS-2 Redox Molecular Sieves Using Anhydrous Urea-Hydrogen Peroxide as Oxidizing Agent[J]. J Catal, 2002, 208(2): 339-344
    [37] Chen W G, Wang X S, Li G, et al. Highly Efficient Epoxidation of Propylene to Propylene Oxide over TS-1 Using Urea + Hydrogen Peroxide as Oxidizing Agent[J]. J Catal, 2008, 255(2): 343-346
    [38] Bengoa J F, Gallegos N G, Marchetti S G. Influence of TS-1 Structural Properties and Operation Conditions on Benzene Catalytic Oxidation with H2O2[J]. Micro Meso Mater, 1998, 24(4-6): 163-172
    [39] Liu H, Lu G Z, Guo Y L, et al. Chemical Kinetics of Hydroxylation of Phenol Catalyzed by TS-1/Diatomite in Fixed-Bed Reactor[J]. Chem Eng J, 2006, 116(3): 79-186
    [40] Thangaraj A, Kumar R, Ratnasamy P. Direct Catalytic Hydroxylation of Benzene with Hydrogen Peroxide over Titanium-Silicate Zeolites[J]. Appl Catal, 1990, 57(1): L1-L3
    [41] Bhaumik A, Mukherjee P, Kumar R. Triphase Catalysis over Titanium-SilicateMolecular Sieves under Solvent-Free Conditions: Direct Hydroxylation of Benzene[J]. J Catal, 1998, 178(1): 101-107
    [42] Thangaraj A, Kumar R, Ratnasam P Y. Catalytic Properties of Crystalline Titanium Silicalites:Π. Hydroxylation of Phenol with Hydrogen Peroxide over TS-1 Zeolites[J]. J Catal, 1991, 131(1): 294-297
    [43] Tatsumi T, Jappar N. Ammoximation of Cyclic Ketones on TS-1 and Amorphous SiO2-TiO2[J]. J catal, 1996, 161(2): 570-576
    [44] Lebars J, Dakka J, Sheldon R A. Ammoximation of Cyclohexanone and Hydroxyaromatic Ketones over Titanium Molecular Sieves[J]. Appl Catal A: General, 1996, 136(1): 69-80
    [45] Sooknoi T, Chitranuwatkul V. Ammoximation of Cyclohexanone in Acetic Acid Using Titanium Silicalite-1 Catalyst: Activity and Reaction Pathway[J]. J Mol Catal A: Chem, 2005, 236(1-2): 220-226
    [46] Reddy J S, Jacobs P A. Selective Oxidation of Secondary Amines over Titanium Silicalite Molecular Sieves, TS-1 and TS-2[J]. Catal Lett, 1996, 37(3-4): 213-216
    [47] Joseph R, Sudalai A, Ravindranathan T. Catalytic Oxidation of Secondary -amines with H2O2 over Molecular Sieves-a High-Yield and Single-Step Preparation of Nitrones[J]. Syn Lett, 1995, 11: 1177-1178
    [48] Khouw C B, Dartt C B, Labinger J A, et al. Studies on the Catalytic Oxidation of Alkanes and Alkenes by Titanium Silicates[J]. J Catal, 1994, 149 (1): 195-205
    [49] Vanderpol A J H P, Vanhooff J H C. Oxidation of Linear Alcohols with Hydrogen Peroxide over Titanium Silicalite-1[J]. Appl Catal A: General, 1993, 106(1): 97-113
    [50] Bario F M, Silva T D, Felisbino R F, et al. Synthesis of TS-1 Molecular Sieves Using a New Ti Source[J]. J Phys Chem B, 2006, 110(31): 15080-15084
    [51] Jin C Z, Li G, Wang X S, et al. A Titanium Containing Micro-Mesoporous Composite and its Catalytic Performance in Oxidative Desulfurization[J]. Micro Meso Mater, 2008, 111(): 236-242
    [52] Cundy C S, Forrest J O, Plaisted R J. Some Observations on the Preparation and Properties of Colloidal Silicalites. Part I: Synthesis of Colloidal Silicalite-1 and Titanosilicalite-1 (TS-1) [J]. Micro Meso Mater, 2003, 66(): 143-156
    [53] Shibata M, Gérard J, Gabelica Z. Rapid Synthesis of MFI Titanosilicates Using in Situ Seeding. Method[J]. Micro Mater, 1997, 12(): 141-148
    [54] Tuel A. Crystallization of Titanium Silicalite-1 (TS-1) from Gels Containing Hexanediamine and Tetrapropylammonium Bromide[J]. Zeolites, 1996, 16():108-117
    [55]李钢,郭新闻,王祥生等. TPABr-正丁胺体系中TS-1的合成与表征[J].大连理工大学学报, 1998, 38(3): 363-367
    [56] Shibata M, Gabelica Z. Synthesis of MFI Titanosilicates from Methylamine -TPABr Media[J]. Zeolites, 1997, 19(): 246-252
    [57] Thangaraj A, Eapen M F, Sivasanker S, et al. Studies on the Synthesis of Titanium Silicalite TS-1[J]. Zeolites, 1992, 12(): 943-950
    [58] Tuel A, Ben Taarit Y, Naccache C. Characterization of TS-1 Synthesized Using Mixtures of Tetrabutyl and Tetraethyl Ammonium Hydroxides[J]. Zeolites, 1993, 13(): 454-460
    [59]马淑杰,李连生,刘国宗等.钛硅酸盐分子筛TS-1的合成及表征[J].催化学报, 1996, 17 (2): 171-175
    [60] Gontier S, Tuel A. Synthesis of Titanium Silicalite-1 Using Amorphous SiO2 as Silicon Source[J]. Zeolites, 1996, 16(2-3): 184-195
    [61] Huybrechts D R C, Buskens P L, Jacobs P A. Physicochemical and Catalytic Properties of Titanium Silicalites[J]. J Mol Catal, 1992, 71(): 129-147
    [62]庞文琴,裘式纶.杂原子分子筛VIII. Ti-Si Pentasil型分子筛的结构研究[J].化学学报, 1985, 43(): 739-744
    [63] Gao H X, Suo J S, Li S B, et al. An Easy Way to Prepare TS-1[J]. J Chem Soc Chem Commun, 1995, 8(): 835-836
    [64] Gao H X, Lu W K, Chen Q L. Characterization of Titanium Silicalite-1 Prepared from Aqueous TiCl3[J]. Micro Meso Mater, 2000, 34(3): 307-315
    [65] Jorda E, Tuel A, Teissier R, et al. An Original and very Interesting Precursor to the Synthesis of Titanium Containing Silicalite-1[J]. Zeolites, 1997, 19(4): 238-245
    [66] Ding Y, Zhang Y M, Suo J S, et al. The Influence Parameters on the Synthesis of TS-1 from Inorganic Reactant System[J]. Acta Chim Sin, 2001, 59(10): 1604-1608
    [67] Tuel A. Crystallization of TS-1 in the Presence of Alcohols: Influence on Ti Incorporation and Catalytic Activity[J]. Catal Lett, 1998, 51: 59-63
    [68] Wang L Q, Wang X S, Guo X W, et al. Synthesis of Titanium Silicalite-1 in the Presence of Tween 40[J]. Chin J Catal, 2003, 24(3): 161-162
    [69] Shibata M, Gitrard J, Gabelica Z. Rapid Synthesis of MFI Titanosilicates Using in Situ Seeding Method[J]. Micro Mater, 1997, 12(): 141-148
    [70] Barrer R M. Isomorphous Replacement in the Framework of Zeolite and OtherTectosilicates in Hydrothermal Chemistry of Zeolite[C]. London: Academic Press, 1982, 251-305
    [71] Lin S S, Weng H S. Liquid-Phase Oxidation of Cyclohexane Using CoAPO-5 as the Catalyst[J]. Appl Catal A: Gerneral, 1993, 105(): 289-308
    [72] Ulagappan N, Krishnasamy V. Titanium Substitution in Silicon-Free Molecular Sieves: Anatase-Free TAPO4-5 and TAPO4-11 Synthesis and Characterisation for Hydroxylation of Phenol[J]. J Chem Soc Chem Commun, 1995, 373-374
    [73] Zahediniaki M H, Kapoor M P. H2O2 Oxidation and Epoxidation of Hydrocarbons and Alcohols over Titanium Aluminophosphates TAPO-5, TAPO-11 and TAPO-36[J]. J Catal, 1998, 177(): 231-239
    [74] Thomas J M, Raja R, Sankar G, et al. Molecular-Sieve Catalysts for the Selective Oxidation of Linear Alkanes by Molecular Oxygen[J]. Nature, 1999, 398(): 227-230
    [75] Tian P, Xu L, Liu Z M, et al. Alkane Oxidation on Co-and Mn-Containing Molecular Sieves by Molecular Oxygen[J]. Chem J Chin Univ Chin, 2002, 23(): 656-660
    [76]徐如人,庞文琴,于吉红等.分子筛与多孔材料化学[M].北京:科学出版社, 2004, 612-623
    [77] Corma A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis[J]. Chem Rev, 1997, 97(): 2373-2419
    [78] Chiola V, Ritsko J, Vanderpool C D. Process for Producing Low-Bulk Density Silica[P]. US 3556725, 1971-01-19
    [79] Yanagisawa T, Shimizu T, Kuroda K, et al. The Preparation of Alkyltrimethyl Ammonium-Kanemite Complexes and Their Conversion to Microporous Materials[J]. Bullet Chem Soc Japan, 1990, 63(4): 988-992
    [80] Beck J C, Vartuli W J, Roth M E, et al. A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates[J]. J Am Chem Soc, 1992, 114(27): 10834-10843
    [81] Kresge C T, Leonowicz M E, Roth W J, et al. Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism[J]. Nature, 1992, 359 (6397): 710-712
    [82] Huo Q S, Leon R, Petroff P M, et al. Mesostructure Design with Gemini Surfactants: Supercage Formation in a Three-Dimensional Hexagonal Array[J]. Science, 1995, 268(5215): 1324-1327
    [83] Zhao D Y, Feng J B, Huo Q S, et al. Triblock Copolymer Synthesis ofMesoporous Silica with Periodic 50 to 300 Angstrom Pores[J]. Science, 1998, 279(): 548-552
    [84] Zhao D Y, Huo Q S, Feng J B, et al. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactants Synthesis of Highly Ordered, Hydrothermally stable mesoporous silica structures[J]. J Am Chem Soc, 1998, 120(24): 6024-6036
    [85] Tanev P T, Pinnavaia T J. A Neutral Templating Route to Mesoporous Molecular Sieves[J]. Science, 1995, 267(): 865-867
    [86] Bagshaw S A, Prouzet E, Pinnavaia T J. Templating of Mesoporous Molecular Sieves by Nonionic Polyethylene Oxide Surfactants[J]. Science, 1995, 269(5228): 1242-1244
    [87] Prouzet E, Cot F, Nabias G, et al. Assembly of Mesoporous Silica Molecular Sieves Based on Nonionic Ethoxylated Sorbitan Esters as Structure Directors[J]. Chem Mater, 1999, 11(6): 1498-1503
    [88] Ryoo R, Rim J M, Coo C H, et al. Disordered Molecular Sieve with Branched Mesoporous Channel Network[J]. J Phy Chem, 1996, 100(45): 17718-17724
    [89] Yu C Z, Yu Y H, Zhao D Y. Highly Ordered Large Caged Cubic Mesoporous Silica Structures Templated by Triblock PEO-PBO-PEO Copolymer[J]. Chem Commun, 2000: 575-576
    [90] Liu X Y, Tian B Z, Yu C Z, et al. Room-Temperature Synthesis in Acidic Media of Large-Pore Three-Dimensional Bicontinuous Mesoporous Silica with Ia3d Symmetry[J]. Angew Chem Int Ed, 2002, 114 (20): 4032-4034
    [91] Trong O D, Joshi P N, Kaliaguine S. Synthesis, Stability and State of Boron in Boron-Substituted MCM-41 Mesoporous Molecular Sieves[J]. J Phys Chem, 1996, 100(): 6743-6748
    [92] Trong On D, Joshi P N, Kaliaguine S, et al. Acidity and Structure State of Boron in Mesoporous Boron Silicate MCM-41[J]. Stud Surf Sci Catal, 1995, 97(): 543-549
    [93] Kosslick H, Landmesser H, Fricke R. Acidity of Substituted MCM-41-Type Mesoporous Silicates Probed by Ammonia[J]. J Chem Soc Faraday Trans, 1997, 93(): 1849-1858
    [94] Kosslick H, Lischke G, Wather G, et al. Physico-Chemical and Catalytic Properties of Al-, Ga- and Fe-Substituted Mesoporous Materials Related to MCM-41[J]. Micro Mater, 1997, 9(): 13-33
    [95] Kosslick H, Lischke G, Landmesser H, et al. Acidity and Catalytic Behavior ofSubstituted MCM-48[J]. J Catal, 1998, 176(): 102-114
    [96] Armengol E, Cano M L, Corma A, et al. Mesoporous Aluminosilicate MCM-41 as a Convenient Acid Catalyst for Friedel-Crafts Alkylation of a Bulky Aromatic Compound with Cinnamyl Alcohol[J]. Chem Comm, 1995, 519-520
    [97] Kozhevnikov I V, Sinnema A, Jansen R J J, et al. New Acid Catalyst Comprising Heteropoly Acid on a Mesoporous Molecular Sieve MCM-41[J]. Catal Lett, 1995, 30(): 241-252
    [98] Kloetstra K R, van Bekkum H. Solid Mesoporous Base Catalysts Comprising of MCM-41 Supported Intraporous Cesium Oxide[J]. Stud Surf Sci Catal, 1997, 105(): 431-438
    [99] Choudary B M, Kantam M L, Sreekanth P. Knoevenagel and Aldol Condensations Catalysed by a New Diamino-Functionalised Mesoporous Material[J]. J Mol Catal A: Chem, 1999, 142(3): 361-365
    [100] Rodriguez I, Iborra S, Rey F, et al. Heterogeneized Br?nsted Base Catalysts for Fine Chemicals Production: Grafted Quaternary Organic Ammonium Hydroxides as Catalyst for the Production of Chromenes and Coumarins[J]. Appl Catal A: General, 2000, (194-195): 241-252
    [101] Zhang W, Wang J, Pinnavaia T J, et al. Catalytic Hydroxylation of Benzene over Transition Metal Substituted Hexagonal Mesoporous Silicas[J]. Chem Commun, 1996, 979-980
    [102] Hua Z L, Shi J L, Zhang W H, et al. Direct Synthesis and Characterization of Ti-Containing Mesoporous Silica Thin Films[J]. Mater Lett, 2002, 53(4-5): 299-304
    [103] Wang X X, F Lefebvre, J Patarin, et al. Synthesis and Characterization of Zirconium Containing Mesoporous Silicas: I. Hydrothermal Synthesis of Zr-MCM-41-Type Materials[J]. Micro Meso Mater, 2001, 42(2-3): 269-276
    [104] Gontier S, Tuel A. Novel Zirconium Containing Mesoporous Silicas for Oxidation Reactions in the Liquid Phase[J]. Appl Catal A: General, 1996, 143(1): 125-135
    [105] Kawi S, Te M. MCM-48 Supported Chromium Catalyst for Trichloroethylene Oxidation[J]. Catal Today, 1988, 44(1-4): 101-109
    [106] Brdgeault J M, Piquemal J Y, Briot E, et al. New Approaches to Anchoring or Inserting Highly Dispersed Tungsten Oxo(peroxo) Species in Mesoporous Silicates[J]. Micro Meso Mater, 2001, 44-45(): 409-417
    [107] Zhao D Y, Goldfarb D. Synthesis of Mesoporous Manganosilicates:Mn-MCM-41, Mn-MCM-48 and Mn-MCM-L[J]. J Chem Soc Chem Commun, 1995, 8(): 875-876
    [108] Das T K, Chaudhari K, Chandwadkar A J, et al. Synthesis and Catalytic Properties of Mesoporous Tin Silicate Molecular Sieves[J]. J Chem Soc Chem Commun, 1995, 24(): 2495-2496
    [109] Tanev P T, Chibwe M, Pinnavaia T J. Titanium-Containing Mesoporous Molecular Sieves for Catalytic Oxidation of Aromatic Compounds[J]. Nature, 1994, 368(): 321-323
    [110] Corma A, Navarro M T, Pariente J P, et al. Synthesis of an Ultralarge Pore Titanium Silicate Isomorphous to MCM-41 and its Application as a Catalyst for Selective Oxidation of Hydrocarbons[J]. Chem Commun, 1994, 147-148
    [111] Tanev P T, Chibwe M, Pinnavaia T J. Titanium-Containing Mesoporous Molecular Sieves for Catalytic Oxidation of Aromatic Compounds[J]. Nature, 1994, 368(): 321-323
    [112] Reddy J S, Liu P, Sayari A. Vanadium Containing Crystalline Mesoporous Molecular Sieves. Leaching of Vanadium in Liquid Phase Reactions[J]. Appl Catal A: General, 1996, 148(): 7-21
    [113] Reddy J S, Sayari A. Room-Temperature Synthesis of a Highly Active Vanadium-Containing Mesoporous Molecular Sieve V-HMS[J]. J Chem Soc Chem Commun, 1995, 2231-2232
    [114] Reddy K M, Moudrakovski I, Sayari A. Synthesis of Mesoporous Vanadium Silicate Molecular Sieves[J]. J Chem Soc Chem Commun, 1994, 1059-1060
    [115] Vinu A, Murugesan V, Bohlmann W, et al. An Optimized Procedure for the Synthesis of AlSBA-15 with Large Pore Diameter and High Aluminum Content[J]. J Phys Chem B, 2004, 108(31): 11496-11505
    [116] Zhang W H, Lu J, Han B, et al. Direct Synthesis and Characterization of Titanium-Substituted Mesoporous Molecular Sieve SBA-15[J]. Chem Mater, 2002, 14(): 3413-3421
    [117] Vinu A, Srinivasu P, Miyahara M, et al. Preparation and Catalytic Performances of Ultra Large Pore Ti-SBA-15 Mesoporous Molecular Sieves with very High Ti Content[J]. J Phys Chem B, 2006, 110(): 801-806
    [118] Li Y, Feng Z C, Lian Y X, et al. Direct Synthesis of Highly Ordered Fe-SBA-15 Mesoporous Materials under Weak Acidic Conditions[J]. Micro Meso Mater, 2005, 84(): 41-49
    [119] Nozaki C, Lugmair C G, Bell A T, et al. Synthesis, Characterization, andCatalytic Performance of Single Site Iron (III) Centers on the Surface of SBA-15 Silica[J]. J Am Chem Soc, 2002, 124(): 13194-13203
    [120] Vinu A, Sawant D P, Ariga K, et al. Direct Synthesis of well Ordered and Highly Active Fe-SBA-15 Mesoporous Molecular Sieves[J]. Chem Mater, 2005, 17(): 5339-5345
    [121] Berrichi Z E, Cherif L, Orsen O, et al. Ga Doped SBA-15 as an Active and Stable Catalyst for Friedel-Crafts Liquid-Phase Acylation[J]. Appl Catal A: General, 2006, 298(): 194-202
    [122] Luan Z, Bae J Y, Kevan L. Vanadosilicate Mesoporous SBA-15 Molecular Sieves Incorporated with N-alkylphenothiazines[J]. Chem Mater, 2000, 12(): 3202-3207
    [123] Lou Z S, Wang R H, Sun H, et al. Direct Synthesis of Highly Ordered Co-SBA-15 Mesoporous Materials by the pH-Adjusting Approach[J]. Micro Meso Mater, 2008, 110(): 347-354
    [124] Kumar G S, Palanichamy M, Hartmann M, et al. A New Route for the Synthesis of Manganese Incorporated SBA-15[J]. Micro Meso Mater, 2008, 112(): 53-60
    [125] Wang X X, Wang Y, Tang Q H, et al. MCM-41 Supported Iron Phosphate Catalyst for Partial Oxidation of Methane to Oxygenates with Oxygen and Nitrous Oxide[J]. J Catal, 2003, 217(2): 457-467
    [126] Yang W, Wang X X, Guo Q, et al. Superior Catalytic Performance of Phosphorus-Modified Molybdenum Oxide Clusters Encapsulated inside SBA-15 in the Partial Oxidation of Methane[J]. New J Chem, 2003, 27(9): 1301-1304
    [127] Lin B M, Wang X X, Guo Q, et al. Excellent Catalytic Performances of SBA-15 Supported Vanadium Oxide for Partial Oxidation of Methane to Formaldehyde[J]. Chem Lett, 2003, 32(9): 860-861
    [128] Lou Y C, Wang H C, Zhang Q H, et al. SBA-15 Supported Molybdenum Oxides as Efficient Catalysts for Selective Oxidation of Ethane to Formaldehyde and Acetaldehyde by Oxygen[J]. J Catal, 2007, 247(): 245-255
    [129] Zhang Z R, Suo J S, Zhang X M, et al. Synthesis, Characterization and Catalytic Testing of W-MCM-41 Mesoporous Molecular Sieves[J]. Appl Catal A: General, 1999, 179(): 11-19
    [130] Yang X L, Dai W L, Gao R H, et al. Characterization and Catalytic Behavior of Highly Active Tungsten-Doped SBA-15 Catalyst in the Synthesis of Glutaraldehyde Using an Anhydrous Approach[J]. J Catal, 2007, 249(): 278-288
    [131]沈家骢.超分子层状结构-组装与功能[M].北京:科学出版社, 2003, 216-217
    [132] Whitesides G M, Mathias J P, Seto C T. Molecular Self-Assembly and Nanochemistry-A Chemical Strategy for the Synthesis of Nanostructures[J]. Science, 1991, 254(): 1312-1319
    [133] Whitesides G M, Grzybowski B. Self-Assembly at All Scales[J]. Science, 2002, 295(): 2418-2421
    [134] Singh R, Maru V M, Moharir P S. Complex Chaotic Systems and Emergent Phenomena[J]. J Nonlinear Sci, 1998, 8(): 235-259
    [135] Steed J W, Atwood J L,赵耀鹏,孙震译.超分子化学[M].北京:化学工业出版社, 2006, 15-17
    [136] Pochan D J, Chen Z Y, Cui H G., et al. Toroidal Triblock Copolymer Assemblies[J]. Science, 2004, 306(): 94-97
    [137] Yan D, Zhou Y, Hou J. Supramolecular Self-Assembly of Macroscopic Tubes[J]. Science, 2004, 303(): 65-67
    [138] Discher B M, Won Y Y, Ege D S, et al. Polymersomes: Tough Vesicles Made from Diblock Copolymers[J]. Science, 1999, 284(): 1143-1146
    [139] Zhang L F, Eisenberg A. Multiple Morpbologies of \“Crew-cut\”Aggregates of Polystyrene-b-Poly(acrylic acid) Block Copolymers[J]. Science, 1995, 268(): 1728-1731
    [140] Zhang L F, Eisenberg A. Multiple Morphogenic Effect of Added Ions on Crew-cut Aggregates of Polystyrene-b-Poly (acrylic acid) Block Copolymers in Solutions[J]. Macromole, 1996, 29(): 8805-8815
    [141] Zhang L F, Shen H W, Eisenberg A. Phase Separation Behavior and Crew-cut Micelle Formation of Polystyrene-b-Poly(acrylic acid) Copolymers in Solutions[J]. Macromole, 1997, 30(): 1001-1011
    [142] Wong G C L, Tang J X, Lin A, et al. Hierachical Self-Assembly of F-Actin and Cationic Lipid Complexes: Stacked Three-Layer Tubule Networks[J]. Science, 2000, 288(): 2035-2039
    [143] Jeppesen J O, Perkins J, Becher J, et al. Self-Assembly of an Amphiphilic Rotaxane Incorporating a Tetrathiafulvalene Unit[J]. Org Lett, 2000, 2(): 3547-3350
    [144] Mathias J P, Simanek E E, Whitesides G M. Self-Assembly Though Hydrogen-Bonding. Peripheral Crowding - A New Strategy for the Preparation of Stable Supramolecular Aggregates Based on Parallel, Connected CA3·M3 Rosettes[J]. J Am Chem Soc, 1994, 116(): 4326-4340
    [145] Mathias J P, Simanek E E, Zerkowski J A, et al. Structural Preferences ofHydrogen-bonded Networks in Organic Solution-the Cyclic CA3.cntdot. M3“Rosette”[J]. J Am Chem Soc, 1994, 116(): 4316-4325
    [146] Jang S S, Jang Y H, Kim Y H, et al. Structural and Properties of Self-Assembled Monolayers of Bistable Rotaxanes on Au(111) Surfaces from Molecular Dynamics Simulations Validated with Experiment[J]. J Am Chem Soc, 2005, 127(): 1563-1575
    [147] de Boer B, Stalmach U, Nijland H, et al. Microporous Honeycomb-Structured Films of Semiconducting Block Copolymers and Their Use as Patterned Templates[J]. Adv Mater, 2000, 12(): 1581-1583
    [148] Yu Y S, Zhang L F, Eisenberg A, et al. Multiple Morphologies of Crew-Cut Aggregates of Polybutadiene-b-Poly(acrylic acid) Diblocks with Low Tg Cores[J]. Langmuir, 1997, 13(): 2578-2581
    [149] Zhang L F, Eisenberg A. Multiple Morphogenic Effect of Added Ions on Crew-Cut Aggregates of Polystyrene-b-Poly(acrylic acid) Block Copolymers in Solutions[J]. Macromole, 1996, 29(): 8805-8815
    [150] Perces V, Ahn C H, Ungar G, et al. Controlling Polymer Shape through the Self-Assembly of Dendritic Side-Groups[J]. Nature, 1998, 391(): 161-164
    [151] Elizarov A M, Chang T, Chiu S H, et al. Self-Assembly of Dendrimers by Slippage[J]. Org Lett, 2002, 4(): 3565-3568
    [152] Vanhest J C M, Delnoye D A P, Baars M W P L, et al. Po1ystyrene-Dendrimer Amphilic Block Copolymers with a Generationdependent Aggregation[J]. Science, 1995, 268(): 1592-1595
    [153] Hudson S D, Jung H T, Percec V, et al. Direct Visualization of Individual Cylindrical and Spherical Supramolecular Dendrimers[J]. Science, 197, 278(): 449-452
    [154] Schenning A P H J, Elissen Roman C, Weener J W, et al. Amphilic Dendrimers as Building Blocks in Supramolecular Assemblies[J]. J Am Chem Soc, 1998, 120(): 8199-8208
    [155] Uchiyama T, Ishii K, Nonomura T, et al. Aphthalocyanine Dendrimer Capable of Forming Spherical Micelles[J]. Chem Eur J, 2003, 9(): 5757-5761
    [156] Cho B K, Jain A, Nieberle J, et al. Synthesis and Self-Assembly of Amphiphilic Dendrimers Based on Aliphatic Polyether-Type Dendritic Cores[J]. Macromole, 2004, 37(): 4227-4234
    [157]邓友全.离子液体-性质、制备与应用[M].北京:中国石化出版社, 2004, 21-22
    [158] Mukai S R, Nishihara H, Tamon H. Formation of Monolithic Silica Gel Microhoneycombs (SMHs) Using Pseudosteady State Growth of Microstructural Ice Crystals[J]. Chem Commun, 2004, 874-875
    [159] Buhleier E, Wehner W, V?gtle F.“Cascade”and“Nonskid-Chain-Like”Syntheses of Molecular Cavity Topologies[J]. Synthesis, 1978: 155-158
    [160] Tomalia D A, Baker H M, Dewald J R, et al. A New Class of Polymers: Starburst-Dendritic Macromolecules[J]. Poly J, 1985, 17(): 117-132
    [161] Tomalia D A, Baker H, Dewald J R Hall M, et al. Dendritic Macromolecules: Synthesis of Starburst Dendrimers[J]. Macromole, 1986, 19(): 2466-2468
    [162] Tomalia D A, Dewald J R. Densestar Polymer having Core, Core Branches, Terminal Groups[P]. US 4507466, 1985-03-26
    [163] Tomalia D A, Dewald J R. Densestar Polymer and Dendrimers[P]. US 4568737, 1986-02-04
    [164] Hawker C J, Fréchet J M J. Preparation of Polymers with Controlled Molecular Architecture. A New Convergent Approach to Dendritic Macromolercules[J]. J Am Chem Soc, 1990, 112(): 7638-7647.
    [165] Grayson S M, Fréchet J M J. Convergent Dendrons and Dendrimers: from Synthesis to Applications[J]. Chem Rev, 2001, 101(): 3819-3867
    [166] Bosman A W, Janssen H M, Meijer E W. About Dendrimers: Structure, Physical Properties and Applications[J]. Chem Rev 1999, 99(): 1665-1688
    [167] Hawker C J, Fréchet J M J. Preparation of Polymers with Controlled Molecular Architecture. A New Convergent Approach to Dendritic Macromolecules[J]. J Am Chem Soc, 1990, 112(21): 7638-7647
    [168] Wooley K L, Hawker C J, Fréchet J M J. Hyperbranched Macromolecules via a Novel Double-Stage Convergent Growth Approach[J]. J Am Chem Soc, 1991, 113(): 4252-4261
    [169] Kawaguchi T, Walke K L, Wilkins C L, et al. Double Exponential Dendrimer Growth[J]. J Am Chem Soc, 1995, 117(): 2159-2165
    [170] Van Hest J C M, Delnoye D A P, Meijer E W, et al. Polystyrene-Poly (propylene imine) Dendrimers: Synthesis, Characterization, and Association Behavior of a New Class of Amphiphiles[J]. Chem Eur J, 1996, 2(): 1616-1626
    [171] Van Hest J C M, Baars M W P L, Meijer E W, et al. Acid-Functionalized Amphiphiles, Derived from Polystyrene-Poly(propylene imine) Dendrimers, with a pH-Dependent Aggregation[J]. Macromole, 1995, 28(): 6689-6691
    [172] Kawber C J, Wooley K L, Fréchet J M J. Unimolecular Micelles and GlobularAmphiphiles: Dendritic Macromolecules as Novel Recyclable Solubilization Agents[J]. J Chem Soc Perkin Trans, 1993, 1(): 1287-1297
    [173] Huddleston J G, Visser A E, Willauer H D, et al. Characterization and Comparison of Hydrophilic and Hydrophobic Room Temperature Ionic Liquids Incorporating the Imidazolium Cation[J]. Green Chem, 2001, 3(4): 156-164
    [174] Wasserscheid P, Welton T. Ionic Liquid in Synthesis[J]. Green Chem, 2002, 4(2): 73-80
    [175] Fuller J, Carlin R T, Osteryoung R A. The Room Temperature Ionic Liquid 1-Ethyl-3-methylimidazolium Tetrafluoroborate: Electrochemical Couples and Physical Properties[J]. J Electrochem Soc, 1997, 144(11): 3881-3885
    [176] Fuller J, Carlin R T, De Long H C. Structure of 1-Ethyl-3-methylimidazolium Hexafluoro Phosphate: Mode for Room Temperature Molten Salts[J]. J Chem Soc Chem Commun, 1994, 3(): 299-301
    [177] Brown R J C, Dyson P J, Ellis D J, et al. 1-Butyl-3-methylimidazolium Cobalt Tetracarbonyl [Bmim][Co(CO)4]: a Catalytically Active Organometallic Ionic Liquid[J]. Chem Commun, 2001, 18(): 1862-1863
    [178] Wasserscheid P, van Hal R, Bosmann A. 1-n-Butyl-3-methylimidazolium ([Bmim]) Octylsulfate-an Even‘greener’Ionic Liquid[J]. Green Chem, 2002, 4(4): 400-404
    [179] Yoshida Y, Muroi K, Otsuka A, et al. 1-Ethyl-3-methylimidazolium Based Ionic Liquids Containing Cyano Groups: Synthesis, Characterization, and Crystal Structure[J]. Inorg Chem, 2004, 43(4): 1458-1462
    [180] Zhou Z, Matsumoto H, Tatsumi K. Low-Melting, Low-Visccous, Hydrophobic Ionic Liquids: 1-Alkyl(alkyl ether)-3-methylimidazolium Perfluoroalkyltri -fluoroborate[J]. Chem Eur J, 2004, 10(24): 6581-6591
    [181] Golding J, Forsyth S, MacFariane D R, et al. Methanesulfonate and p-toluenesulfonate Salts of the N-methyl-N-alkylpyrrolidinium and Quaternary Ammonium Cations: Novel Low Cost Ionic Liquids[J]. Green Chem, 2002, 4(3): 223-229
    [182] Warren T F, Robert J K, Donald J H. Syntheses and Properties of Molten Tetraalkylammonium Tetraalkylborides[J]. J Org Chem, 1973, 38(22): 3916-3918
    [183] Mele A, Tran C D, Lacerda S H D. The Structure of a Room-Temperature Ionic Liquid with and without Trace Amounts of Water: The Role of C-H Center Dot Center Dot Center Dot O and C-H Center Dot Center Dot Center Dot F Interactions 1-n-Butyl-3-methylimidazolium Tetrafluoro Borate[J]. Angew ChemInt Ed, 2003, 42(): 4364-4366
    [184] Dai S, Ju Y H, Gao H J, et al. Preparation of Silica Aerogel Using Ionic Liquids as Solvents[J]. Chem Commun, 2000: 243-244
    [185] Bowers J, Butts C P, Martin P J, et al. Aggregation Behavior of Aqueous Solutions of Ionic Liquids[J]. Langmuir, 2004, 20(): 2191-2198
    [186] Consorti C S, Suarez P A Z, Burrow A Robert, et al. Identification of 1, 3-Dialkylimidazolium Salt Supramolecular Aggregates in Solution[J]. J Phys Chem B, 2005, 109(): 4341-4349
    [187] Zhou Y, Schattka J H, Antonietti M. Room-Temperature Ionic Liquids as Template to Monolithic Mesoporous Silica with Wormlike Pores via a Sol-gel Nanocasting Technique[J]. Nano Lett, 2004, 4(3): 477-481
    [188] Mukai S R, Nishihara H, Tamon H. Porous Properties of Silica Gels with Controlled Morphology Synthesized by Unidirectional Freeze Gelation[J]. Micro Meso Mater, 2003, 63(): 43-51
    [189] Deville S, Saiz E, Nalla R K, et al. Freezing as a Path to Build Complex Composites[J]. Science, 2006, 311(): 515-518
    [190] Nishihara H, Mukai S R, Fujii Y, et al. Preparation of Monolithic SiO2-Al2O3 Cryogels with Inter-Connected Macropores through Ice Templating[J]. J Mater Chem, 2006, 16(): 3231-3236
    [191] Zhang H F, Hussain I, Brust M, et al. Aligned Two- and Three-Dimensional Structures by Directional Freezing of Polymers and Nanoparticles[J]. Nature Mater, 2005, 4(): 787-793
    [192] Gutiérrez M C, Jobbagy M, Rapun N, et al. A Biocompatible Bottom-up Route for the Preparation of Hierarchical Biohybrid Materials[J]. Adv Mater, 2006, 18(9): 1137-1140
    [193] Gutiérrez M C, Hortiguela M J, Amarilla J M, et al. Macroporous 3D Architectures of Self-Assembled MWCNT Surface Decorated with Pt Nanoparticles as Anodes for a Direct Methanol Fuel Cell[J]. J Phys Chem C, 2007, 111(): 5557-5560
    [194] Mahler W, Bechtold M F. Freeze-Formed Silica Fibers[J]. Nature, 1980, 285(): 27-28
    [195] Mukai S R, Nishihara H, Shichi S, et al. Preparation of Porous TiO2 Cryogel Fibers through Unidirectional Freezing of Hydrogel Followed by Freeze-Drying[J]. Chem Mater, 2004, 16(): 4987-4991
    [196] Nishihara H, Mukai S R, Yamashita D, et al. Ordered Macroporous Silica by IceTemplating[J]. Chem Mater, 2005, 17(): 683-689
    [197] Nishihara H, Mukai S R, Tamon H. Preparation of Resorcinol–Formaldehyde Carbon Cryogel Microhoneycombs[J]. Carbon, 2004, 42(): 899-901
    [198] Mukai S R, Nishihara H, Yoshida T, et al. Morphology of Resorcinol- formaldehyde Gels Obtained through Ice-templating[J]. Carbon, 2005, 43(): 1563-1565
    [199] Gutierrez M C, Ferrer M L, del Monte F. Ice-Templated Materials: Sophisticated Structures Exhibiting Enhanced Functionalities Obtained after Unidirectional Freezing and Ice-Segregation-Induced Self-Assembly[J]. Chem Mater, 2008, 20(3): 634-648
    [200] Mukai S R, Nishihara H, Tamon H. Morphology Maps of Ice-Templated Silica Gels Derived from Silica Hydrogels and Hydrosols[J]. Micro Meso Mater, 2008, 116(1-3): 166-170
    [201] Crooks R M, Zhao M, Sun L, et al. Dendimer Encapsulated Metal Nanoparticles: Synthesis, Characterization and App1ication to Cata1ysis[J]. Acc Chem Res, 2001, 34(): 181-190
    [202] Chung Y M, Rhee H K. Partial Hydrogenation of 1, 3-Cyclooctadiene Using Dendrimer-Encapsulated Pd-Rh Bimetallic Nanoparticles[J]. J Mol Catal A: Chem, 2003, 206(): 291-298
    [203] Zhao M, Sun L, Crooks R M. Preparation of Cu Nanoclusters within Dendrimer Templates[J]. J Am Chem Soc, 1998, 120(): 4877-4887
    [204] Balogh L, Tomalia D A. Poly(amidoaminc) Dendrimer Templated Nano Composite Synthesis of Zerovalent Copper Nanocluster[J]. J Am Chem Soc, 1998, 120(): 7355-7356
    [205] Grǒhn F, Bauer B, Akpalu Y. Dendrimer Templates for the Fomation of Gold Nanocluster[J]. Macromole, 2000, 33(): 6042-6050
    [206] Zhao M, Crooks R M. Dendrimer Encapsulated Pt Nanoparticles: Synthesis, Characterization and Application to Catalysis[J]. Adv Mater, 1999, 11(): 217-220
    [207] Roy R, Komarneni S, Roy D M. Cation-Exchange Properties of Hydrated Cements[J]. Mater Res Soc Sym Proc, 1984, 32(): 347-349
    [208] Lebedeva O V, Kim B S, Grǒhn F, et al. Dendrimer-Encapsulated Gold Nanoparticles as Building Blocks for Multilayer Microshells[J]. Poly, 2007, 48(): 5024-5029
    [209] Auten B J, Lang H F, Chandler B D. Dendrimer Templates for Heterogeneous Catalysts: Bimetallic Pt-Au Nanoparticles on Oxide Supports[J]. Appl Catal B:Environmental, 2008, 81(): 225-235
    [210] Sooklal K, Huang J, Murphy C J, et al. Inorganic Quantum Dot-Organic Dendrimer Nanocomposite Materials[J]. Mater Res Soc Sym Proc, 1999, 576(): 439-444
    [211] Balogh L, Laverdure K S, Gido S P, et al. Organic/Inorganic Hybrid Materials[J]. Mater Res Soc Sym Proc, 1999, 576(): 69-75
    [212] Reek J N H, Arévalo S, Heerbeek R V, et al. Dendrimers in Catalysis[J]. Adv Catal, 2006, 49(): 71-151
    [213] Astruc D, Chardac F, Dendritic Catalysts and Dendrimers in Catalysis[J]. Chem Rev, 2001, 101(): 2991-3023
    [214] Balogh L, Swanson D R, Spindler R, et al. Formation and Characterization of Dendrimer-Based Water Soluble Inorganic Nanocomposites[J]. Poly Prep, 1999, 217(): 28-30
    [215] Zhao M, Crooks R M. Homogeneous Hydrogenation Catalysis Using Monodisperse, Dendrimer-Encapsulated Pd and Pt Nanoparticles[J]. Angew Chem Int Ed, 1999, 38(): 364-366
    [216] Reetz M T. Combinatorial and Evolution-Based Methods in the Creation of Enantioselective Catalysts[J]. Angew Chem Int Ed, 2001, 40(): 284-310
    [217] Senkan S. Combinatorial Heterogeneous Catalysis-A New Path in an Old Field[J]. Angew Chem Int Ed, 2001, 40(): 312-329
    [218] Bhyappa P, Young J K, Moore J S, et al. Dendrimer-Metalloporphyrin: Synthesis and Catalysis[J]. J Am Chem Soc, 1996, 118(): 5708-5711
    [219] Lei Z Q, Yang Z W, Han Q R, et al. Oxidation of Cyclohexene Catalyzed by PAMAM-SA-M Dendrimers[J]. Chin Chem Lett, 2002, 13(6): 491-494
    [220] Chowdhury S, Mohan R S, Scott J L. Reactivity of Ionic Liquids[J]. Tetrahedron, 2007, 63(): 2363-2389
    [221]纪红兵,佘远斌.绿色氧化与还原[M].北京:中国石化出版社, 2005, 142-146
    [222] Binnemans K. Ionic Liquid Crystals[J]. Chem Rev, 2005, 105(): 4148-4204
    [223] Ngo H L, LeCompte K, Hargens L, et al. Thermal Properties of Imidazolium Ionic Liquids[J]. Thermochimica Acta, 2000, 357-358(): 97-102
    [224] Thomaier S, Kunz W. Aggregates in Mixtures of Ionic Liquids[J]. J Mol Liq, 2007, 130(): 104-107
    [225] Modaressil A, Sifaoui H, Mielcarz M, et al. Influence of the Molecular Structure on the Aggregation of Imidazolium Ionic Liquids in Aqueous Solutions[J]. Collo Surf A: Physicochem Eng Asp, 2007, 302(1-3): 181-185
    [226] Taubert A, Li Z H. Inorganic Materials from Ionic Liquids[J]. Dalton Trans, 2007, 723-727
    [227] Miao W S, Chan T H. Ionic Liquid Supported Synthesis: A Novel Liquid-Phase Strategy for Organic Synthesis[J]. Acc Chem Res, 2006, 39(): 897-908
    [228] Welton T. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis[J]. Chem Rev, 1999, 99(): 2071-2083
    [229] Lyubimov S E, Davankova V A, Gavrilovb K N. The Use of an Ionic Liquid in Asymmetric Catalytic Allylic Amination[J]. Tetrahedron Lett, 2006, 47(): 2721-2723
    [230] Yoo K S, Choi H, Dionysiou D D. Synthesis of Anatase Nanostructured TiO2 Particles at Low Temperature Using Ionic Liquid for Photocatalysis[J]. Catal Commun, 2005, 6(): 259-262
    [231] Yoo K S, Lee T G, Kim J. Preparation and Characterization of Mesoporous TiO2 Particles by Modified Sol-Gel Method Using Ionic Liquids[J]. Micro Meso Mater, 2005, 84(): 211-217
    [232] Yoo K S, Choi H, Dionysios D D. Ionic Liquid Assisted Preparation of Nanostructured TiO2 Particles[J]. Chem Commun, 2004, 2000-2001
    [233] Choi H, Yong J K, Dionysios D D, et al. Thermally Stable Nanocrystalline TiO2 Photocatalysts Synthesized via Sol-Gel Methods Modified with Ionic Liquid and Surfactant Molecules[J]. Chem Mater, 2006, 18(): 5377-5384
    [234] Jacob D S, Bitton L, Gedanken A, et al. Are Ionic Liquids Really a Boon for the Synthesis of Inorganic Materials? A General Method for the Fabrication of Nanosized Metal Fluorides[J]. Chem Mater, 2006, 18(): 3162-3168
    [235] Liu C H, Yu X Y, He M Y, et al. Preparation of Mesoporous Al-MCM-41 with Stable Tetrahedral Aluminum Using Ionic Liquids as a Single Template[J]. Mater Lett, 2007, 61(): 5261-5264
    [236] ?ilkováN, Zukal A, ?ejka J. Synthesis of Organized Mesoporous Alumina Templated with Ionic Liquids[J]. Micro Meso Mater, 2006, 95(): 176-179
    [237] Jia A Z, Li J, Zhang Y Q, et al. Synthesis and Characterization of Nanosized Micro-Mesoporous Zr-SiO2 via Ionic Liquid Templating[J]. Mater Sci Eng: C, 2008, 28(8): 1217-1226
    [238] Zhu K K, Po?gan F, D’Souza L, et al. Ionic Liquid Templated High Surface Area Mesoporous Silica and Ru-SiO2[J]. Micro Meso Mater, 2006, 91(1-3): 40-46
    [239] Khushanlani D, Kuperman A, Coombs N, et al. Mixed Surfactant Assemblies in the Synthesis of Mesoporus Sillcas[J]. Chem Mater, 1996, 8(): 2188-2193
    [240] Chen F X, Huang L, Li Q. Synthesis of MCM-48 Using Mixed Cationic-anionic Surfactants as Templates[J]. Chem Mater, 1997, 9(): 2685-2686
    [241] Chen F X, Song F, Li Q. Mixed Cationic-Anionic Templating Route to Al-MCM-48[J]. Micro Meso Mater, 1999, 29(3): 305-310
    [242] Templin M, Franck A, Chesne A D, et al. Organically Modified Aluminosilicate Mesostructures from Block Copolymer Phases[J]. Science, 1997, 278(): 1795-1798
    [243] Holland B T, Blanford C F, Stein A . Synthesis of Macroporous Minerals with Highly Ordered Three-Dimensional Arrays of Spheroidal Voids[J]. Science, 1998, 281(): 538-540
    [244] Davis S A, Burkett S L, Mendelson N H. Bacterial Templating of Ordered Macrostructures in Silica and Silica-Surfactant Mesophases[J]. Nature, 1997, 385(): 420-422
    [245] Zhang B J, Davis S A, Mann S, et al. Bacterial Templating of Zeolite Fibers with Hierarchical Structure[J]. Chem Commun, 2000, 781-782
    [246] Yang H F, Zhao D Y. Synthesis of Replica Mesostructures by the Nanocasting Strategy[J]. Mater Chem, 2005, 15(12): 1217-1231
    [247] Clark J H, Macqwmie J. Catalyst of Liquid Phase Organic Reactions Using Chemically Modified Mesoporous Inorganic Solids[J]. Chem Commun, 1998, 853-860.
    [248] Firouzi A, Kumar D, Bull L M, et al. Cooperative Organization of Inorganic-Surfactant and Biomimetic Assemblies[J]. Science, 1995, 267(5201): 1138-1143
    [249] Huo Q S, Margolese D I, Ulrike C, et al. Generalized Synthesis of Periodic Surfactant/Inorganic Composite Materials[J]. Nature, 1994, 368(6469): 317-321
    [250] Monnier A, Schüth F, Huo Q S, et al. Cooperative Formation of Inorganic-organic Interfaces in the Synthesis of Silicate Mesostructures[J]. Science, 1993, 261(5126): 1299-1303
    [251] Inagaki S, Fukushima Y, Kuroda K. Synthesis of Highly Ordered Mesoporous Materials from a Layered Polysilicate[J]. J Chem Soc Chem Commun, 1993, 680-682
    [252] Attard G. S, Glyde J C, Goltner C G., Liquid-Crystal Templates for Nanostructured Metals[J]. Nature, 1995, 378(): 366-368
    [253] Chen C Y, Li H X, Davis M E, Studies on Mesoporous Materials: I. Synthesis and Characterization of MCM-41[J]. Micro Mater, 1993, 2(1): 17-26
    [254] Chen C Y, Burkett S L, Li H X, et al. Studies on Mesoporous Materials II. Synthesis Mechanism of MCM-41[J]. Micro Mater, 1993, 2(1): 27-34
    [255]王积涛,胡青眉.有机化学(第一版) [M].天津:南开大学出版社, 1993, 390-395
    [256] Zhou L P, Xu J, Miao H, et al. Catalytic Oxidation of Cyclohexane to Cyclohexanol and Cyclohexanone over Co3O4 Nanocrystals with Molecular Oxygen[J]. Appl Catal A: General, 2005, 292(2): 223-228
    [257]贾义霞,高建荣.环己烷催化氧化反应及工艺的研究进展[J].化工时刊, 2001, 3(): 8-13
    [258] Groves J T, Nemo T E, Myers R S. Hydroxylation and Epoxidation were Catalyzed by Fe-Porphine Complexes[J]. J Am Chem Soc, 1979, 101 (4): 1032-1033
    [259] Natasha G, Tebello N. Iron Perchlorophthalogyanion and Tetrasulfophthalocyanine Catalysed Oxidation of Cyclohexane Using Hydrogen Peroxide, Chloroperoxybenzoic Acid and Tertbutylhydroperoxide as Oxidants[J]. J Mol Catal A: Chem, 2002, 179(2): 113-123
    [260] Simces M M Q, Santos I C M S, Balula M S, et al. Oxidation of Cycloalkanes with Hydrogen Peroxide in the Presence of Keggin-Type Polyoxotungstates[J]. Catal Today, 2004, 92(1): 211-214
    [261] Guo C C, Chu M F, Liu Q, et al. Effective Catalysis of Simple Metalloporphyrins for Cyclohexane Oxidation with Air in the Absence of Additives and Solvents[J]. Appl Catal A: General, 2003, 246(2): 303-309
    [262] Guo C C, Huang G, Zhang X B, et al. Catalysis of Chitosan Supported Iron Tetraphenylporphyrin for Aerobic Oxidation of Cyclohexane in Absence of Reductants and Solvents[J]. Appl Catal A: General, 2003, 247 (2): 261-267
    [263]郭灿城,刘强,张小兵.催化空气氧化烷烃和环烷烃的方法[P].中国.中国专利, 1269343 A, 2000-10-11
    [264]郭灿城,刘强,刘洋等.金属卟啉催化空气氧化环己烷的方法[P].中国.中国专利, 1405131 A, 2003-03-26
    [265] Druliner J D, Herron N, Kourtakis K. Direct Oxidation of Cyclohexanes[P]. US 6160183, 2000-10-13
    [266] Clerici M G. Oxidation of Saturated Hydrocarbons with Hydrogen Peroxide Catalyzed by Titanium Silicalite[J]. Appl Catal, 1991, 68(): 249-261
    [267]肖兵,张毅,任涛等. Fe-MCM-41分子筛的合成及应用-催化氧化环己烷制环己酮[J].石油化工, 2006, 26 (1): 1-4
    [268] Serrano D P, Li H X, Davis M E. Synthesis of Titanium-Containing ZSM-48[J]. Chem Commum, 1992, 745-746
    [269] Corma A, Navarro M T, Pariente J P, et al. Synthesis of an Ultralarge Pore Titanium Silicate Isomorphous to MCM-41 and its Application as a Catalyst for Selective Oxidation of Hydrocarbons[J]. Chem Commun, 1994, 147-148
    [270] Kharitonov A S, Sheveleva G A, Panov G L, et al. Ferrisilicate Analogs o f ZSM-5 Zeolite as Catalysts for One-Step Oxidation of Benzene to Phenol[J]. Appl Catal A: General, 1993, 98(): 33-43
    [271] Burch R, Howit C. Investigation of Zeolite Catalysts for the Direct Partial Oxidation of Benzene to Phenol[J]. Appl Catal A: General, 1993, 103(): 135-162
    [272]李明强,蹇锡高,韩铁民等.反应控制相转移催化剂K3PV4O24催化苯合成苯酚[J].催化学报, 2004, 25(9): 681-682
    [273] Martens J A, Buskens P, Jacobs P A, et al. Hydroxylation of Phenol with Hydrogen Peroxide on EUROTS-1 Catalyst[J]. Appl Catal A: General, 1993, 99(): 71-84
    [274]高焕新,李树本. TS-1分子筛催化苯羟基化反应.催化学报, 1996, 17(4): 296-300
    [275]戴延风,刘希尧,萨学理. TS-1分子筛催化苯的羟基化性能[J].分子催化, 1998, 12(1): 48-52
    [276]于晓东,卢冠中,曹钢. TS-1分子筛催化氧化性能的研究Ⅲ焙烧温度-预处理与溶剂对苯羟基化的影响[J].石油化工, 2002, 31(9): 708-712
    [277] Bhaumik A, Mukherjee P, Kumar R. Enhancement in the Reaction Rates in the Hydroxylation of Aromatics over TS-1/H2O2 under Solvent-Free Triphase Conditions[J]. Catal Today, 1999, 49(): 185-191
    [278]翟丕沐,王立秋,刘长厚等. HZSM-5分子筛催化剂在催化苯氧化合成苯酚反应中的积炭和失活行为[J].催化学报, 2005, 26(1): 10-14
    [279] Goebel C G, Brown A C, Oehischlaeger H F, et al. Method of Making Azelaic Acid[P]. US 2813113, 1957-11-12
    [280]宋河远,陈静,童进.油酸相转移催化氧化制壬二酸[J].石油化工, 2004, 33(): 1608-1610
    [281] Noureddini H, Kanabur M. Liquid-Phase Catalytic Oxidation of Unsaturated Fatty Acids[J]. J Am Oil Chem Soc, 2007, 76(3): 305-312
    [282] Oakley M A, Woodward S, Coupland K, et al. Practical Dihydroxylation and C-C Cleavage of Unsaturated Fatty Acids[J]. J Mol Catal A: Chem, 1999, 150(): 105-111
    [283] Andrea G, Giampiero S, Marco F. Preparing Carboxylic Acids or Esters by Oxidative Cleavage of Unsaturated Fatty Acids or Esters[P]. US 5336793, 1994-08-09
    [284] Antonelli E, Gambaro M, Fiorani T, et al. Efficient Oxidative Cleavage of Olefins to Carboxylic Acids with Hydrogen Peroxide Catalyzed by Methyltrioctylammonium Tetrakis(oxodiperoxotungsto)phosphate(3-) under Two-Phase Conditions. Synthetic Aspects and Investigation of the Reaction Course[J]. J Org Chem, 1998, 63(): 7190-7206
    [285] Klaas M, Bavaj P, Warwel S. Transition Metal Catalyzed Oxidative Cleavage of Unsaturated Fatty Acids[J]. Fat Sci Tech, 1995, 97(): 359-369
    [286]阿依夏木古丽·努尔艾买提,吾满江·艾力,夏木西卡玛尔等.离子液体体系中过氧化氢氧化油酸合成壬二酸[J].中国油脂, 2008, 33(4): 43-46
    [287]李钢,王祥生,刘海鸥.钛硅分子筛催化苯乙烯氧化制苯甲醛[J].大连理工大学学报, 2002, 42(5): 535-538
    [288]魏文德.有机化工原料大全[M].北京:化学工业出版社, 1999, 412-413
    [289]章思规.精细有机化学品技术手册[M].北京:科学出版社, 1991. 1458-1461
    [290]何寿林,程健. TS-1/ H2O2体系催化氧化苯乙烯研究[J].长江大学学报(自科版), 2006, 3(3): 26-29
    [291]李刚,王祥生,王丽琴等.两种钛硅分子筛合成体系的比较[J].石油学报, 2003, 19 (4): 76-81
    [292]徐成华,吕绍洁,邓桂英等. Ti-ZSM-5骨架钛的表征和催化活性的研究[J].合成化学, 2001, 9(3): 227-231
    [293] Hulea V, Dumitriu E. Styrene Oxidation with H2O2 over Ti-Containing Molecular Sieves with MFI, BEA and MCM-41 Topologies[J]. Appl Catal A: General, 2004, 277 (1): 99-106
    [294]许俊强,储伟,陈慕华.苯乙烯环氧化反应分子筛催化剂研究进展[J].化工进展, 2005, 24(9): 981-984
    [295]李守贵,房铭,庞文琴等.钌卟啉/MCM-41催化剂的制备、表征及性质[J].催化学报, 1999, 20(2): 161-165
    [296]楼建芳.分子筛固载金属络合物催化双氧水氧化烯烃的研究[D]: [西北师范大学博士论文].兰州:西北师范大学化学化工学院, 2001, 10-12
    [297] Yang X L, Dai W L, Gao R H, et al. Novel Efficient and Green Approach to the Synthesis of Glutaraldehyde over Highly Active W-doped SBA-15 Catalyst[J]. J Catal, 2005, 229(): 259-263
    [298]陈杨英,韩秀文,包信和. W-SBA-15介孔分子筛的直接合成及其对环己烯环氧化反应的催化性能[J].催化学报, 2005, 26(5): 412-416
    [299] Kabe T, Qian W H, Funato A, et al. Hydrodesulfurization and Hydrogenation on Alumina-Supported Tungsten and Nickel-Promoted Tungsten Catalysts[J]. Phys Chem Chem Phys, 1999, 5(): 921-927
    [300] Rezgui Y, Guemini M. Effect of Acidity and Metal Content on the Activity and Product Selectivity for n-Decane Hydroisomerization and Hydrocracking over Nickel–Tungsten Supported on Silica–Alumina Catalysts[J]. Appl Catal A: General, 2005, 282(): 45-53
    [301] Wilson R D, Barton D G, Baertsch C D, et al. Reaction and Deactivation Pathways in Xylene Isomerization on Zirconia Modified by Tungsten Oxide[J]. J Catal, 2000, 194(): 175-187
    [302] Sels B F, Devos D E, Jacobs P A. Bromide-Assisted Oxidation of Substituted Phenols with Hydrogen Peroxide to the Corresponding p-Quinol and p-Quinol Ethers over WO42--Exchanged Layered Double Hydroxides[J]. Angew Chem Int Ed, 2005, 44 (2): 310-313
    [303] Zhang L, Zhao Y H, Dai H X ,et al. A Comparative Investigation on the Properties of Cr-SBA-15 and CrOx/SBA-15[J]. Catal Today 2008, 131(): 42-54
    [304] Wang Y, Ohishi Y, Shishido T, et al. Characterizations and Catalytic Properties of Cr-MCM-41 Prepared by Direct Hydrothermal Synthesis and Template Ion Exchange[J]. J Catal, 2003, 220(): 347-357
    [305] Weckhuysen B M, Wachs I E, Schoonheydt R A. Surface Chemistry and Spectroscopy of Chromium in Inorganic Oxides[J]. Chem Rev, 1996, 96(): 3327-3349
    [306] Mizuno N, Misono M. Heteropolyanions in Catalysis[J]. J Mol Catal, 1994, 86(): 319-342
    [307] Leontidis E. Hofmeister Anion Effects on Surfactant Self-Assembly and the Formation of Mesoporous Solids[J]. Current Opinion in Colloid & Interface Science 2002, 7(): 81-91
    [308] Hunger B, Hoffmann J, Heitzsch O, et al. Temperature.Programmed Desorption (TPD) of Ammonia from HZSM-5 Zeolites[J]. J Therm Anal, 1990, 36(): 1379-1391
    [309]王培义,徐宝财,王军.表面活性剂-合成、性能、应用[M].北京:化学工业出版社, 2007, 207-210
    [310] Lee J S, Sang H J, Ryoo R. Synthesis of Mesoporous Silicas of Controlled Pore Wall Thickness and Their Replication to Ordered Nanoporous Carbons withVarious Pore Diameters[J]. J Am Chem Soc, 2002, 124(7): 1156-1157
    [311] Feng J, Huo Q, Petroff P M, et al. Morphology Definition by Disclinations and Dislocations in a Mesostructured Silicate Crystal[J]. Appl Phys Lett, 1997, 71(): 620-622
    [312] Michalet X, Bensimon D. Observation of Stable Shapes and Conformal Diffusion in Genus 2 Vesicles[J]. Science, 1995, 269(): 666-668
    [313] Zhao D Y, Sun J Y, Li Q Z, et al. Morphological Control of Highly Ordered Mesoporous Silica SBA-15[J]. Chem Mater, 2000, 12(): 275-279
    [314] Wan Y, Zhao D Y. On the Controllable Soft-Templating Approach to Mesoporous Silicates[J]. Chem Rev, 2007, 107(7): 2821-2860
    [315] Israelachvili J N. Intermolecular and Surface Forces (2nd edn) [M]. Academic Press: London, 1991, 366-393
    [316] Alexandridis P, Hatton T A. Poly (ethylene oxide)-Poly (propylene oxide)-Poly (ethylene oxide) Block Copolymer Surfactants in Aqueous Solutions and at Interfaces: Thermodynamics, Structure, Dynamics, and Modeling[J]. Collo Surf, 1995, 96(): 1-46
    [317] Nivaggioli, Alexandridis P, Hatton T A. Fluorescence Probestudies of Pluronic Copolymer Solutions as a Function of Temperature[J]. Langmuir, 1995, 11(): 730-737
    [318] Desai P R, Jain N J, Sharma R K. Effect of Additives on the Micellization of PEO/PPO/PEO Block Copolymer F127 in Aqueous Solution[J]. Collo Surf, 2001, 178(): 57-69
    [319] Wang L Z, Takada K, Kajiyama A, et al. Synthesis of a Li-Mn-Oxide with Disordered Layer Stacking through Flocculation of Exfoliated MnO2 Nanosheets, and Its Electrochemical Properties[J]. Chem Mater, 2003, 15(23): 4508-4514
    [320] Espinal L, Suib S L, James F. Electrochemical Catalysis of Styrene Epoxidation with Films of MnO2 Nanoparticles and H2O2[J]. J Am Chem Soc, 2004, 126(24): 7676-7682
    [321] Chen X, Shen Y F, Suib S L, et al. Characterization of Manganese Oxide Octahedral Molecular Sieve (M-OMS-2) Materials with Different Metal Cation Dopants[J]. Chem Mater, 2002, 14(2): 940-948
    [322] Zhang H C, Huang C H. Reactivity and Transformation of Antibacterial N-Oxides in the Presence of Manganese Oxide[J]. Environ Sci Tech, 2005, 39(): 593-601
    [323] Zhang L C, Kang L P, Su Z K, et al. Controllable Synthesis, Characterization,and Electrochemical Properties of Manganese Oxide Nanoarchitectures[J]. Mater Res Soc, 2008, 23(3): 780-789
    [324] Yuan J K, Laubernds K, Zhang Q H, et al. Self-Assembly of Microporous Manganese Oxide Octahedral Molecular Sieve Hexagonal Flakes into Mesoporous Hollow Nanospheres[J]. J Am Chem Soc, 2003, 125(): 4966-4967
    [325] Shen Y F, Zerger R P, DeGuzman R N, et al. Manganese Oxide Octahetral Molecular Sieves: Preparation, Characterization and Applications[J]. Science, 1993, 260(): 511-515
    [326]洪昕林,张高勇,杨恒权等.介孔锰氧复合物的表面活性剂模板合成与孔结构分析[J].日用化学工业, 2002, 36(6): 6-8
    [327] Hong X L, Zhanga G Y, Zhua Y Y, et al. Sol-gel Synthesis and Characterization of Mesoporous Manganese Oxide[J]. Mater Res Bull, 2003, 38(): 1695-1703
    [328] Zheng D S, Sun S X, Fan W L. One-Step Preparation of Single-Crystallineβ-MnO2 Nanotubes[J]. J Phy Chem B, 2005, 109(34): 16439-16443
    [329] Luo J, Zhu H T, Fan H M, et al. Synthesis of Single-Crystal Tetragonalγ-MnO2 Nanotubes[J]. J Phy Chem C, 2008, 112(): 12594-12598
    [330] Sun X D, Ma C L, Wang Y D, et al. Preparation and Characterization of MnOOH andβ-MnO 2 Whiskers[J]. Inorg Chem Commun, 2002, 5(): 747-750
    [331] Zhou F, Zhao X M, Yuan C G, et al. Synthesis ofγ-MnOOH Nanorods and Their Isomorphous Transformation intoβ-MnO2 andα-Mn2O3 Nanorods[J]. Mater Sci, 2007, 42(): 9978-9982
    [332] Sharma P K, Whittingham M S. The Role of Tetraethylammonium Hydroxide on the Phase Determination and Electrical Properties ofγ-MnOOH Synthesized by Hydrothermal[J]. Mater Lett, 2001, 48(): 319-323
    [333] Chandra N, Bhasin S, Sharma M, et al. A Room Temperature Process for Making Mn2O3 Nano-Particles andγ-MnOOH Nanorods[J]. Mater Lett, 2007, 61(17): 3728-3732
    [334] Zhang Z J, Mu J. Hydrothermal Synthesis ofγ-MnOOH Nanowires andα- MnO2 Sea Urchin-Like Clusters[J]. Sol State Commun, 2007, 141(8): 427-430
    [335]董喜燕,张兴堂,程纲等. MnOOH纳米棒的反胶束法制备及表征[J].化学学报, 2004, 62(24): 2441-2443
    [336] Yuan Z Y, Ren T Z, Su B L, Facile Preparation of Single-Crystalline Nanowires ofα-MnOOH andβ-MnO2[J]. Appl Phys A: Mater Sci Proc, 2005, 80(4): 743-747
    [337] Rziha T, Gies H, Rius J. RUB-7 a New Synthetic Manganese Oxide. StructureType with a 2×4 Tunnel[J]. Eur J Miner, 1996, 8(): 675-686
    [338] Xia Y, Yang P, Sun Y, et al. One-Dimensional Nanostructures: Synthesis, Characterization, and Applications[J]. Adv Mater, 2003, 15(5): 353-389
    [339] Sun Y, Xia Y. Large-Scale Synthesis of Uniform Silver Nanowires through a Soft, Self-Seeding, Polyol Process[J]. Adv Mater, 2002, 14(11): 833-837
    [340] Sun Y, Yin Y, Mayers B T, et al. Uniform Silver Nanowires Synthesis by Reducing AgNO3 with Ethylene Glycol in the Presence of Seeds and Poly (Vinyl Pyrrolidone) [J]. Chem Mater, 2002, 14(11): 4736-4745
    [341] Peng X, Manna L, Yang W D, et al. Shape Control of CdSe Nanocrystals: from Dots to Rods and Back[J]. Nature, 2000, 404(): 59-61
    [342] Peng X. Mechanisms of Shape Control and Shape Evolution of Colloidal Nanocrystals[J]. Adv Mater, 2003, 15(50): 459-463
    [343] Lee S M, Cho S N, Cheon J. Anisotropic Shape Control of Colloidal Inorganic Nanocrystals[J]. Adv Mater, 2003, 15(5): 441-444
    [344] Guo L, Liu C, Wang R, et al. Large-Scale Synthesis of Uniform Nanotubes of a Nickel Complex by a Solution Chemical Route[J]. J Am Chem Soc, 2004, 126: 4530-4531
    [345] Aronson J, Blanford C F, Stein A. Synthesis, Characterization, and Ion-Exchange Properties of Zinc and Magnesium Manganese Oxides Confined within MCM-41 Channels[J]. J Phys Chem B, 2000, 104 (3): 449-459
    [346] NIST X-ray Photoelectron Spectroscopy Database NIST Standard Reference Database 20, Version3.4. http://srdata.nist.gov/xps
    [347] AIST Raman Spectra Database of Minerals and Inorganic Materials. http://www.aist.go.jp/RIODB/rasmin
    [348] Buciuman F, Patcas F, Craciun R, et al. Vibrational Spectroscopy of Bulk and Supported Manganese Oxides[J]. Phys Chem Chem Phys, 1999, 1(): 185-190
    [349] Radhakrishnan R, Oyama S T. Electron Transfer Effects in Ozone Decomposition on Supported Manganese Oxide[J]. J Phys Chem B, 2001, 105(): 4245-4253
    [350] Song X C, Zhao Y, Zheng Y F. Synthesis of MnO2 Nanostructures with Sea Urchin Shapes by a Sodium Dodecyl Sulfate-Assisted Hydrothermal Process[J]. Crystal Growth & Design, 2007, 7(1): 159-162
    [351] Lu J, Xie Y, Xu F, et al. Study of the Dissolution Behavior of Selenium and Tellurium in Different Solvents-a Novel Route to Se, Te Tubular Bulk Single Crystals[J]. J Mater Chem, 2002, 12(): 2755-2761
    [352] Chen M, Xie Y, Lu J, et al. Synthesis of Rod-, Twinrod-, and Tetrapod-ShapedCdS Nanocrystals Using a Highly Oriented Solvothermal Recrystallization Technique[J]. J Mater Chem, 2002, 12(): 748-753
    [353] Nguyen C, Guaiardo R J, Mascharak P K. [FeⅢ(PMA)]2+: A Mononuclear Nonheme Iron Complex that Catalyzed Alkane Oxidation[J]. Inorg Chem, 1996, 35(6): 6273-6281
    [354] Sezen B, Franz R, Sames D. C-C Bond Formation via C-H Bond Activation: Catalytic Arylation and Alkenylation of Alkane Segments[J]. J Am Chem Soc, 2002, 124 (45): 13372-13373
    [355] Periana R A, Mironov O, Taube D, et al. Catalytic Oxidative Condensation of CH4 to CH3COOH in One Step via CH Activation[J]. Science, 2003, 301(8): 814-818
    [356] Petersona J, Allikmaa V, Subbi J, et al. Structural Deviations in Poly- (amidoamine) Dendrimers: a MALDI-TOFMS Analysis[J]. Eur Polym J, 2003, 39(): 33-42
    [357]谭惠民,罗运军.树枝形聚合物[M].北京:化学工业出版社, 2001,187-188
    [358]宁永成.有机化合物结构鉴定与有机波谱学[M].北京:科学出版社, 2001,156-158
    [359] Kaneko T, Asano M, Yamamoto K, et al. Polymerization of Phenylacetylene -based Monodendrons and Structure of the Corresponding Polydendrons[J]. J Poly, 2001, 33: 879-890
    [360]易宪武.无机化学从书-稀土分册[M].北京:科学出版社, 1998, 169-171
    [361]宋玉林,董贞俭.稀有金属化学[M].沈阳:辽宁大学出版社, 1991, 58-59
    [362]孙万虹,莫尊理.聚酰胺-胺树状大分子的分子模拟[J].西北民族大学学报(自然科学版), 2007, 28(4): 5-8
    [363]姚超,马江权,林西平等.纳米氧化镧的制备[J].高等化学工程学报, 2003, 117(6): 685-688
    [364]魏秀珍,朱宝库,谢曙辉等.胺基端基树状分子在铜纳米粒子形成过程中的模板及稳定化作用[J].功能材料, 2005, 8(36): 1242-1247
    [365]章昌华,胡剑青,涂伟萍.聚酰胺胺树状大分子与Cu2 +、Co2 +配位作用的比较[J].陕西科技大学学报, 2006, 23(5): 35-38
    [366]李国平,罗运军.金属簇/树形高分子有机无机复合体的制备及应用[J].高分子材料科学与工程, 2004, 1(6): 1-5
    [367]李国平,罗运军,谭惠民.以树形分子为模板制备银纳米颗粒[J].化学学报, 2004, 62(12): 1158-1161
    [368]李国平,罗运军,徐厚才.银离子与聚酰胺-胺型树形高分子配位作用的研究[J].无机化学学报, 2003, 20(1): 61-64
    [369] Li G P, Luo Y J, Xu H C, et al. Dendrimer Templates for the Formation of Silver Nanoparticles[J]. J Beijing Institute of Technology, 2006, 15(3): 352-356
    [370] O Connor R P, Klein E J, Henning D, et al. Tuning Millisecond Chemical Reactors for the Catalytic Partial Oxidation of Cyclohexane[J]. Appl Catal A: General, 2003, 238 (1): 29-40
    [371] Skmen I, Sevin F. Oxidation of Cyclohexane Catalyzed by Metal-Ion Exchanged Zeolites[J]. J Collo Int Sci, 2003, 264(1): 208-211
    [372] Notari B. Titanium Silicalites[J]. Catal Today, 1993, 18(): 163-172
    [373] Wu P, Tatsumi T, Komatsu T, et al. A Novel Titanosilicate with MWW Structure. I. Hydrothermal Synthesis, Elimination of Extraframework Titanium and Characterizations[J]. J Phys Chem B, 2001, 105(): 2897-2905
    [374] Wang Y R, Lin M, Tuel A. Hollow TS-1 Crystals Formed via a Dissolution-Recrystallization Process[J]. Micro Meso Mater, 2007, 102(): 80-85
    [375] Grieneisen J L, Kessler H, Fache E, et al. Synthesis of TS-1 in Fluoride Medium-A New Way to a Cheap and Efficient Catalyst for Phenol Hydroxylation[J]. Micro Meso Mater, 2000, 37(3): 379-386
    [376] Sheldon R. Catalytic Reactions in Ionic Liquids[J]. Chem Commun, 2001, 2399-2407
    [377] Kosmulski M, Szafran M, Saneluta C, et al. Low-Temperature Ionic Liquids Immobilized in Porous Alumina[J]. J Collo Int Sci, 2005, 291(): 214-217
    [378] Valkenberg M H, de Castro C, H?lderich W F. Immobilisation of Ionic Liquids on Solid Supports[J]. Green Chem, 2002, 4(): 88-93
    [379]张锁江,任俊毅,成卫国等.一种固载离子液体催化剂催化合成环状碳酸酯的方法[P]. CN 101318949, 2008-12-10
    [380] Kim D W, Chi D Y. Polymer-Supported Ionic Liquids: Imidazolium Salts as Catalysts for Nucleophilic Substitution Reactions including Fluorinations[J]. Angew Chem Int Ed, 2004, 43(): 483-485
    [381]李雪辉,潘微平.离子液体固载化及其应用[J].现代化工, 2005, 25(12): 61-64
    [382] Branco L C,Rosa J N, Ramos J J M, et al. Preparation and Characterization of New Room Temperature Ionic Liquids[J]. Chem Eur J, 2002, 8(16):3671-3677
    [383]许绚丽,安庆大,裘式伦等.钛硅分子筛TS-1的合成和表征及其催化性能[J].大连轻工业学院学报, 2003, 22(4): 243-246
    [384] Yoldas E B. Hydrolysis of Titanium Alkoxide and Effects of HydrolyticPolycondensation Parameter[J]. J Mater Sci, 1986, 21(3): 1087-1092
    [385]李钢,王祥生,宋钢等.氟离子对钛硅分子筛合成的影响[J].燃料学报, 2002, 30(3): 273-276
    [386]邢其毅.基础有机化学(第二版)[M].北京:高等教育出版社, 2003, 211-220
    [387] Cundy C S, Cox P A. The Hydrothermal Synthesis of Zeolites: History and Development from the Earliest Days to the Present Time[J]. Chem Rev, 2003, 103(): 663-701
    [388] Cundy C S, Cox P A. The Hydrothermal Synthesis of Zeolites: Precursors, Intermediates and Reaction Mechanism[J]. Micro Meso Mater, 2005, 82(): 1-78
    [389] Yoldas E B. Hydrolysis of Titanium Alkoxide and Effects of Hydrolytic Polycondensation Parameter[J]. J Mater Sci, 1986, 21(3): 1087-1092
    [390]徐莉,柯学斌,曾昌凤等.合成条件及添加三乙醇胺对水热法合成TS-1分子筛及其性能的影响[J].南京工业大学学报, 2007, 29(3): 7-12
    [391] Hasegawa Y, Ayame A. Investigation of Oxidation States of Titanium in Titanium Silicalite-1 by X-ray Photoelectron Spectroscopy[J]. Catal Today, 2001, 71(): 177-187
    [392] Geobaldo F, Bordiga S, Zecchina A, et al. Drs Uv-Vis and Epr Spectroscopy of Hydroperoxo and Superoxo Complexes in Titanium Silicalite[J]. Catal Lett, 1992, 16(): 109-115
    [393] Bellussi G, Rigutto M S. Metal Ions Associated to the Molecular Sieve Framework: Possible Catalytic Oxidation Sites[J]. Stud Surf Sci Catal, 1994, 85(): 177-213
    [394] Ratnasamy P, Srinivas D, Kn?zinger H. Active Sites and Reactive Intermediates in Titanium Silicate Molecular Sieves[J]. Adv Catal, 2004, 48(): 1-169
    [395] Su Y L, Balmer M L, Bunker B C. Raman Spectroscopic Studies of Silicotitanates[J]. J Phys Chem B, 2000, 104(34): 8160-8169
    [396]卢泽湘,袁霞,吴剑等.咪唑类离子液体的合成和光谱表征[J].化学世界, 2005, 3(): 148-150
    [397] Astorino E, Peri J B, Willey R J, et al. Spectroscopic Characterization of Silicalite-1 and Titanium Silicalite-1[J]. J Catal, 1995, 157 (2): 482-500
    [398] Millini R, Massara E P, Perego G, et al. Framework Composition of Titanium Silicalite-1[J]. J Catal, 1992, 137(2): 497-503
    [399]林民,舒兴田,汪燮卿. TS-1分子筛合成影响因素研究[J].石油学报(石油加工), 1999, 15(2): 16-22
    [400]王丽琴.钛硅分子筛合成过程及其催化氧化性能研究[D]: [大连理工大学博士学位论文].大连:大连理工大学化学化工学院, 2003, 87-88
    [401]周涵,景振华,许明春. TS-1分子筛与模板剂结构相容性的分子模拟[J].石油学报, 2000, 16(4): 43-47
    [402]周涵,贺鹤明,景振华等.模板剂类型对TS-1分子筛晶粒形状影响的分子模拟研究[J].石油学报, 2001, 17(3): 73-76
    [403]李浩春.分析化学手册(第五分册)第2版[M].北京:化学工业出版社, 1999, 257-260
    [404]任永利,米镇涛.过氧化氢氧化苯制苯酚的催化剂研究进展[J].化工进展, 2002, 21(11): 827-830
    [405] Aguado J, Serrano D P, Escola J M, et al. Low Temperature Synthesis and Properties of ZSM-5 Aggregates formed by Ultra-Small Nanocrystals[J]. Micro Meso Mater, 2004, 75(): 41-49
    [406] Argauer R J, Landolt G R. Crystalline Zeolite ZSM-5 and Method of Preparing the Same[P]. US 3702886, 1972-04-12
    [407] Young L B, Butter S A, Kaeding W W. Shape Selective Reactions with Zeolite Catalysts: III Selectivity in Xylene Isomerization, Toluene-Methanol Alkylation, and Toluene Disproportionation over ZSM-5 Zeolite Catalysts[J]. J Catal, 1982, 76(): 418-432
    [408] Kulkarni S J, Srinivasu P, Narender N, et al. Fast and Efficient Synthesis of ZSM-5 under High Pressure[J]. Catal Commun, 2002, 3(): 113-117
    [409]陈丙义,魏东伟,杨新丽等.无机胺合成ZSM-5沸石的结构表征和催化作用[J].化学研究, 2002, 13(1): 18-20
    [410] Cheng Y, Wang L J, Li J S, et al. Prepration and Characterization of Nanosized ZSM-5 Zeolites in Absence of Organic Template[J]. Mater Lett, 2005, 59(): 3427-3430
    [411] Shiralkar V P, Clearfield A. Synthesis of the Molecular Sieve ZSM-5 without the Aid of Templates[J]. Zeolites, 1989, 19(): 363-370
    [412] Sang S Y, Chang F X, Liu Z M, et al. Difference of ZSM-5 Zeolites Synthesized with Various Templates[J]. Catal Today, 2004, 93-95(): 729-734
    [413] Kojima M, Aida T. Catalyst for Ethylene from Ethanol[P]. US 4302357, 1982-08-12
    [414] Fêbre R A, Jansen J C, Bekkum H van. A Note on a --- 1030 cm Band in i.r. Spectra of Zeolite ZSM-5[J]. Zeolites, 1987, 7(): 471-474
    [415] Carrasco J, Michaelides A, Forster M, et al. A One-Dimensional Ice Structure Built from Pentagons[J]. Nature Mater, 2009, 8(): 427-431

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700