橡实基复合高分子材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界石油资源的日益短缺,各国科研人员开始探索可以部分替代石油制备高分子材料的其它资源。以可再生的非粮植物资源为原料开发高分子材料已受到密切关注。橡实,是泛指除板栗外的壳斗科植物果实的统称。橡实是重要的野生林业淀粉资源,全世界壳斗科植物共有900多个品种,我国约有300多个品种,年产橡实约60~70亿kg。但橡实存在各种自身缺陷,橡实淀粉支链度高难以消化吸收,橡实果仁中含有较多的单宁不易除净,由此丰富的橡实资源大量废弃,非粮橡实资源的开发具有广阔的市场前景。
     本文先对橡实淀粉、橡实果仁和橡实果壳三种原料进行了理化分析,对研究中所采用三种原料的各个组分的含量具有初步的认知,以期为开发橡实资源的不同用途提供依据。研究发现橡实果仁中含有69.40 %的淀粉,其中支链淀粉含量高达59.01 %,单宁含量为8.34 %;橡实淀粉原料的淀粉含量高达87.21 %,其中支链淀粉含量高达68.56 %,单宁含量为5.67 %;除此之外,橡实果仁和橡实淀粉中还含有部分可溶性糖、粗脂肪、粗纤维和蛋白质。橡实果壳中含有大量的纤维素、半纤维素、木质素和单宁,其中综纤维素含量高达56.69 %,酸不溶木素含量为32.45 %,单宁含量达到9.26 %。研究结果表明橡实果仁含有较多的淀粉,故可参照制备淀粉基材料的方法制备橡实果仁基复合材料;橡实果壳与木材的成分类似,故橡实果壳是制备木塑复合材料的良好原料;三种不同原料中均含有大量的单宁,会对其材料的综合性能产生一定影响。
     本文采用糊化—氧化—缩聚的方法制备了橡实淀粉基木材胶黏剂;采用挤出塑化和共混合金化技术方法分别制备了热塑性橡实淀粉和热塑性橡实淀粉/聚己内酯复合材料;采用共混合金化技术方法制备了橡实果壳/低密度聚乙烯复合材料和橡实果壳(果仁)/聚乳酸复合材料;采用三聚氰胺改性脲醛(MUF)树脂为原料制备了新型MUF阻燃泡沫材料,同时并采用共发泡技术制备了橡实果壳填充型MUF阻燃泡沫材料。论文的主要
     研究内容和结论如下:
     1.橡实淀粉基木材胶黏剂及其复合胶黏剂的研究
     以橡实淀粉为原料,优化制备工艺,制得缩聚氧化改性橡实淀粉胶主剂,为改善主剂的耐水性能和胶合性能,选用MDI和RW-20进行疏水增强改性,添加一定量的MDI和RW-20均可明显改善橡实淀粉胶的耐水性能和胶合干强度,虽然MDI改性的主剂耐63℃水浸时间低于60 min,但是RW-20改性主剂的耐63℃水时间大大超过180 min,胶合湿强度接近国家II类胶合板水平,文中亦对改性机理进行了分析。采用改性淀粉胶主剂/酚醛树脂复合胶制备的胶合板的胶合湿强度随酚醛树脂的含量的增加逐渐增加,当含量高于60 %时,胶合板性能达到国家II类板水平。添加一定量橡实淀粉可明显提高酚醛树脂胶的胶合湿强度,制备的橡实淀粉填充改性PF树脂亦可达到国家II类胶合板水平。
     2.热塑性橡实淀粉的研究
     以橡实淀粉和不同增塑剂为原料,采用双螺杆共挤出塑化法制备了不同热塑性橡实淀粉(TPAS)。文中分析了乙二醇、丙三醇、乙醇胺、二乙醇胺、三乙醇胺5种不同增塑剂对TPAS材料的力学性能、吸水性能、热性能影响。研究表明:TPAS材料具有较强的吸水性和吸湿性。TPAS材料的力学性能因增塑剂种类和含量的不同以及吸湿性的不同而存在较大差异。扫描电镜分析(SEM)和X射线衍射分析(XRD)分析表明:此5种增塑剂均可较好地使橡实淀粉塑化,橡实淀粉由颗粒状结构变成均一的连续相结构,增塑剂的加入使原淀粉的结晶结构完全转变。动态机械热分析(DMA)和热重分析(TGA)研究结果表明:不同增塑体系对于TPAS的增塑效果和热稳定性亦有所相同。DMA研究结果表明不同增塑体系对于TPAS的增塑效果有所相同;TGA研究结果表明不同增塑体系对于TPAS的热稳定性亦有所相同。
     3.热塑性橡实淀粉/聚己内酯复合材料的研究
     采用熔融共混合金化技术制备了热塑性橡实淀粉(TPAS)/聚己内酯(PCL)二元复合材料。研究表明,较乙醇胺和三乙醇胺三种不同增塑复合体系相比,丙三醇增塑复合体系(GTPAS)的力学性能明显优越,TPAS基复合材料的力学性能要优于热塑性橡实果仁基复合材料,橡实淀粉基复合材料的力学性能接近于玉米淀粉基复合材料,复合材料的吸湿性大大影响材料的力学性能。DMA研究结果表明,GTPAS/PCL复合材料共混物相互之间的热力学相容性较差,SEM研究结果进一步验证DMA的研究结果。复合材料具有较强的吸水性,随PCL含量的降低吸水性能逐渐增强,但丙三醇增塑复合材料表现出优异的力学性能,当PCL含量达到50 %时,复合材料的拉伸强度亦达到14 MPa,断裂伸长率达到1750 %,已接近纯PCL。土埋降解实验表明复合材料具有良好的生物可降解性能。
     4.橡实果壳/低密度聚乙烯复合材料
     采用熔融共混合金化技术制备了橡实果壳(AH)/低密度聚乙烯(LDPE)二元复合材料。随橡实果壳含量的增加复合材料的力学性能逐渐降低。文中研究了EAA、EVA和PE-g-MAH三种不同相容剂对橡实果壳基复合材料的影响。研究结果表明PE-g-MAH是一种最优良的相容剂,当PE-g-MAH用量为5 %时,复合材料的拉伸强度比未添加相容剂的提高了77.6 %,弯曲强度提高了83.8 %,抗冲击强度基本保持在5.0 kJ/m2。另外,EAA和EVA亦在不同程度上改善了复合材料的力学性能。复合材料冲击断面的SEM分析表明相容剂的添加改善了橡实果壳与LDPE基体材料的相容性。DMA和DSC测试结果亦表明相容剂的添加能有效改善两相之间的界面相容性,并从根本上改变基体材料LDPE的性质。
     5.橡实粉/聚乳酸复合材料的研究
     采用共混合金化技术制备了橡实/聚乳酸(PLA)复合材料,并采用注塑和模压法制备了两种复合材料测试样条。复合材料微观结构的SEM研究表明复合材料橡实颗粒和PLA基体之间具有较差的相容性。橡实果壳基复合材料的力学性能略微优于橡实果仁基复合材料。钢纤维网增强橡实果壳基复合材料具有优异的抗冲击性能,能达到10 kJ/m2。复合材料具有优异的疏水性能、力学行能、熔融流动性能和生物可降解性能。即使复合材料中的橡实粉含量达到70 %,复合材料仍具有优异的综合性能。当橡实果壳含量为50%时,复合材料的弯曲强度为72.21 MPa,拉伸强度为48.56 MPa,抗冲击强度为1.51 kJ/m2。当橡实果壳基复合材料中添加一定量硅烷偶联剂KH-550,4,4-二苯基甲烷二异氰酸酯(MDI)和聚乳酸接枝马来酸酐时,复合材料的综合力学性能并未得到明显改善。DSC、DMA和TG分析表明,不同橡实量的添加在不同程度上改变了基体材料的性质,使得基体材料的结晶度、玻璃化转变温度、熔融温度、熔融焓、热分解温度均发生明显变化。
     6.橡实果壳填充型MUF阻燃泡沫材料
     采用三聚氰胺改性脲醛(MUF)树脂为原料制备了新型MUF阻燃泡沫材料,调整并改善发泡工艺,确定了最佳MUF树脂中固含量、最佳表面活性剂添加量、最佳固化剂添加量和最佳发泡剂添加量。建立了MUF泡沫表观密度–力学性能模型,结果表明MUF泡沫力学性能与密度之间具有良好的指数关系。文中采用共发泡技术制备了橡实果壳填充型MUF阻燃泡沫材料,随橡实壳添加量的增加,其阻燃性有所提高,但其力学性能和耐碎性能大大降低,为改善其综合性能,文中又研究了木浆纤维增强橡实壳/MUF复合泡沫材料和J-100交联改性复合泡沫材料,这两种不同的物理增强和化学改性方式均能不同程度的增加复合泡沫的力学性能。J-100交联改性能大大提高复合泡沫的力学性能和耐碎性能,当添加极其少量的J-100型交联剂时,复合泡沫材料的力学性能可提高近10倍。其相对掉渣率降低为原来的半数,复合泡沫的阻燃性能亦略微有所提高。红外、13C-NMR核磁分析验证了交联改性反应原理的复杂性。
With the growing shortage of crude oil resources in the world, considerable research efforts have been devoted to the formulation and characterization of new natural non-food resources based polymeric materials that can partly replace crude oil resources in the past decades. Acorn is an important natural starch source from wildlife forestry, and it serves as the seed for oak trees regeneration. There are about 900 known oak tree species throughout the world, of which, about 300 species can be approximately found in China, with an annual output of about 6.0-7.0 billion kg. While the content of amylopectin of acorn kernel is too high to be easily digested, furthermore, the large amount of low toxic tannin acid is difficult to be removed from acorn kernel. As a result, abundant acorn resources have being abandoned. Therefore, the development of non-food acorn resources posesses a potential marketing prospects.
     In the thesis,we firstly optimized the design of physical and chemical analysis of acorn starch, acorn kernel and acorn hull raw materials, and obtained a rudimentary knowledge of component content of these three kinds of raw materials to provide a basis for developing different usages. The results showed that acorn kernel contained 69.40 % starch content of which the amylopectin content was up to 59.01 %; the tannins content was 8.34 %. Acorn starch raw materials contained 87.21 % starch content of which the amylopectin content was up to 68.56 %; the tannins content of acorn starch raw materials was 5.67 %. In addition, a certain amount of soluble sugar, crude fat, crude fiber, and proteins were also included in acorn kernel and acorn starch raw materials. Acorn hull contained a large amount of cellulose, hemicellulose, lignin and tanninsof which the content of holocellulose mounted to 56.69 %; the content of acid-insoluble lignin was up to 32.45 %; the tannins content was 9.26 %. The results indicated that acorn kernel had a high content of starch, resulting in exploiting the acorn kernel-based materials according to those methods for preparation of starch-based materials. The components of acorn hull were similar to wood components so that it could be regarded as a superior materials for preparing wood plastic composites (WPC). The existence of amount of tannins in these three acorn raw materials could bring up a certain effect on acorn-based composites.
     Acorn starch-based wood adhesives were prepared with the method of gelatinization-oxidation-polycondensation. Thermoplastic acorn-starch (TPAS) and TPAS/Polycaprolactone (PCL) composites were prepared by utlizing a co-extrusion plasticized technique and a blending alloy technique with a twin-screw extruder.Acorn hull(AH)/Low Density Polyethylene (LDPE) composites and Acorn hull (kernel)/ Poly(1actic acid) (PLA) composites were also produced using the blending alloy technique. New foams were prepared by adopting Melamine-Urea-Formaldehyde (MUF) resin as raw materials, and acorn hull-filled type composite foams were also prepared with the co-foaming technique. Our major results and discovery were described as follows.
     1. Acorn starch-based adhesives and its composite adhesives
     Main agents of acorn starch-based adhesives were prepared with the method of gelatinization- oxidation- polycondensation. The preparation technology was further optimized. MDI and RW-20 were added into the main agents in order to improve water resistance and mechanical properties. The results demonstrated that the addition of MDI and RW-20 could improve water resistance and tensile dry strength of plywood to varying degrees. While the water resistance time at 63 oC of main agents of adhesives modified by MDI were all below 60 min, the water resistance time with the RW-20 modification could last more than 180 min. The tensile wet strength approached to the level of national II plywood. The modifying mechanisms of MDI and RW-20 were investigated and described in this thesis. The gluing properties of composite adhesives of main agents of acorn starch-based adhesives and phenolic resin increased with an increase of phenolic resin content. The tensile wet strength exceeded the level of national II plywood. What’s more, adding a certain amount of acorn starch into phenolic resin could improve its comprehensive properties. The product of phenolic resin filled with acorn starch can also reach the level of national type II plywood.
     2. Thermoplastic acorn-starch (TPAS)
     Thermoplastic acorn-starch(TPAS) was produced by blending acorn-starch and different plasticizers with a twin-screw co-extrusion plasticized technique.The effects of different plasticizers such as glycol, glycerol, monoethanolamine, iminobisetnanol and triethanolamine on mechanical, thermal and hydrophobic properties of TPAS were studied in this part. The results demonstrated that TPAS materials showed strong water and moisture absorption properties. The mechanical properties of TPAS materials varied with the type and content of plasticizer, content of plasticizer as well as the moisture absorption rate of TPAS. The results showed that these five different plasticizers had a better performance for plasticizing acorn starch as characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. Meanwhile the native acorn starch granules were proved to transfer to a homogeneous continuous phase with the transformation of all crystalline structure. Dynamic mechanical thermal analysis (DMA) results revealed that the plasticized effect of TPAS materials also varied with different plasticized system. Thermogravimetric analysis (TGA) results showed that thermal stability of TPAS materials also varied with different plasticized system.
     3. Thermoplastic acorn-starch (TPAS)/Polycaprolactone (PCL) composites
     The binary composites of TPAS/ PCL were prepared by a blending alloy technique with a twin-screw extruder. The results showed that the glycerol compositing system had better mechanical properties than monoethanolamine and triethanolamine compositing system. The mechanical properties of TPAS-based were superior than thermoplastic acorn-kernel based. The mechanical properties of acorn starch-based were better than corn starch-based, while mechanical properties of TPAS/ PCL composites were greatly influenced by the moisture absorption property of composites. DMA results showed that there existed weak thermodynamic compatibility between blendings, which was further verified from SEM results. Composites had strong water absorption property, which can increase with the decrease of PCL content. But the GTPAS/PCL composites showed excellent mechanical properties. When the content of PCL reached 50 %, the composites can reach the tensile strength at 13.17 MPa, and the elongation at break at 1750 %, which was close to the pure PCL. Soil burial degradation analysis results showed the GTPAS/PCL composites had favorable biodegradation properties.
     4. Acorn hull(AH)/ low density polyethylene (LDPE) composites
     The binary bio-composites of acorn hull(AH)/ low density polyethylene (LDPE) were produced by a blending alloy technique with a twin-screw extruder. The mechanical properties of composites were decreased with an increase of acorn hull content. The effects of EAA, EVA and PE-g-MAH on composites were studied in this thesis. The results showed that PE-g-MAH was the best compatibilizer for AH/LDPE composite among these three compatibilizers. Compared with the mechanical properties of modifying composite without compatibilizers, the tensile strength increased by 77.6 %, flexural strength increased by 83.8 %, and anti-impact strength still remained at a level of 5.0 kJ/m2, when the content of PE-g-MAH was 5% under the condition of 50 % AH content. In addition, both EAA and EVA could improve the mechanical properties of composites at different levels. The SEM study of composites proved that the addition of compatibilizers improved the compatibility of AH powder with LDPE matrix. The testing results of DMA and DSC further confirmed that the addition of compatibilizers could significantly improv the compatibility between two phases and chang the properties of LDPE matrix materials.
     5. Acorn powder/ poly(lactic acid)(PLA) composites
     The composites were prepared with acorn powder and poly(lactic acid)(PLA) by using a blending alloy technique with a twin-screw extruder, followed by an injection molding processing or a hot-compression molding processing. The study of the composites microstructures showed poor adhesion between acorn powder and PLA matrix. The mechanical properties of acorn hull-based composites were slightly better than the acorn kernel-based composites. The impact resistance strength of reinforced acorn hull-based composites with steel fiber webs improved greatly in comparison with those without steel fiber webs. It reached at 1.51 kJ/m2. The hygroscopicity, mechanical properties, melt flow property and biological degradation property of composites were promising even though the composites had a 70 % content of acorn powder. AH-based composites showed flexural strength of 72.21 MPa, tensile strength of 48.56 MPa and impact resistance strength of 1.51 kJ/m2 when the content of acorn hull was 50 % Silane coupling agent KH-550, 4,4’- Methylenebis(phenyl isocyanate)(MDI) and PLA grafted with maleic anhydride (PLA-g-MAH) did not show obvious effect on mechanical properties of acorn hull-based composites. Results on thermal properties characterized by DSC, DMA and TGA showed that the addition of acorn powder significantly changed the properties of PLA matrix materials and affected the crystallinity (Xc%), crystallization temperature (Tc), glass transition temperature (Tg), melting temperature (Tm) and thermal decomposition temperature of PLA matrix.
     6. Acorn hull-filled type composite foams
     New flame-retardant foam materials were prepared by using Melamine-Urea- Formaldehyde (MUF) resin as raw materials. We then finely tuned and optimized a foaming technology, optimum solid content of MUF resin, optimum addition of surfactant, curing agent and foaming agent were determined, MUF foam apparent density– mechanical properties models were established. The results showed that there existed an exponential relation between mechanical properties and apparent density of MUF foam. Acorn hull-filled type composite foams were also prepared with a co-foaming technique. The flame-retardant property increased with an increase of addition of acorn hull, but the mechanical and anti-brittleness properties decreased greatly. Wood pulp fiber and J-100 crosslinking agent were added into pre-foaming system in order to improve the comprehensive properties of acorn hull-filled type composite MUF foams. The results showed that these two different physically and chemically modified foams improved the mechanical properties of composite foam at different levels. J-100 crosslinking modification improved the mechanical and anti-brittleness properties greatly. It was found that the mechanical properties of composite foam enhanced more than 10 times than the system without modification when little J-100 crosslinking agent was added into the pre-foaming system, and the relative loss powder rate has been 50 % lower, furthermore, the flame-retardant property slightly improved with the addition of J-100. FTIR and 13C-NMR analysis results showed the complexity of J-100 crosslinking modification mechanism.
引文
[1]谢碧霞,谢涛.我国橡实资源的开发利用.中南林学院学报,2002,22(3):36~41.
    [2]秦绪军,海春旭,何伟等.单宁急性毒性及其对小鼠丙二醛和抗氧化酶的影响.卫生毒理学杂志,2004,18(2):80~82.
    [3]刘玉环,阮榕生,郑丹丹等.淀粉基木材胶黏剂研究现状与展望.化学与粘合,2005,27(6):358~362.
    [4]吴溪,侯昭升,阚成友.化学改性淀粉胶黏剂研究进展.2009,31(5):45~49.
    [5] Anuradha M, Kumar V G. Advances in contemporary research, environmentally degradable-thermoplastics: an overview. Indian Journal of Chemistry, 1999, 38: 525~531.
    [6] Aamer A S, Fariha H, Abdul H, et al. Biological degradation of plastics: A comprehensive review. Biotechnology Advances,2008, 26(3):246~265.
    [7] Connors P, Smith K. Oceanic plastic particle pollution: Suspected effect on fat deposition in red phalaropes. Marine Pollution Bulletin. 1980,13:18~20.
    [8] Ruan X Y, Zhou D C, He Y B, et al. Plastic working in China and related environmental issues. Journal of Materials Processing Technology, 1996, 59:205~212.
    [9] Vivian C M G, Murray L A. Polution, Solids. Encyclopedia of Ocean Sciences, 2001, 4: 2236~2241.
    [10] Wang L, Shogren R L, Carriere C.Preparation and properties of thermoplastic starch-polyester laminate sheets by coextrusion. Polymer Engineering and Science,2000,40(2): 499~506.
    [11] Yu J G, Gao J, Lin T.Biodegradable thermoplastic starch. Journal of Applied Polymer Science, 1996, 62(9): 1491~1494.
    [12] Mathew A P, Dufresne A.Plasticized waxy maize starch:Effect of polyols and relative humidity on material properties. Biomacromolecules, 2002, 3(5): l101~l108.
    [13] Yeh S K, Gupta R K. Improved wood-plastic composites through better processing. Composites Part A: Applied Science and Manufacturing, 2008, 39(11): 1694~1699.
    [14]伍波,张求慧,李建章.木塑复合材料的研究进展及发展趋势.材料导报:综述篇,2009,23(7):62~64.
    [15] Afrifah K A, Hickok R A, Matuana L M. Polybutene as a matrix for wood plastic composites.Composites Science and Technology, 2010, 70(1): 167~172.
    [16] Stark N M, Matuana L M. Characterization of weathered wood-plastic composite surfaces using FTIR spectroscopy, contact angle, and XPS. Polymer Degradation and Stability, 2007, 92(10): 1883~1890.
    [17] Muasher M, Sain M. The efficacy of photostabilizers on the color change of wood filled plastic composites. Polymer Degradation and Stability, 2006, 91(5): 1156~1165.
    [18]刘钢,王新民,钱金广.酚醛泡沫在建筑节能中的应用.新型建筑材料,2001,(6):32~33
    [19] Schipper P, Black J, Dymeck T. Foamed rigid vinyl for building products. Journal of Vinyl and Additive Technology, 1996, 2(4): 304~309.
    [20]修玉英,王书红,罗钟瑜.三聚氰胺在聚氨酯泡沫领域中的应用.合成材料老化与应用,2006,35(3):48~51
    [21] Juntunen R P, Kumar V, Weller J E, el a1. Impact strength of high density microcellular PVC foams. Journal of Vinyl and Additive Technology, 2000, 6(2): 93~99.
    [22]吴雄,陈红萍,徐鹏等.聚乙烯醇(PVA)发泡材料的研究.塑料,2006,4:34~37.
    [23] Matuana L M, Park C B, Balatinecz J. The effect of low level of plasticizer on the rheological and mechanical properties of polyvinyl chloride/new sprint-fiber composites. Journal of Vinyl and Additive Technology, 1997, 3(4): 265~273.
    [24]囤宏志,姜志国,王海侨等.戊二醛改性酚醛树脂及对泡沫塑料性能的研究.化工新型料,2009,37(3):100~102.
    [25]李万利,李航昱,林强等.酚醛泡沫塑料研究.塑料工业,2003,31(4):50~52.
    [26]程贤甦.酶解木质素或它的衍生物改性酚醛发泡材料及其制备方法.CN 101269930A,2008.
    [27]程珏,梁明莉,金关泰.聚氨酯预聚物改性酚醛泡沫塑料脆性的研究.塑料工业,2004,32(1):7~9.
    [28]卫民,严立楠,蒋剑春.改性木质素泡沫树脂的合成研究.生物质化学工程,2006,40(4):1~3.
    [29] Lee S H,Yoshioka M,Shiraishi N. Resol-Type Phenolic Resin from Liquefied Phenolated Wood and its Application to Phenolic Foam. Journal of Applied Polymer Science, 2002, 84: 468~472.
    [30]张开.粘合与密封材料[M].北京:化学工业出版社,1996.
    [31]R.J惠斯特勒,J.N贝密勒,E.F斯卡帕尔(王雒文,闵大铨,杨家顺等译).淀粉的化学与工艺学[M].北京:中国食品出版社,1988.
    [32]蓝平,廖安平,蓝丽红等.双醛淀粉的制备及应用.广西民族学院学报(自然科学版),2002,(3):29~32.
    [33]林巧佳,刘景宏,杨桂娣.高性能淀粉胶制备机理的研究.福建林学院学报,2004,24(2):101~106.
    [34]赵连成,杜洪双,杨庚等.冷固型木材用玉米淀粉胶黏剂研究.吉林林学院学报,1999,(4):203~204.
    [35] Avella M, Bogoeva-Gaceva G, Bularovska A, et al. Poly(lactic acid)-based biocomposites reinforced with kenaf fibers. Journal of Applied Polymer Science. 2008, 8: 3542~3551.
    [36] Ochi S. Mechanical properties of kenaf fibers and kenaf/PLA composites. Mechanics of Materials, 2008, 40: 446~452.
    [37] Wang S G, Nishide H, Tsuchida E. Oxygen permeability of biodegradable copolycaprolactones. Polymers for Advanced Technologies. 1999, 10: 282~286.
    [38] Funabashi M, Ninomiya F, Kunioka M. Biodegradation of Polycaprolactone Powder Proposed as Reference Test Materials for International Standard of Biodegradation Evaluation Method. Journal of Polymers and the Environment, 2007,15:7~17.
    [39] He Y, Qian Z Y, Zhang H L, et al. Alkaline degradation behavior of polyesteramide fibers: surface erosion. Colloid & Polymer Science, 2004, 282: 972~978.
    [40] Gon?alves S P C, Martins-Franchetti S M, Chinaglia D L. Biodegradation of the Films of PP, PHBV and its blend in soil. Journal of Polymers and the Environment, 2009, 17: 280~285.
    [41] Fujimaki T. Processability and properties of aliphatic polyesters synthesized by polycondensation reaction . Polymer Degradation and Stability, 1998, 59(1): 209~214.
    [42]张昌辉,赵霞,张敏.聚丁二酸丁二醇酯(PBS)合成工艺的研究.塑料,2008,37(10):11~13.
    [43]贺爱军.降解塑料的开发进展.化工新型材料,2002,30(3):1~6.
    [44] Perrin D A.Handbook of biodegradable polymers[M].New York:Harwood Academic Publishers,1997.
    [45] Ikada Y, Tsuji H. Biodegradable polyesters for medical and ecological applications. Macromolecular Rapid Communications, 2000, 21(3): 117~132.
    [46] Agrawal C M, Ray R B. Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. Journal of Biomedical Materials Research. 2001, 55(2):141~150.
    [47] Ishiaku U S, Pang K W, Lee W S, et al. Mechanical properties and enzymic degradation of thermoplastic and granular sago starch filled poly(ε-caprolactone). European Polymer Journal, 2002,38(2): 393~401.
    [48] Averous L, Moro L, Dole P, et al. Properties of thermoplastic blends: starch-polycaprolactone. Polymer, 2000, 41(11): 4157~4167.
    [49] Gáspár M, Benk? Z, Dogossy G, et al. Reducing water absorption in compostable starch-based plastics.Polymer Degradation and Stability, 2005, 90(3): 563~569.
    [50] Matzinos P, Tserki V, Kontoyiannis A, et al. Processing and characterization of starch/polycaprolactone products.Polymer Degradation and Stability, 2002, 77(1): 17~24.
    [51]吴俊,谢笔钧.淀粉/聚己内酯热塑性完全生物降解塑料膜的研制.塑料工业,2002, 30(6):22~24.
    [52]石锐,丁涛,刘全勇等.甘油含量对热塑性淀粉结构及性能的影响.塑料,2006,35(1):44~49.
    [53] Mali S, Sakanaka L S, Yamashita F, et al. Water sorption and mechanical properties of cassava starch films and their relation to plasticizing effect.Carbohydrate Polymers, 2005, 60(3): 283~289.
    [54] Ioannis A, Costas G B. Physical properties of polyol-plasticized edible blends made of methyl cellulose and soluble starch. Carbohydrate Polymers, 1999, 38(1): 47~58.
    [55] Schlemmer D, Sales M J A, Resck I S. Degradation of different polystyrene /thermoplastic starch blends buried in soil. Carbohydrate Polymers, 2009, 75(1): 58~62.
    [56] Schlemmer D, De Oliveira E R, Araújo Sales M J. Polystyrene/Thermoplastic starch blends with different plasticizers-Preparation and thermal characterization. Journal of Thermal Analysis and Calorimetry, 2007, 87(3): 635~638.
    [57] Zheng P W, Chang P R, Yu J G, et al. Formamide and 2-hydroxy-N -[2-(2-hydroxy-propionylamino)-ethyl] propionamide (HPEP) as a Mixed Plasticizer for Thermoplastic Starch.Carbohydrate Polymers, 2009, 78(2): 296~301
    [58] Zhang J S, Peter R, Wu C Y,et al. Aliphatic Amidediol and Glycerol as a Mixed Plasticizer for the Preparation of Thermoplastic Starch. Starch/St?rke, 2008, 60(11): 617~623.
    [59]杨丽英,K.Sriroth,R.Chollakup.增塑剂对淀粉/聚己内酯基共混合物的物理性能和生物降解能力的影响.大连轻工业学院学报,2002,2l(2):89~95.
    [59] Koenig M F, Huang S J. Biodegradable blends and composites of polycaprolactone and starch derivatives. Polymer, 1995, 36(9): 1877~1882.
    [60]柳滢春.增塑剂用量对交联淀粉-聚己内酯共混材料性能的影响.化工生产与技术, 2008,l5(1): 23~25.
    [61] C. Fringant C, Rinaudo M, Gontard G N, et a1.A biodegradable starch based coating to waterproof hydrophilic materials. Starch/St?rke, 1998, 50(7): 292~296.
    [62]冀玲芳,李树材.乙酰化淀粉/聚己内酯共混物的制备和性能研究.塑料工业,2005, 33(1):55~57.
    [63] Wu C S. Performance of an Acrylic Acid Grafted Polycaprolactone / Starch Composite: Characterization and Mechanical Properties. Journal of Applied Polymer Science , 2003, 89(11): 2888~2895.
    [64] Wu C S. Physical properties and biodegradability of maleated-polycaprolactone / starch composite.Polymer Degradation and Stability, 2003, 80(1): 127~134.
    [65] Pascente C, Márquez L, Balsamo V, et al. Use of Modified Poly(ε-caprolactone) in the Compatibilization of Poly(ε-caprolactone)/Maize Starch Blends . Journal of Applied Polymer Science, 2008, 109(6): 4089~4098.
    [66] Kim C H, Cho K Y, Ipark J K. Reactive blends of gelatinized starch and polycaprolactone-g-glycidyl methacrylate. Journal of Applied Polymer Science, 2001, 81(16): 1507~1516.
    [67] Sugih A K, Drijfhout J P, Picchioni F, et al. Synthesis and Properties of Reactive Interfacial Agents for Polycaprolactone-Starch Blends Journal of Applied Polymer Science, 2009, 114(4): 2315~2326.
    [68] Mani R, Bhattacharya M, Tang J .Synthesis and characterization of starch-graft -polycaprolactone as compatibilizer for starch/polycaprolactone blends. Macromolecular rapid communications, 1998, 19(6): 283~286.
    [69] Kweon D K, Cha D S, Park H J, et a1. Starch-g-polycaprolcatone copolymerization using diisocyanate intermediates and thermal characteristics of the copolymer.Journal of Applied Polymer Science, 2000, 78(5): 986~993.
    [70] Choi E J, Kim C H , Park J K. Structure-property relationship in Starch/PCL blends compatibilised with starch-g-PCL copolymer. Journal of Applied Polymer Science, 1999, 37(17): 2430~2438.
    [71] Dubois P, Krishnan M, Narayan R. Aliphatic polyester-grafted starch-like polysaccharides by ring-opening polymerization. Polymer, 1999, 40(11): 3091~3100.
    [72] Chen L, Ni Y S, Bian X C, et al. A novel approach to grafting polymerization ofε-caprolactone onto starch granules. Carbohydrate Polymers, 2005, 60(1): 103~109.
    [73] Xu Q, Kennedy J F, Liu L J. An ionic liquid as reaction media in the ring opening graft polymerization ofε-caprolactone onto starch granules. Carbohydrate Polymers, 2008, 72(1): 113~121.
    [74] Sarazin P, Li G, Orts W J, et al. Binary and ternary blends of polylactide, polycaprolactone and thermoplastic starch. Polymer, 2008, 49(2): 599~609.
    [75] Liao H T, Wu C S. Preparation and characterization of ternary blends composed of polylactide, poly(ε-caprolactone) and starch.Materials Science and Engineering: A, 2009, 515(1-2): 207~214.
    [76] Kim C H, Choi E J, Park J K. Effect of PEG molecular weight on the tensile toughness of starch/PCL/PEG blends. Journal of Applied Polymer Science, 2000, 77(9): 2049~2056.
    [77] Namazi H, Mosadegh M, Dadkhah A. New intercalated layer silicate nanocomposites based on synthesized starch-g-PCL prepared via solution intercalation and in situ polymerization methods: As a comparative study. Carbohydrate Polymers, 2009, 75(4): 665~669.
    [78] Kim E G, Kim B S, Kim D S. Physical Properties and Morphology of Polycaprolactone /Starch /Pine-Leaf Composites. Journal of applied polymer science, 2007, 103(2): 928~934.
    [79] Hamad K, Kaseem M, Deri F. Rheological and mechanical properties of poly(lactic acid)/polystyrene polymer blend.Polymer Bulletin, 2010, 65(5): 509~519.
    [80] Ke T, Sun X Z. Physical properties of poly(lactic acid) and starch composites with various blending ratios. Cereal Chemistry, 2000, 77(6): 761~768
    [81] Jacobsen S, Fritz H G. Filling of poly(lactic acid) with native starch. Polymer Engineering and Science, 1996, 36(22): 2799~2804
    [82] Mano J F, Koniarova D, Reis R L. Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability.Journal of Materials Science: Materials in Medicine, 2003, 14(2): 127~135.
    [83] Wang N, Yu J G, Ma X F. Influence of formamide and water on the properties of thermoplastic starch / poly(lactic acid) blends. Carbohydrate Polymers, 2008, 71(1): 109~118.
    [841] Ke T, Sun X Z. Effects of moisture content and heat treatment on the physical properties of starch and poly(lactic acid) blends. Journal of Applied Polymer Science, 2001, 81(12): 3069~3082.
    [85] Park J W, Im S S, Kim S H, et al. Biodegradable polymer blends of poly(L-lactic acid) and gelatinized starch . Polymer Engineering and Science, 2000, 40(12): 2539~2550.
    [86] Martin O, Averous L. Poly(lactic acid):plasticization and properties of biodegradable multi-phase systems . Polymer, 2001, 42(14): 6209~6219.
    [87]沈一丁,赖小娟.聚乙二醇改性淀粉/聚乳酸薄膜的结构与性质研究.现代化工,2006, 26(5):35~37.
    [88] Ke T, Sun X Z. Thermal and mechanical properties of poly(lactic acid) and starch blends with various plasticizers. Transactions of the ASAE, 2001, 44(4): 945~953.
    [89] Wang H, Sun X Z, Seib P. Mechanical properties of poly(lactic acid) and wheat starch blends with methylenediphenyl diisocyanate. Journal of Applied Polymer Science, 2002, 84(6): 1257~1262.
    [90] Xie F W, Xue T, Yu L, et al. Rheological properties of starchbased materials and starch/poly(lactic acid) blends . Macromolecular Symposia, 2007, 249~250(1): 529~534.
    [91]王海琼,崔莉,吴雄等.MDI作为聚乳酸/木薯淀粉共混物交联剂的研究.胶体与聚合物,2007,25(01):21~22.
    [92] Ohkita T, Lee S H. Effect of aliphatic isocyanates (HDI and LDI) as coupling agents on the properties of eco-composites from biodegradable polymers and corn starch . Journal of Adhesion Science and Technology, 2004, 18(8): 905~924.
    [93] Huneault M A, Li H B. Morphology and properties of compatibilized polylactide/ thermoplastic starch blends. Polymer, 2007, 48(1): 270~280.
    [94] Wu C S. Improving polylactide/starch biocomposites by grafting polylactide with acrylic acid characterization and biodegradability assessment. Macromolecular Bioscience, 2005, 5(4): 352~361.
    [95]李申,周晔,任天斌等.聚乳酸/淀粉复合材料的制备及性能研究.塑料,2006,35(4): 7~11.
    [96] Yew G H, Mohd Yusof A M, Mohd Ishak Z A, Water absorption and enzymatic degradation of poly(lactic acid)/rice starch composites. Polymer Degradation and Stability, 2005, 90(3): 48~500.
    [97]李勇锋,陆冲,程树军等.钛酸四丁酯增韧改性聚乳酸/淀粉共混材料.功能高分子学报,2007, 19~20(3): 304~308.
    [98] Zeng J B, Jiao L, Li Y D, et al. Bio-based blends of starch and poly(butylene succinate) with improved miscibility, mechanical properties, and reduced water absorption. Carbohydrate Polymers, 2011, 83(2): 762~768
    [99]马涛,于大海.乙酰化淀粉/PBS制备生物降解塑料的研究.食品工业,2010,(2):4~6.
    [100]李陶,李辉章,曾建兵等.热塑性淀粉/PBS共混物的微生物降解性研究.化学研究与应用,2009,21(7):994~997
    [101] Ashori A. Wood-plastic composites as promising green-composites for automotive industries. Bioresource Technology, 2008, 99(11): 4661~4667.
    [102] Bengtsson M, Gatenholm P, Oksman K. The Effect of Crosslinking on the Properties of Polyethylene/Wood Flour Composites. Composites Science and Technology, 2005, 65(10):1468~1479
    [103] Pascal Kamdem D, Jiang H H, Cui W N,, Jason Freed, Laurent M. Matuana. Properties of wood plastic composites made of recycled HDPE and wood flour from CCA-treated wood removed from service. Composites Part A: Applied Science and Manufacturing, 2004, 35(3): 347~355.
    [104]李兰杰,刘得志,陈占勋.木粉粒径对木塑复合材料性能的影响.现代塑料加工应用,2006,17(5):21~24.
    [105]赵永生,朱复华,薛平,等.木粉对PVC木塑复合材料力学性能影响.现代塑料加工应用,2006,17(6):12~l5.
    [106] Borysiak S. Supermolecular structure of wood/polypropylene composites: I. The influence of processing parameters and chemical treatment of the filler. Polymer Bulletin, 2010, 64(3): 275~290
    [107]薛敏.相容剂在木塑复合材料中的应用研究现状.塑料科技,2009,37(1):87~90.
    [108] Pilla S, Gong S Q, O'Neill E, et al. Polylactide-Recycled Wood Fiber Composites.Journal of Applied Polymer Science. 2009, 111(1): 37~47.
    [109] Masirek R, Kulinski Z, Chionna D, et al. Composites of poly(L-lactide) with hemp fibers: Morphology and thermal and mechanical properties. Journal of Applied Polymer Science, 2007, 105(1): 255~268.
    [110] Bledzki A K, Jaszkiewicz A, Scherzer D. Mechanical properties of PLA composites with man-made cellulose and abaca fibres. Composites Part A: Applied Science and Manufacturing, 2009, 40(4): 404~412.
    [111] Plackett D, Andersen T L, Pedersen W B, et al. Biodegradable composites based on L-polylactide and jute fibers. Composites Science and Technology, 2003, 63(9): 1287~1296.
    [112] Shibata M, Ozawa K, Teramoto N, et al. Biocomposites Made from Short Abaca Fiber and Biodegradable Polyesters. Macromolecular Materials and Engineering, 2003, 288(1): 35~43.
    [113] Bax B, Müssig J. Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Composites Science and Technology, 2008, 68(7~8):1601~1607.
    [114] Teramoto N, Urata K, Ozawa K, et al. Biodegradation of aliphatic polyester composites reinforced by abaca fiber. Polymer Degradation and Stability, 2004, 86(3): 401~409.
    [115] Gregorova A, Hrabalova M, Wimmer R,et al. Poly(lactide acid) Composites Reinforced with Fibers Obtained from Different Tissue Types of Picea sitchensis. Journal of applied polymer science.2009,114(5): 2616~2623.
    [116] Islam M S, Pickering K L, Foreman N J. Influence of accelerated ageing on the physico-mechanical properties of alkali-treated industrial hemp fibre reinforced poly(lactic acid) (PLA) composites. Polymer Degradation and Stability, 2010, 95(1): 59~65.
    [117] Oksman K, Skrifvars M, Selin J-F. Natural fibres as reinforcement in polylactic acid (PLA) composites. Composites Science and Technology, 2003, 63(9): 1317~1324.
    [118]Zini E, Baiardo M, Armelao L, et al. Biodegradable polyesters reinforced with surface-modified vegetable fibers. Macromolecular Bioscience, 2004, 4(3): 286~295.
    [119] Lee S H, Wang S Q. Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Composites Part A: Applied Science and Manufacturing. 2006, 37(1): 80~91.
    [120] Lee S H, Ohkita T, Kitagawa K. Mechanical and thermal flow properties of wood fiber-biodegradable polymers composites. Journal of Applied Polymer Science, 2003, 90: l900~l905.
    [121] Takatani M, Ikeda K, Sakamoto K, et al. Cellulose esters as compatibilizers in wood/poly(lactic acid) composite. Journal of Wood Science, 2008, 54(1): 54~61.
    [122] Petinakis E, Yu L, Edward G, et al. Effect of Matrix-Particle Interfacial Adhesion on the Mechanical Properties of Poly(lactic acid)/Wood-Flour. Micro-Composites, 2009, 17(2): 83~94.
    [123] Finkenstadt V L, Liu L S, Willett J L. Evaluation of Poly(lactic acid) and Sugar Beet Pulp Green Composites. Journal of Polymers and the Environment, 2007, 15(1): 1~6.
    [124] Graupner N. Application of lignin as natural adhesion promoter in cotton fibre-reinforced poly(lactic acid) (PLA) composites. Journal of Materials Science, 2008, 43(15): 5222~5229.
    [125] Graupner N, Herrmann A, Müssig J. Natural and man-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites: An overview about mechanical characteristics and application areas. Composites Part A: Applied Science and Manufacturing, 2009, 40(6~7): 810~821.
    [126] Ochi S. Mechanical properties of kenaf fibers and kenaf/PLA composites. Mechanics of Materials, 2008, 40(4~5): 446~452.
    [127] Liu L F, Yu J Y, Cheng L D, et al. Biodegradability of poly(butylene succinate) (PBS) composite reinforced with jute fibre. Polymer Degradation and Stability, 2009, 94(1): 90~94.
    [128]许民,朱毅,姜晓冰等.聚丙烯比例对木塑复合材料性能的影响.林业机械与木工设备,2006,34(12):14~16.
    [129]应伟斌,袁新华,程晓农等.两种不同基体木塑复合材料的制备及性能研究.塑料,2006,35(4):12~16.
    [130]郭文静,王正,黑须博司.三种塑料与木纤维复合性能的研究.木材工业,2005,19(2):8~11.
    [131]秦特夫,阎昊鹏.木表面非极性化原理的研究.木材工业,1999,13(4):17~20.
    [132]Mankikadan R C, Nair S M, Sabu T, et al. Tensile properties of short sisal fiber reinforced polystyrene composites. Journal of Applied Polymer Science, 1996, 60(9): 1483~l497
    [133]李凯夫,戴东花,谢雪甜,等.偶联剂对木塑复合材料界面相容性的影响.林产工业,2005,32(3):24~26.
    [134] Bengtsson M, Gatenholm P, Oksman K . The Effect of Crosslinking on the Properties of Polyethylene/Wood Flour Composites. Composites Science and Technology, 2005, 65(10): 1468~1479.
    [135] Bengtsson M, Oksman K. Silane Crosslinked Wood Plastic Composites: Processing and Properties. Composites Science and Technology, 2006, 66(13): 2l77~2l86.
    [136] Nachtigall S M B, Cerveira G S, Rosa S M L. New Polymeric-coupling Agent for Polypropylene/Wood-flour Composites. Polymer Testing, 2007, 26(5): 619~628.
    [137]尹以高,夏成林,钟圣兆.塑木复合材料的研制和性能.塑料工业,2002,30(6):20~21,50.
    [138]王如寅,万超瑛,张勇等.乙烯-甲基丙烯酸共聚物增容PE-HD/木纤维复合材料的研究.中国塑料,2005,19(11):63~66.
    [139]吴远楠,武军.不同相容剂对HDPE基木塑复合材料力学性能的影响.包装工程,2006,27(6):85~86,103.
    [140]冯绍华,尹文艳,沈海燕等.PP-g-MAH对聚丙烯(木塑)复合材料相容性的影响.塑料科技,2006,34(1):1~4.
    [141]刘文鹏,李炳海.不同相容剂对PP/木粉复合材料力学性能的影响.塑料,2005,34(5): 2l~23.
    [142]李兰杰,刘得志,胡娅婷等.聚乙烯热熔胶增容聚乙烯基木塑复合材料的研究.中国塑料,2005,19(10):39~43.
    [143]杜少忠,夏延致,张靖宗等.无卤阻燃聚乙烯泡沫塑料的制备与性能研究.塑料,2008,37(2):37~41.
    [144]刘岳平.聚丙烯泡沫塑料的成型、性能及其应用.工程塑料应用,2001,29(4):47~49.
    [145]汪晓鹏,陈启民,张永显等.建筑用聚苯乙烯泡沫塑料的绝热保温性能测试和分析.塑料科技,2009,37(12):65~67.
    [146]齐锴亮,张广成,史爱华等.异氰酸酯交联聚氯乙烯泡沫塑料的制备研究.应用化工,2010,(1):56~59,73.
    [147]殷锦捷,赵志超,戴英华等.阻燃聚氨酯泡沫塑料的研制.塑料助剂,2010,(4): 30~33.
    [148] Rickle G K, Denslow K R. The effect of water on phenolic foam cell structure.Journal of Celluar Plastic, 1988, 24(1): 70~78.
    [149]苑改红,王宪成,侯培中等.三聚氰胺泡沫塑料的吸声性能.机械工程材料,2007,31(9):55~57
    [150] Geyer W, Muehltal, seibert H, et al. Process for the Production of Ploymerthacrylimide Foam Materials. US:5928459, 1999.
    [151] Klett J. Pitch-Based Carbon Foam and Composites[P]. US: 6261485, 2001.
    [152]张骥红,陈峰.聚氨酯泡沫阻燃剂浅谈.聚氨酯工业,2001,16(4):6~9.
    [153]彭华乔,夏祖西,于新华等.软质聚氨酯泡沫无卤阻燃研究进展化工新型材料,2008,36(8): 25~26,85.
    [154]杨守生,康茹.阻燃剂对软质聚氨酯泡沫燃烧特性的影响.塑料工业,2005,33(8): 57~59.
    [155]朱永茂,殷宜初.酚醛泡沫体及其夹芯板材开发进展.热固性树脂,2003,18(5):30~32
    [156]殷宜初.国内外酚醛泡沫的开发与应用.新型建筑材料,2004(10):46~48
    [157] Singh D, Ohri S. Effect of reactant ratio and temperature on the characteristics of phenol-formaldehyde foams. Journal of Applied Polymer Science, 1982, 27(4): 1191~1196.
    [158] Denslow K R, Rickle G K. Surfactant effects in phenolic foam resins. Journal of Celluar Plastic, 1989, 25(1): 31~41.
    [159] Vongdara B, Abhyankar C R, Hamed R. Effect of shellac on structure and properties of phenolic foams.Journal of Cellular Polymer, 1991, 10(2): 132~136.
    [160] Armin A, Klaus H, Christof M, et al. Antimicrobially modified melamine / formaldehyde foam. EP2134774, 2009.
    [161] Horst B, Bernd G, Jens S. Shaped articles of melamine/formaldehyde foams having low formaldehyde emission. US20060258763, 2006.
    [162] Harald M, Frank Peter W, Heinz W. Elastic foam based on a melamine-formaldehyde condensation product and its use. EP17672, 1980.
    [163]曹明法,胡培.船用玻璃钢/复合材料夹层结构中的泡沫芯材.江苏船舶,2004,21(2):3~6.
    [164]程虹,方志刚,杨屹.复合纤维增强塑料/聚氯乙烯泡沫复合板材料与气垫船.舰船科学技术,2004,26(6):67~69,76.
    [166] Juliano B O, Perez C M, Laignelet B, et a1. International cooperative testing on amylose content of milledrice. Starch, 1981, 33: 157~l62.
    [167]刘向农,余碧钰.双波长分光光度法测定银杏果仁中直链淀粉和支链淀粉.光谱实验室,2000,17(5):506~509.
    [168]王广鹏,刘庆香,孔德军等.两种板栗淀粉含量测定方法的比较研究.安徽农学通报,2007,13(18):27~27,107.
    [169]马莺,王静,牛天娇.功能性食品活性成分测定.北京:化学工业出版社,2005.
    [170]陈毓全.生物化学实验方法和技术.北京:科学出版社,2002.
    [171]钟建平,钟春燕,赵道辉等.苯酚-硫酸比色法测定保健食品多糖的研究.中国卫生检验杂志,2001,11(6):675.
    [172]陈钧辉.生物化学实验.北京:科学出版社,2003.
    [173]冯慧,洪家敏.索氏抽提法测定大豆粉中脂肪含量方法改进研究.中国食物与营养,2009,(8):50~51.
    [174]石淑兰,何福望.制浆造纸分析与检测.北京:中国轻工业出版社,2006.
    [175]邢剑波,姚淑萍,连军.氧化淀粉变性基团的分析方法.山西化工,2002, 22(3):26~27.
    [176]曹清明,钟海雁,李忠海等.蕨根淀粉糊化温度测定及影响因素研究.食品与机械,2007,23(3):16~19.
    [177]时君友.淀粉基API木材胶粘剂及其固化与老化机理的研究.东北林业大学博士学位论文,2007.
    [178]张坤玉,冉祥海,吴航等.新型热塑性淀粉的制备和性能.高等学校化学学报,2009,30(8):1662~1667.
    [179]陈涛,周鹏,吴智华.热塑性淀粉塑料吸水性研究.塑料科技,2007,35(2):34~38.
    [180] Waigh T A, Donald A M, Heidelbach F, et a1. Analysis of the native structure of starch granules with small angle X-ray microfocus scattering. Biopolymers, 1999, 49(1): 91~105.
    [181] Van Soest J J G, Vliegenthart J F G. Crystallinity in starch plastics: consequences for material properties. Trends in Biotechnology, 1997, 15(6): 208~213.
    [182] Lourdin D, Bizot H, Colonna P. Antiplasticization in starch-glycerol films. Journal of Applied Polymer Science, 1997, 63(8): 1047~1053.
    [183] Forsell P M, Mikkila J M, Moates G K, et a1. Phase and glass transition behavior of concentrated barley starch-glycerol-water mixtures, a model for thermoplastic starch. Carbohydrate Polymers, 1998, 34(4): 275–282.
    [184] Crescenzi V, Manzini G, Calzolari G, et a1. Thermodynamics of fusion of poly-β-propiolactone and poly-ε-caprolactone. Comparative analysis of the melting of aliphatic polylactone and polyester chains. European. Polymer Journal. 1972, 8(3): 449~463.
    [185] Lee S H, Wang S Q. Biodegradable polymers/bamboo fibre biocomposite with bio-based coupling agent. Composites Part A: Applied Science and Manufacturing, 2006, 37(1): 80~91.
    [186]安鑫南.林产化学工艺学.北京:中国林业出版社,2002.
    [187]过敏丽.高聚物与复合材料的动态力学热分析.北京:化学工业出版社,2002.
    [188]何曼君,陈维孝,董西侠.高分子物理.上海:复旦大学出版社,2002.
    [189]邓友娥,章文贡.动态机械热分析技术在高聚物性能研究中的应用.实验室研究与探索,2002,21(1):38~39.
    [190] Wunderlich B, Cormier C M.Heat of fusion of polyethylene.Journal of Polymer Science, 1967, A-2(5): 987~988.
    [191] Almgren K M, Gamstedt E K, Berthold F Moisture uptake and hygroexpansion of wood fiber composite materials with polylactide and polypropylene matrix materials. Polymer Composites,2008,30(12):1809~1816.
    [192] Fay J J, Thomas D A, Sperling L H. Evaluation of the area under linear loss modulus-temperature curves. Journal of Applied Polymer Science, 2003, 43(9): 1617~1623.
    [193]谈晓林,周兴平,解孝林.聚合物纳米复合材料韧性和破坏行为.塑料工业,2007,35(4):47~51.
    [194] Huda M S, Mohanty A K, Drzal L T, et al.“Green”composites from recycled cellulose and poly(lactic acid): Physico-mechanical and morphological properties evaluation. Journal of Materials Science, 2005, 40(16): 4221~4229.
    [195]邓友娥,章文贡.动态机械热分析技术在高聚物性能研究中的应用.实验室研究与探索,2002,21(1):38~39.
    [196] Fischer E W, Sterzel H J, Wegner G. Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Colloid and Polymer Science, 1973, 251(11): 980~990.
    [197]杨斌.绿色塑料聚乳酸.北京:化学工业出版社,2007.
    [198] Gibson L J, Ashby M F, Zhang J, Triantafillou T C. Failure surfaces for cellular materials under multiaxial loads. I. Modelling. International Journal of Mechanical Sciences , 1989, 31 (9): 635~663.
    [199] Gibson L J, Ashby M F. Cellular Solids: Structure and properties. Cambridge: Cambridge University Press, 1999.
    [200] Goods S, Neuschwanger C, Henderson C et al. Mechanical properties of Crete, a polyurethane foam. Journal of Applied Polymer Science, 1998, 68(7): 1045~1055.
    [201] Philip C, Miller T, Sina T. Compressive properties of rigid polyurethane foams. Polymers and Polymer Composites, 1999, 7(2):117~124.
    [202]施娟娟.三元共聚木材胶黏剂的制备及结构研究[M].南京林业大学硕士论文,2010.
    [203] Pizzi A, Pasch H, Simon C, et al. Structure of resorcinol ,phenol,and furan resins by MALDI-TOF mass spectrometry and 13CNMR. Journal of Applied Polymer Science, 2004, 92: 2665~2674.
    [204] Kim M. Examination of selected synthesis parameters for typical wood adhesive-type urea-formaldehyde resins by 13C NMR spectroscopy II. Journal of Applied Polymer Science, 75(10): 1243~1254.
    [205]杜官本.尿素与甲醛加成及缩聚产物13CNMR研究.中国木材工业, 1999, 13(4): 9~13.
    [206] Siimer K, Christianson P, Kaljuvee T. TG-DTA study of melamline–urea-formaldehyde resins. Journal of Thermal Analysis and Calorimetry, 2008, 92(1): 19~27.
    [207] Despres A, Pizzi A, Pasch H. Comparative 13C-NMR and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Analyses of Species Variation and Structure Maintenance During Melamine-Urea-Formaldehyde Resin Preparation. Journal of Applied Polymer Science, 2007, 106: 1106~1128.
    [208]韩书广,卢晓宁,吴羽飞等.脲醛树脂及其改性树脂的化学结构.东北林业大学学报,2007,35(8):36~42,45.
    [209] Panangama L A, Pizzi A. 13C-NMR analysis method for MUF and MF resin strength and Formaldehyde emission. Journal of Applied Polymer Science, 1996, 59: 2055~2068.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700