二氧化碳与氮气或甲烷混合物的吸附分离
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化碳排放所产生的温室效应是一个令人担忧的全球性环境问题;而绝大多数排放的二氧化碳是由化石燃烧所产生的,因此从烟道气中分离和捕集二氧化碳对降低温室气体排放具有重要的意义。此外,许多开采出的天然气中含有大量二氧化碳,严重影响天然气的使用,因此从天然气中分离二氧化碳对提高天然气的热值和使用也具有重要实际意义。
     在本文中,以CH_4/CO_2和N_2/CO_2为模型混合气,研究了醇胺改性吸附剂的吸附分离性能。首先选择了高沸点的三乙醇胺(TEA)、N-甲基二乙醇胺(MDEA)和混合胺N-甲基二乙醇胺+哌嗪(MDEA+PZ),用不同浓度的醇胺液对硅胶和活性炭进行了改性,分别进行了CH_4/CO_2混合气的穿透和脱附再生实验研究,得到了它们的穿透曲线以及分离因子等数据;另外,选择了13X型沸石分子筛吸附剂,对其进行了穿透和脱附再生实验研究,也得到了它们在不同条件下的穿透曲线、分离因子、再生成本以及再生度等参数。
     对不同吸附剂的吸附分离性能进行了比较与分析:硅胶在TEA负载率为0.8,MDEA负载率为0.6,PZ/MDEA摩尔比为R=0.167时,分离因子最佳,分别为10.09、11.05和18.98;而活性炭和用MDEA改型的活性炭对混合气的分离因子均非常小。13X型吸附剂的分离因子为6.24。吸附剂可以用吹扫的方法在较短时间内实现再生,而其吸附容量仍保持稳定,经过多次吸附再生循环液膜也保持不变,表明本文研究的吸附剂适合变压吸附过程。
     在不同的工艺条件下,进行了变压吸附工艺的连续变压操作实验。考察了操作压力、吸附时间、均压时间、吹扫时间、吹扫气速等指标,确定了适宜的变压吸附操作条件。连续操作说明了吸附剂性质是稳定的。二氧化碳在出口气浓度经过9个循环后可以低于0.05%,并且200循环后仍保持稳定。表明胺改性硅胶吸附剂吸附适合分离CO_2/N_2和CO_2/CH_4。
Greenhouse effect is one of the global environmnental problems. The main greenhouse gas is carbon dioxide, while the exhaust gas from power stations is the main sources of CO_2 emissions, so separation/capature of carbon dioxide has significant effect to the decreasing of greenhouse gases emission.
     In this paper, the first aim was to find an excellent adsorbent to separate CO_2 from its mixture. Firstly, triethanolamine (TEA), N-Methyldiethanolamine (MDEA) and mixed amine with high boiling point and different concentration were selected to modify the surface of silica gel and activated carbon, which were researched by adsorption and desorption experiments for the mixtures of CO_2 and CH_4 respectively. The breakthrough curves、desorption curves, and the parameters of separation factors and purging ratios were obtained. In addition, 13X molecular sieve was researched by adsorption and desorption experiments for the mixtures of CO_2 and CH_4 respectively, whose breakthrough curves, desorption curves, and the parameters of separation factors and purging ratios were obtained.
     The compare and analysis for adsorption and desorption performances of different sorbents showed: when silica gel coating ratio 0.8 TEA, silica gel coating ratio 0.6 MDEA, silica gel coating Piperazine(PZ)/MDEA mole ratio(R=0.167), their separation factors were optimal and were 10.09, 11.05 and 18.98 respectively. For activated carbon and it coating MDEA, their separation factors were very small. For the 13X molecular sieve, the separation factor was 6.24. The sorbent regeneration could be achieved by pressure reduction and back-purge at ambient temperature in short time and it’s capacity remains stable after many cycles of breakthrough and regeneration just as the liquid film, which proved the feasibility of the PSS process using this new sorbent. therefore, the silica gel coating PZ/MDEA with mole ratio(R=0.167)for separation of CO_2 and CH_4 was best.
     PSS process was tested for different process conditions. Cycle sequence including adsorptive pressure, the times for sorption, pressure equalization and the propriate purge gas velocity were determined. Continuous operation test demonstrated that the sorption property was stable, and the content of CO_2 in the column-top stream decreased to below 0.05% in 9 cycles and kept the level till the end of 200 pressure swing sorption (PSS) cycles. A 2-column process was used to verify the applicability of the pressure swing sorption technology using the amine-modified sorbent for the separation of CO_2/N_2 and CO_2/CH_4 and remained stable in long-time, which proves the industrial applicability of the new technology.
引文
[1]张诩人,低温甲醇洗工艺的发展和改进,氮肥设计,1993, 31 (1): 3~9
    [2]梁秀钧,小氮肥厂脱碳方法的选择,化工设计通讯,1993, 19 (1): 2~6
    [3]张诩人,石家庄化肥厂合成氨节能改造规划,中氮肥,1991, (2): 28~37
    [4]崔洪波,小氮肥厂采用部分脱碳生产液氨,化工设计通讯,1991, 5~7
    [5] N orman N Li. Recent Developments in SeparationS cience,Vol Vll,Boca Raton:CRC Press,1982
    [6]谭东,二氧化碳的分离提纯方法,广西化工,1995,24(2):22~26
    [7]夏明珠,严莲荷,雷武等,二氧化碳的分离回收技术与综合利用闭,现代化工,1999,19(5):56~48
    [8]李玉龙,张宝真,姚树人,大气中二氧化碳分离技术的研究与现状,海军工程学院学报,1995,(1):87~91
    [9] G Maddox. R.N. Gas Conditioning and Processing, 3rd edition, Campbell Petroleum Series. Norman, OK, 1985,vol.4
    [10] T Astarita, G., Savage, D.W, Bisio, A., Gas Treating with Chemical Solvents, John Wiley&Sons, New York, 1983
    [11] Edward B.Rinker, Sami S.Ashour, Orville C.Sandall. Absorption of Carbon Dioxide into Aqueous Blends of Diethanolamine and Methyldiethanolamine, Ind. Eng. Chem. Res., 2000, 39, 4346~4356
    [12] Abanades J C, Rubin E S, Anthony E J, Sorbent cost and performance in CO_2 capture systems,Industrial and Engineering Chemistry Research, 2004,43(13): 3462~3466
    [13] Aboudheir A, Tontiwachwuthikul P, Idem R, Rigorous model for predicting the behavior of CO_2 absorption into AMP in packed-bed absorption columns. Industrial and Engineering Chemistry Research, 2006,45(8): 2553~2557
    [14] Al-Juaied M, Rochelle G T, Absorption of CO_2 in aqueous diglycolamine. Industrial and Engineering Chemistry Research, 2006,45(8): 2473~2482
    [15] Bello A, Idem R O, Comprehensive study of the kinetics of the oxidative degradation of CO_2 loaded and concentrated aqueous monoethanolamine (MEA) with and without sodium metavanadate during CO_2 absorption from flue gases.Industrial and Engineering Chemistry Research, 2006,45(8): 2569~2579
    [16] Goff G S, Rochelle G T, Oxidation inhibitors for copper and iron catalyzed degradation of monoethanolamine in CO_2 capture processes. Industrial and Engineering Chemistry Research, 2006,45(8): 2513~2521
    [17] Idem R, Wilson M, Tontiwachwuthikul P et al.. Pilot plant studies of the CO_2 capture performance of aqueous MEA and mixed MEA/MDEA solvents at the university of regina CO_2 capture technology development plant and the boundary dam CO_2 capture demonstration plant. Industrial and Engineering Chemistry Research, 2006 ,45(8): 2414~2420
    [18] Jassim M S, Rochelle G T, Innovative absorber/stripper configurations for CO_2 capture by aqueous monoethanolamine. Industrial and Engineering Chemistry Research, 2006,45(8): 2465~2472
    [19] Lawal A O, Idem R O, Kinetics of the oxidative degradation of CO_2 loaded and concentrated aqueous MEA-MDEA blends during CO_2 absorption from flue gas streams. Industrial and Engineering Chemistry Research, 2006,45(8):2601~2607
    [20] Ma’mun S, Jakobsen J P, Svendsen H F et al., Experimental and modeling study of the solubility of carbon dioxide in aqueous 30 mass % 2-((2- aminoethyl)amino)ethanol solution. Industrial and Engineering Chemistry Research, 2006,45(8): 2505~2512,
    [21] Oyenekan B A, Rochelle G T, Energy performance of stripper configurations for CO_2 capture by aqueous amines. Industrial and Engineering Chemistry Research, 2006,45(8):2457~2464
    [22] Ramachandran N, Aboudheir A, Idem R et al., Kinetics of the absorption of CO_2 into mixed aqueous loaded solutions of monoethanolamine and methyldiethanolamine. Industrial and Engineering Chemistry Research, 2006,45(8): 2608~2616
    [23] Rao A B, Rubin E S, Identifying cost-effective CO_2 control levels for amine-based CO_2 capture systems. Industrial and Engineering Chemistry Research, 2006,45(8): 2421~2429
    [24] Silva E F, Svendsen H F, Study of the carbamate stability of amines using ab initio methods and free-energy perturbations.Industrial and Engineering Chemistry Research, 2006,45(8): 2497~2504
    [25] Supap T, Idem R, Tontiwachwuthikul P et al., Analysis of monoethanolamine and its oxidative degradation products during CO_2 absorption from flue gases: Acomparative study of GC-MS, HPLC-RID, and CE-DAD analytical techniques and possible optimum combinations. Industrial and Engineering Chemistry Research, 2006,45(8): 2437~2451
    [26] Tanthapanichakoon W, Veawab A, McGarvey B, Electrochemical investigation on the effect of heat-stable salts on corrosion in CO_2 capture plants using aqueous solution of MEA. Industrial and Engineering Chemistry Research, 2006,45(8): 2586~2593
    [27] Tobiesen F A, Svendsen H F, Study of a modified amine-based regeneration unit. Industrial and Engineering Chemistry Research, 2006,45(8): 2489~2496
    [28]王志安,烟道气中回收CO_2,化肥设计,1997, 35. 50~52
    [29] Gray M L, Soong Y, Champagne K J, Pennline H, Baltrus J P,Stevens R W, Khatri R Jr, Chuang S S C, Filburn T, Improved immobilized carbon dioxide capture sorbents. Fuel Processing Technology, 2005,86(14-15): 1449~1455.
    [30] BlauwhotF P.M.M., Versteeg, G.F., van Swaaij et al., A study on the reaction between CO_2 and alkanolamines in aqueous solutions. Chem. Eng. Sci., 39, 1984, 207~225
    [31] Jensen.M.B., Jorgensen. E., Faurholt. C., Reaction between carbon dioxide and amino alcohols. Acta Chem. Scand.,1954,1137~1140
    [32] Jorgensen, E., Reactions betveen carbon dioxide and amino alcohols, Acta Chem. Scand., 10, 1956, 747~755
    [33] Barth, D.. Tondre, C., and Delpuech J., Kinetics and mechanism of the reactions of carbon dioxide with alkanolamines: a discussion concerning the cases of MDEA and DEA. Chem. Eng. Sci., 39, 1984,1753~1757
    [34] Seung-Wook Rho, Ki-Pung Yoo, Jong Sup Lee, et al., Solubility of CO_2 in Aqueous Methyldiethanolamine Solutions, J. Chem. Eng. Data, 1997, 42, 1161~1164
    [35]刘华兵,徐国文,张成芳等,活化MDEA水溶液中二氧化碳溶解度,华东理工大学学报,1999, 25(3),242~246
    [36] Hai A.AI-Ghawas, Daniel P. Hagewiesche, et al., Physicochemical Properties Important for Carbon Dioxide Absorption in Aqueous Methyldiethanolamine, J. Chem. Eng. Data, 1989, 34, 385~391
    [37] Richard L.Rowley, Michael E.Adams, Tonya L.Marshall. et al., Measurement of Diffusion Coefficients Important in Modeling the Absorption rate of Carbon Dioxide into Aqueous N-Methyldiethanolamine, J.Chem. Eng. Data, 1997, 42,310~317
    [38] G Sartori, DW Savage,Sterically hindered amines for carbon dioxide removal from gases , Industrial & Engineering Chemistry Fundamentals, 1983,22,239~249
    [39] Blauwhoff P.M.M., Versteeg, G.F., van Swaaij, et al., A study on the reaction between CO_2 and alkanolamines in aqueous solutions. Chem. Eng. Sci., 39, 1984, 207~225
    [40] RDavid A.Glasscock, James E.Critchfield , Gary T.Rochelle, CO_2 Absorption/Desorption in mixture of Methyldiethanolamine with Monoethanolamine or Diethanolamine, Chem. Eng. Sci., 1991, 46(11), 2829~2845
    [41] Little R.J., van Swaaij W.P.M., Versteeg G.F., Kinetics of Carbon dioxide with tertiary amines in aqueous solution. AiChe. J。1990. 36( 11), 1633~1640
    [42] Chakravam, Phukan U.K.. Weiland R.H.. Chem. Eng. Prog., 1985, 81. 32~36
    [43] H.Bosch. G.F.Versteeg and W.P.M. Van Swaa,Gas-Liquid Mass Transfer with Parallel Reversible Reactions-III. Absorption of CO_2 into Solutions of Blends of Amines, Chem. Eng. Sci., 1989, 44(10), 2745~2750
    [44] Hangewieche D.P. In: Proceedings of the Int Symp. On Gas Sep. Technol., Amsterdam: Elsevier Science Publisher, 1989. 527~529
    [45] Versteee G.F., Kuipers J.A.M., Van Beckum F.P.H, Chem. Eng. Sci., 1990, 45, 183~197
    [46] H.A. Rangwala. B.R. Morrell, A.E. Mather and F.D. Otto. Absorption of CO_2 into Aqueous Tertiary Amine/MEA Solutions, Can. J. Chem. Eng., 1992, 70,482~490
    [47]黎四芳,混合有机胺水溶液吸收CO_2的研究,[学位论文],上海:华东理工大学.1993
    [48]黎四芳,任铮伟,李盘生,路琼华,MDEA-MEA混合有机胺水溶液吸收CO_2,化工学报,1994, 45(6), 698~703
    [49] Edward B.Rinl:er, Sami S.Ashour, and Orville C.Sandall, Absorption of Carbon Dioxide into Aqueous Blends of Diethanolamine and Methyldiethanolamine, Ind. Eng. Chem. Res., 2000, 39, 4346~4356
    [50] David M.Austgen. Gary T Rochelle, and Chan-Chyun Chen, Model of Vapor-Liquid Equilibria of H2S and CO_2 Solubility in Aqueous MDEA and CO_2, Solubility in Aqueous Mixtures of MDEA with MEA or DEA, Ind. Chem. Res.,1991, 30, 543~555
    [51] A. Chakma. An Energy Efficient Mixed Solvent for The Separation of CO_2, Energy Convers. Mgmt, 1995, 36(6-9), 427~430
    [52] Norio, Arashi, Naoki Oda, Mutsuo Yamada, et al., Evaluation of Test Results of 1000m3/h Pilot Plant for CO_2 Absorption Using An Amine-Based Solution, Energy Convers. Mgmt, 1997, 38, S63~S68
    [53] E.Buss, Gravimetric Measurement of Binary Gas Adsorption Equilibria of Methane-Carbon dioxide Mixtures on Activated Carbon, Gas. Sep. Purif. 1995, 19(3) : 189~197
    [54] F.Foeth, M.Andersson, H.Bosch, G.Aly and T.Reith, Separation of Dilute CO_2-CH4 Mixtures by Adsorption on Activated Carbon, Separation Science and Technology, 1994, 29(1): 93~118
    [55]梁肃臣,常用吸附剂的基础性研究及应用,低温与特气,1995,4:55~60
    [56] Janina Milewska-Duda, Jan Duda, Adam Nodze?ski, et. al., Absorption and Adsorption of Methane and Carbon Dioxide in Hard Coal and Active carbon. Langmuir , 2000, 16, 5458~5466
    [57] GS.W. Rutherford , J.E. Coons. A dsorption dynamics of carbon dioxide in molecular sieving carbon, Carbon , 2003,4: 405~411
    [58] Ranjani V.siriwardane,Shen Ming Shing et al. adsorption of CO_2 on molecular sieves and activated carbon,Energy & Fuels,2001,15(1),279~284
    [59] Na Byung Ki,Lee Hwanug,Koo Kee Kahb,et al. Effect of rinse and recycle methods on the pressure swing adsorption process to recover CO_2 from power plant flue gas using activated carbon.Ind. Eng. Chem.Res.2002,41(1),5498~5503
    [60] Vincent G. gomcs, Kevin W.K. Yee, Pressure swing adsorption for carbon dioxide sequestration from exhaust gases, Separation and Purification Technology, 2002,28(1),161~171
    [61] Cao Dapeng, Wu Jianzhong, Modeling the selectivity of activated carbons for efficient separation of hydrogen and carbon dioxide. Carbon, 2005, 43(1), 1364~1370
    [62] S.N.Vyas, Patwardhan S. R., Gupta indu , et al.. Bulk separation and purification of CH4 /CO_2 mixture on 4A/13X molecular sieves by using pressure swing adsorption. Sep. Sci. Technol.1991, 26(10-11),1419~1431
    [63] SF.Foeth, M. Andersson, H.Bosch, et al.. Separation of Dilute CO_2-CH4 Mixture by Adsorption on Actived Carbon. Separation Science and Technology, 1994,29(1), 93~118
    [64] F. Dreisbach, R. Staudt, J.U. Keller, High Pressure Adsorption Data of Methane, Nitrogen, Carbon Dioxide and their Binary and Ternary Mixtures on Activated Carbon Adsorption,1999, 5,215~227
    [65] Ranjani V. Siriwardane, Ming-Shing Shen, Edward P. Fisher, and James A. Poston, Adsorption of CO_2 on Molecular Sieves and Activated Carbon. Energy & Fuels, 2001, 15(2), 279~284
    [66] Xiaochun Xu, Chunshan Song, John M. Andresen, et al.. Preparation and characterization of novel CO_2“molecular basket”adsorbents based on polymer-modified mesoporous molecular sieve MCM-41. Microporous and Mesoporous Materials. 2003, 62,29~45
    [67] Alex C. C. Chang, Steven S. C. Chuang, McMahan Gray, et al. , In-Situ Infrared Study of CO_2 Adsorption on SBA-15 Grafted withγ-(Aminopropyl)triethoxysilane. Energy & Fuels, 2003, 17(2), 468~473
    [68] Sangil Kim, Junichi Ida, Vadim V. Guliants, et al., Tailoring Pore Properties of MCM-48 Silica for Selective Adsorption of CO_2. J. Phys. Chem. B, 2005, 109(13), 6287~6293
    [69] Z.Feng, D. N. Tran, B. J. Busche, G. E. Fryxell, R. S. Addleman, et al. . Ethylenediamine-Modified SBA-15 as Regenerable CO_2 Sorbent. Ind. Eng. Chem. Res. 2005, 44, 3099~3105
    [70] Xiuwu Liu, Li Zhou, Xin Fu, et al., Adsorption and regeneration study of the mesoporous adsorbent SBA-15 adapted to the capture/separation ofCO_2 and CH4, Chemical Engineering Science, 2007,62(4), 1101~1110
    [71] Fauth D J, Frommell E A, Hoffman J S, et al.. Eutectic salt promoted lithium zirconate: Novel high temperature sorbent for CO_2 capture. Fuel Processing Technology, 2005,86(14-15), 1503~1521
    [72] Essaki K, Nakagawa K, Kato M, Uemoto H,. CO_2 absorption by lithium silicate at room temperature. Journal of Chemical Engineering of Japan, 2004, 37(6): 772~777
    [73] Kato M, Nakagawa K, Essaki K, et al., Novel CO_2 absorbents using lithiumcontaining oxide. International Journal of Applied Ceramic Technology, 2005, 2(6): 467~475
    [74] ABANADES J CARLOS. Capture of CO_2 from combustion gases in a fluidized bed of CaO , AICHE , 2004 , 50(7) :1614 ~1622
    [75] SHUNKICHI UENO , JAYASEELAN DDONI ,J IHONG SHE , et al . Carbon dioxide absorption mechanisms of sodium added to calcium oxide at high temperatures. Ceramics International ,2004 ,30 :1031 ~1034
    [76] BARKER R. The reversibility of the reaction CaCO3 = CaO + CO_2. J Appl Chem Biotechnol ,1973 ,23 :733~742
    [77] Andrew R. Millward, Omar M. Yaghi, Metal-Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature, J. Am. Chem. Soc., 2005; 127(51), 17998~17999
    [78] Rahul Banerjee, Anh Phan, Bo Wang, et al., High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO_2 Capture, Science, 2008, 319, 939~943
    [79] Seda Keskin and David S. Sholl,Screening Metal-Organic Framework Materials for Membrane-based Methane/Carbon Dioxide Separations J. Phys. Chem. C,2007, 111, 14055~14059
    [80] Damle A S, Dorchak T P,. Recovery of carbon dioxide in advanced fossil energy conversion processes using a membrane reactor. Journal of Energy and Environment Research, 2001,1(1): 77~89
    [81] Powell C E, Qiao G G,. Polymeric CO_2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. Journal of Membrane Science, 2006,279: 1~49
    [82] J.E. Hogsett, W.H. Mazur, Estimate membrane system area, Hydrocarbon Process. 1983,62 (8) ,52~54
    [83] W.J. Schell, C.D. Houston, Process gas with selective membranes, Hydrocarbon Process. 1982,61 (9),249~252
    [84] F.G. Russell, A.B. Coady, Gas-permeation process economically recovers CO_2 from heavily concentrated streams, Oil Gas J. 1982,28,128~134
    [85] S. Weller, W.A. Steiner, Separation of Gases by Fractional Permeation through Membranes ,J. Appl. Phys. 1950,21 (4),279
    [86] Stern S A,. Polymers for gas separations: The next decade. Journal of Membrane Science, 1994,94: 1~65
    [87] Illing G, Hellgardt K, Wakeman R J, et al., Preparation and characterisation of polyaniline based membranes for gas separation. Journal of Membrane Science, 2001,184: 69~78
    [88] Xu Z K, Dannenberg C, Springer J, et al., Novel poly(arylene ether) asmembranes for gas separation. Journal of Membrane Science, 2002,205: 23~31
    [89] Pixton M R, Paul D R,. Gas transport properties of polyarylates. Part I: Connector and pendant group effects. Journal of Polymer Science Part B: Polymer Physics, 1995,33(7):1135~1149
    [90] Aguilar-Vega M, Paul D R,. Gas transport properties of polycarbonates and polysulfones with aromatic substitutions on the bisphenol connector group. Journal of Polymer Science Part B: Polymer Physics, 1993,31(11): 1599~1610
    [91] Li Y, Ding M, Xu J,. Gas separation properties of aromatic polyetherimides from 1,4-bis(3,4- dicarboxyphenoxy)benzene dianhydride and 3,5-diaminobenzic acid or its esters. Journal of Applied Polymer Science, 1997,63(1): 1~7
    [92] Lin H, Freeman B D,. Gas solubility, diffusivity and permeability in poly(ethylene oxide). Journal of Membrane Science, 2004,239: 105~117
    [93] Stern S A, Mi Y, Yamamoto H, Clair A K,. Structure/ permeability relationships of polyimide membranes. Applications to the separation of gas mixtures. Journal of Polymer Science Part B: Polymer Physics, 1989,27(9): 1887~1909
    [94] Aguilar-Vega M, Paul D R,. Gas transport properties of polyphenylene ethers. Journal of Polymer Science Part B: Polymer Physics. 1993,31(11): 1577~1589
    [95] Zimmerman C M, Koros W J,. Entropic selectivity analysis of a series of polypyrrolones for gas separation membranes. Macromolecules, 1999,32(10): 3341~334
    [96] Aitken C L, Koros W J, Paul D R,. Effect of structural symmetry on gas transport properties of polysulfones. Macromolecules, 1992,25(13): 3424~3434
    [97]沈江南,吴礼光,张林,陈欢林,高从增甲基丙烯酸二甲氨基乙酯-丙烯睛共聚物膜的制备及其气体渗透性能.化工学报,2006,57(l):l69~174
    [98]郝继华,王志,王世昌CO_2/CH4醋酸纤维素分离膜的制备.高分子材料科学与工程,1997,13(4) :6 4~6 8
    [99] Suda,H.K.Haraya.Gas Permeation through MicroPores of Carbon Mo1ecular Sieve.Membranes Derived from Kapton polyimide.J.Phys.Chem B,1997,101:3988~3994
    [100] Shekhawat D, Luebke D R, Pennline HW,. A review of carbon dioxide selective membranes–A topical teport. National Energy Technology Laboratory, United States Department of Energy 2003
    [101]赵基钢,刘纪昌,孙辉等.无机膜的制备及应用,化工科技,2005,13(5):68~72
    [102] A. B. Fuertes, D. M. Nevskaia and T. A. Centeno, Carbon compositemembranes from Matrimid? and Kapton? polyimides for gas separation Microporous and Mesoporous Materials, 1999, 33(1-3): 115~125
    [103] Eleanor D. Bates, Rebecca D. Mayton, Ioanna Ntai, et al., CO_2 Capture by a Task-Specific Ionic Liquid. J. Am. Chem. Soc., 2002, 124(6): 926~927
    [104] Jianbin Tang, Weilin Sun, Huadong Tanget al., Enhanced CO_2 Absorption of Poly(ionic liquid)s. Macromolecules, 2005, 38, 2037~2039
    [105] Tang, J.; Tang, H.; Sun, W.; et al., Poly(ionic liquid)s: a new material with enhanced and fast CO_2 absorption.Chem. Commun. 2005, 26, 3325
    [106] Tang, J.; Tang, H.; Sun, W.; et al.. Low-pressure CO_2 sorption in ammonium-based poly(ionic liquid)s. Polymer ,2005, 46:12460-12467
    [107]唐莉,王宝林,陈健应用变压吸附法分离回收CO_2,低温与特气, 1998 , (2) : 47~52
    [108]许阳,毛玉如,能源洁净利用与CO_2排放控制技术,能源工程, 2002 , 4 : 11~15
    [109]李兰廷,解强,温室气体CO_2的分离技术,低温与特气,2005,4:1~5
    [110] Ruthven, D.M., Farooq, S., Knaebel, K.S., Pressure SwingAdsorption. VCH Publishers, New York. 1994:67~70
    [111] Skarstrom C W, to Esso Research and Engineering Company, US Patent, 2944627, 1960
    [112] P.Guerin de Montgareuil,D.Domine, U.S.Patent ,3155468,1964
    [113] Yang, R.T. Gas Separation by Adsorption Processes. Butterworths,London, 1987:1~100
    [114] E. S. Kikkinides , R. T. Yang S. H. Cho, Response to Comments on“Concentration and Recovery of CO_2 from Flue Gas by Pressure Swing Adsorption”,Ind. Eng. Chem. Res. 1994,33, 2881
    [115] Ravi Kumar, Pressure Swing Adsorption Process: Performance Optimum and Adsorbent Selection, Ind. Eng. Chem. Res. 1994,33, 1600~1605
    [116] Vincent G. Gomes , Kevin W.K. Yee, Pressure swing adsorption for carbon dioxide sequestration from exhaust gases, Separation and Purification Technology 2002,28:161~171
    [117] Jayaraman, Ambalavanan, Chiao, et al., 'Kinetic separation of methane/carbon dioxide by molecular sieve carbons', Separation Science and Technology, 2002,37(11):2505 ~ 2528
    [118] Hiscock; Willis E,Pressure swing adsorption process ,US Patent,4589888,1986
    [119] Haruna; Kazuo , Process for producing oxygen-enriched gas ,US Patent,4684377, 1987
    [120] KELLER G E, KOO CHA, Apparatus for colorimetrically measuring traces of gas,US Patent: 4354854, 1982-10-19
    [121] Nofuchi Yusaka, ep patent, 342877,1989
    [122]付国旗,天然气吸附存储的研究,天津大学博士学位论文,2001
    [123] LeVan M.D.,(ed by Meunier F.) Adsorption processes and modeling: present and future, Fundamentals of Adsorption(6th), Paris, Elsevier, 1998:19~28
    [124] Sircar S., Production of Hydrogen and Ammonia Synthesis Gas by Pressure Swing Adsorption, Separation Science and Technology, 1990, 25(11):1087~1099
    [125] Kumar R., Kratz W. C., etc, Gas Mixture Fractionation to Produce Two High Purity Products by Pressure Swing Adsorption, Separation Science and Technology , 1992, 27(4):509~522
    [126] Pacalowska B., Whysall M., etc, Improve hydrogen recovery from refinery offgases, Hydrocarbon Processing, 1996.55~59
    [127] MERCEA P V,H WANG S T,Oxygen separation from air by a combined pressure swing adsorption and continuous membrane column processs,Membrane Sci., 1994, 88(2):131~144
    [128] Rao M. B., Sircar S., Performance and Pore Size Characterization of Nanoporous Carbon Membranes for Gas Separation, J. Mem. Sci., 1996, 110(1):109~118
    [129] Hufton J. R., Mayorga S., Sircar S., Sorption-Enhanced Reaction Process for hydrogen production, AIChE Journal, 1999,45(2):248~256
    [130] Gregg S. J., Sing K. S. W., Adsorption surface area and porosity, 2nd ed. Suffolk: St Edmundsbury Press, 1982, 25~26
    [131] Rouquerol F., Rouquerol J., Sing K., Adsorption by powders and porous solids, London: Academic Press, 1999, 165~179
    [132] Gregg S. J., Sing K. S. W., Adsorption surface area and porosity, 2nd ed. Suffolk: St Edmundsbury Press, 1982, 1~25
    [133] Sing K. S. W., Adsorption methods for the characterization of porous materials, J. Coll. Int. Sci., 1998, 76~77(1): 3~10
    [134] Diaz L., Hernandez-Huesca R., Aguilar-Armenta G., Characterization of the microporous structure of activated carbons through different approaches, Ind.Eng. Chem. Res., 1999, 38(4): 1396~1399
    [135] Kruk M., Jaroniec M., Choma J., Comparative analysis of simple and advanced sorption methods for assessment of microporosity in activated carbons, Carbon, 1998, 36(10): 1447~1458
    [136] Setoyama N., Suzuki T., Kaneko K., Simulation study on the relationship between a high resolutionαs-plot and the pore size distribution for activated carbon, Carbon, 1998, 36(10): 1459~1467
    [137] Span R., Wagner W., A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100K at pressure up to 800MPa, J. Phys. Chem. Ref. Data, 1996, 25(6): 1509~1595
    [138] Soule A. D., Smith C.A., Yang X., et al., Adsorption modeling with the ESD equation of state, Langmuir, 2001, 17(10): 2950~2957
    [139] Zhou L., Yao J., Wang Y., Estiamtion of pore size distribution by CO_2 adsorption and its application in physical activation of precursors, Chinese J. Chem. Eng., 2000, 8(3): 279~282
    [140] Everett D H. Commission on colloid and surface chemistry including catalysis. Reporting data on adsorption from solution at the solid/solution interface. Pure and Applied Chemistry,1986, 58(7):967~984
    [141]苏伟,椰壳基微孔活性炭制备与表征研究:[天津大学博士论文],天津:天津大学,2003
    [142] F. Rouquerol, J. Rouqerol, K. Sing, Adsorption by Powders and Porous solids, London: Academic Press, 1999.440-441
    [143] Malek. A, Farooq S., Kinetics of Hydrocarbon Adsorption on Activated Carbon and Silica gel, AIChE. Journal, 1997, 43(3): 761~776
    [144] Vincent G. Gomes, Mirza M. Hassan, Coalseam methane recovery by vacuum swing adsorption. Separation and Purification Technology, 2001, 24 (1-2), 189–196
    [145] Y.Takamura, S.Narita, J.Aoki, S. Hironaka, et al., Evaluation of dual-bed pressure swing adsorption for CO_2 recovery from boiler exhaust gas. Separation and Purification Technology, 2001, 24(3), 519–528
    [146] Zhou L., Zhong L.M., Yu M., et al., Sorption and Desorption of a Minor Amount of H2S on Silica Gel Covered with a Film of Triethanolamine, Ind. Eng. Chem. Res. 2004, 43,1765-1767
    [147] Li Zhou, Miao Yu, Limei Zhong, et al., Feasibility study on pressure swingsorption for removing H2S from natural gas Chemical Engineering Science , 2004,59 ,2401– 2406
    [148]张成芳,徐国文,钦淑均,等,活化MDEA溶液吸收二氧化碳动力学研究.高校化学工程学报, 1994, 8(1): 55-60
    [149] Schroter, H.J., Juntgen, H.: In: Rodrigues, A.E., LeVan, M.D. (eds.) Adsorption: Science and Technology, NATO ASI, vol. 158, pp. 269. Kluwer, Dordrecht (1989)
    [150] Pilarczyk, E., Knoblauch, K.: In: Li, N., Strathmann, H. (eds.) Separation Technology, p. 522. Eng. Foundation, New York (1988)
    [151] Kapoor, A., Yang, R.T.: Kinetic separation of methane-carbon dioxide mixture by adsorption on molecular sieve carbon. Chem. Eng. Sci. 44, 1723–1733 (1989)
    [152] Gomes, V.G., Hassan, M.M.: Coalseam methane recovery by vacuum swing adsorption. Sep. Purif. Technol. 2001,24, 189–196
    [153] Cavenati, S., Grande, C.A., Rodrigues, A.E.: Upgrade of methane from landfill gas by pressure swing adsorption. Energy Fuels 19, 2545–2555 (2005)
    [154] Delgado, J.A., Uguina, M.A., Sotelo, J.L., et al., Fixed-bed adsorption of carbon dioxide/methane mixtures on silicalite pellets. 2006 ,Adsorption 12, 5–18
    [155] JoséA. Delgado María A. Uguina JoséL. Sotelo, Beatriz Ruíz Marcio Rosário, Carbon Dioxide/Methane Separation by Adsorption on Sepiolite ,Journal of Natural Gas Chemistry,2007,16(3),235-243
    [156] Ambalavanan Jayaraman; Andrew S. Chiao; Joel Padin; et al., Kinetic separation of methane/carbon dioxide bymolecular sieve carbons ,Separation Science and Technology, 2002,37(11), 2505–2528
    [157] Simone Cavenati, Carlos A. Grande, and Al(?)′rio E. Rodrigues, Removal of Carbon Dioxide from Natural Gas by Vacuum Pressure Swing Adsorption,Energy & Fuels 2006, 20, 2648-2659
    [158] Simone Cavenati, Carlos A. Grande, Al(?)′rio E. Rodrigues, Upgrade of Methane from Landfill Gas by PressureSwing Adsorption,Energy & Fuels, 2005, 19, 2545-2555
    [159] Do D. D., Adsorption analysis: Equilibria and Kinetics, London: Imperial College Press, 1998, 82-83, 290-300
    [160]北川浩,铃木谦一郎,吸附的基础与设计,北京,化学工业出版社,1983,110-115
    [161]近藤精一,石川达雄,安部郁夫著,李国希译,吸附科学,化学工业出版社,2001,32-33
    [162]王玉新,毛竹活性炭的制备及其应用研究,天津大学博士学位论文,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700