大白菜不同三体n+1雄配子传递率差异的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以大白菜同源四倍体小孢子培养产生的且已鉴定为三体的2号、7号、9号、10号非整倍体植株为试材,针对各类三体间n+1雄配子传递率差异问题,对三体大白菜花粉母细胞的减数分裂行为、花粉发育的组织切片观察、花粉特征特性及生理生化等方面进行观察研究,同时就不同三体的额外染色体附加效应对减数分裂过程中染色体的行为、花粉活力、结子率、n+1雄配子传递率的影响进行分析。研究结果如下:
     1.以2号、7号、9号、10号三体为父本,二倍体为母本进行杂交后的结子率分别为50.35%,36.90%,17.91%,0,n+1雄配子传递率分别为7.69%,3.57%,8.70%,0。
     2.三体在减数分裂过程中出现异常现象。三体在终变期和中期Ⅰ,3个同源染色体联会成三价体,或2个联会成二价体和1个单价体,或3个都为单价体;后期Ⅰ出现落后染色体或单价体提前分离,导致除10-11式分离外,还有10-1-10,9-12,11-11,10-2-10,10-12,10-10,9-1-11等不均衡分离方式;后期Ⅱ有11-11-10-10,10-10-10-12,10-10-10-11,10-11-11-11,11-11-10-9,10-10-10-10,9-12-10-10,9-9-11-11,11-10-10-9,12-10-9-11,11-9-9-13,10-10-10-9等分离方式;4个三体中的n+1小孢子频率不同。这些现象均会不同程度的降低各个三体的传递率。
     3.组织切片表明:2号、9号三体的花粉发育过程与二倍体相似,基本正常,7号、10号三体在减数分裂时期绒毡层出现过异常现象,但7号三体在以后的时期绒毡层则表现正常。而10号三体的绒毡层虽在四分体时期表现正常,但在小孢子时期又表现了异常,并且花粉全部败育。因此影响10号三体n+1雄配子传递率的主要原因就是花粉的败育。
     4.2号三体的花粉整齐度与二倍体无显著性差异;7号、9号三体的花粉整齐度均极显著低于二倍体;9号三体的花粉整齐度最低;10号三体不散粉。花粉整齐度与结子率有极显著的正相关关系,因此,花粉整齐度可作为预测结子率的一个指标。
     5.9号三体的花粉活力显著低于二倍体;2号、7号三体的花粉活力极显著低于二倍体;7号三体的花粉活力最低。三体的花粉活力与传递率呈显著的正相关关系。
     6.2号、7号、9号三体n+1雄配子传递率与减数分裂过程中染色体的行为和花粉生活力的降低有关,同时,n+1雄配子受精能力、2n+1胚发育能力可能
    
    也会影响n+l雄配子的传递率。由于每个三体的额外染色体所携带的遗传信息
    (基因)不同,导致这些因素发生不同程度的变化,最终导致不同三体MI雄
    配子的传递率产生差异。
     7.4个三体的可溶性糖、淀粉及氨基酸含量均极显著低于二倍体。
Trisomics 2.trisomics7.trisomics9 and trisomics 10 were experiment materials.which were cultured from microspore of homologous tetraploid of Chinese cabbage and had been appraised.To solve the problem of n+l male gamete transmission difference of distinct trisomics,meiosis behavior of pollen mother cell,tissue section observation of pollen development,pollen characteristic, physiology and biochemistry would have been studied.And it was analyzed that additional effects of extra chromosome of distinct trisomics influnced chromosome behavior at meiosis,pollen activity.seed set,n+l male gamete transmission.The results of study were as follows:
    1. Seed set was 50.35%,36.90%,17.90%,0 respectively after trisomics 2, trisomics 7,trisomics 9,trisomics 10 as male parent hybridized with diploid as female parent.N+1 male gamete transmission was 7.69%,3.57%,8.70%,0 respectively.
    2. There existed many abnormal phenomena during meiosis.Thress homologous chromosomes of trisomics associated as a trivalent or a bivalent and a univalent or three univalent during diakinesis and metaphase 1 ;Laggard chromosome and univalent separated in advance at anaphase I ,leading to distribution of 10-1-10,9-12,11-11,10-2-10,10-12,10-10,9-1-11 besides 10-ll;And there was distribution of 11-11-10-10, 10-10-10-12, 10-10-10-11, 10-11-11-11, 11-11-10-9, 10-10-10-10, 9-12-10-10, 9-9-11-11, 11-10-10-9, 12-10-9-11, 11-9-9-13, 10-10-10-9 at anaphase II ;n+l microspore frequency were different of four trisomics.These phenomna all reduced the transmission of each trisomic in various degree.
    3. Tissue section indicated:Pollen development courses of trisomics 2,trisomics 9 were normal basically.similarly to diploid.The tapetum cells of
    
    
    
    
    trisomic 7 and 10 showed abnormal phenomenon at meiosis,but trisomic 7 recovered normality at other periods.Although the tapetum cell of trisomic 10 was normal at the stage of tetrad,abnormal at the stage of microspore when pollen was all aborted,so pollen abortion was the main reason for influencing n+l male gamete transmission of trisomic 10.
    4. Pollen regularity of trisomic 2 had no significance difference with that of diploid;Pollen regularity of trisomic 7 and 9 was lower than that of diploid significantly;Pollen regularity of trisomic 7 was the lowest;Trisomic 10 didn't scatter pollen.There was significantly positive correlation between pollen regularity and seed set,so the former could be regarded as an index predicting the latter.
    5. Pollen activity of trisomic 2,7,9 was lower than that of diploid significantly;Pollen activity of trisomic 7 was the lowest.Pollen activity had positive correlation with transmission rate significantly.
    6. N+l male gamete transmission of trisomic 2,7,9 had the relation with chromosome behavior at meiosis and with the degression of pollen activity.Besides,n+l male gamete fertilization ability and 2n+l embryo development ability perhaps could influnce it,too.Extra chromosome of each trisomc carried different heredity information(gene),leading to above factors changes in various degree /which caused n+l male gamete transmission difference of distinct trisomics.
    7. Soluble sugar,amylum and amino acid contents of four trisomics were lowe than that of diploid.
引文
[1]Tsuchiya T. Cytogenetic studies of trisomic in barley[J]. Jap. J. Bot., 1960, 17:177-213.
    [2]王文雅,陈雪平,中书兴,等.植物三体研究综述[J].河北农业大学学报,2002,25(1):106-109.
    [3]Einset J. Chromose length in relation to transmission frequency of maize trisomics[J]. Genetics, 1943, 28: 349-364.
    [4]Khush G S, Singh R J, Sur S C, et al. Primary trisomic of rice: Origin,morphology, cytology and use in linkge mapping[J]. Genetics, 1984, 107:141-163.
    [5]Sur S C. Identification and cytogenetic studies of primary trisomic in rice(Oryzai Sativa L.) [D]. Thesis of Ph.D.degree,University of the Philippines at Los Banos, 1975, pp.71.
    [6]胡保民,张天真,潘家驹.陆地面三体的诱发、鉴定、研究和利用Ⅱ.额外染色体的传递及四体的分离[J].作物学报,1996,22(5):283-287.
    [7]Meijer E G M, Ahloowaliu B S. Trisomic of Ryegrass and their transmission[J].Theor. Appl. Genet., 1981, 60: 135-140.
    [8]Sareen S, Munshi A, Koul A K, et al. Genetic Diversity among Plantagos. Ⅹ Ⅸ.Studies on primary trisomics of Plantogo lanceolata L[J]. Cytologia, 1990, 55:601-608.
    [9]Singh U P, Saikumar R, Singh R M, et al. Tertiary trisomics of pearl miller (Pennisetum americanum (L) K. Schum): It's cytomorphology, fertility and transmission[J]. Theor. Appl. Genet., 1982, 63: 139-144.
    [10]褚启人.水稻初级三体在染色体基因定位连锁分析及品种改良中的作用[J].中国农业科学,1985,5:8-15.
    [11]三上哲夫.甜菜三体系列的育成及三体分析[J].国外农学(甜菜),1984,4:9-14.
    [12]Satina S, Blakeslee A F. Chromosome behabior in triploid Datura. Ⅱ. The female gametophyte[J]. American J Bot, 1937, 24:621-627.
    [13]徐绍英,毛节琦,丁守仁,等.大麦同源三倍体后代的染色体数目及其形态
    
    的变异[J].浙江农业大学学报,9(1):7-16.
    [14]Ramage R T. Balanced tertiary trisomics for use in hybrid seed production[J]. Crop Sci, 1965, 5: 177-178.
    [15]Khush G S. Cytogenetics of aneuploids[M]. Academic press. New York. 1973,10.
    [16]Laser K D, Lersten N R. Anatomy and cytology of mirosporogenesis in cytoplasis male sterile angiosperms[J]. Bot. Rev., 1972, 38: 425-454.
    [17]李传友,孙兰珍.不同小麦T型、V型和K型细胞质雄性不育系花粉败育机理的细胞学研究[J].华北农学报,1996,11(2):1—8.
    [18]王福青,李敏,曲咏梅.大白菜雄性败育的显微结构观察[J].植物学通报,2001,18(1):105-109.
    [19]杨广东,李燕娥,石跃进等.蔬菜的雄性不育与基因工程[J].长江蔬菜,2001,4:28-30.
    [20]Mascarenhas J P. Gene Activity Duing Pollen Development[J]. Annu. Rev.Plant Physiol.Plant Mol. Biol, 1990,41: 317-338.
    [21]Takegami M H, Yoshioka M, Tanaka I, et al. Characteristics of isolated microsporocytes from liliaceous plants for studies of the meiotic cell cycle in vitro[J]. Plant Cell Physiol., 1981, 22:1-10
    [22]Tanaka I, Ito M. Induction of typical cell division in isolated microspores of Lilium longiflorum[J]. Plant Sci. Lett., 1980, 17: 279-285.
    [23]Tanaka I, Ito M. Studies on microspore development in liliaceous plants.Ⅱ .Pollen tube development lily pollens cultured from the uninucleale microspore stage[J]. Plant Cell Physiol., 1981, 22: 149-153.
    [24]Steiglitz H. Role of β-1,3-glucanase in postmeiotic microspore release[J]. Dev. Biol., 1977, 57: 87-97.
    [25]Izhar S, Franhel R. Theor. Appl. Genet. 1971, 41: 104-108.
    [26]Worall D, Hird D L, Hedge R, ct al. Premature dissolution of the microsporocyte eallose wall causes male sterility in Transgenie Tobacco[J].The Plant Cell, 1992, 4: 759-771.
    [27]Bedinger P. The remarkable biology of pollen[J]. Plant Cell, 1992, 4: 879-887.
    [28]Heslop-Harrison J. In Pollen: Development and physiology. J. Heslop-Harrion,
    
    J. Heslop-Harrison, ed(London: Butterworth), 1971, pp.75-98.
    [29]Rowley J R. Grana, 1972, 13: 129-138.
    [30]Takahasi M. Exine initiation and substructure in pollen of Caesalpinia japonica(Leguminosae: caesalpinioideae) [J]. American Journal of Botany,1993, 80(2): 192-197.
    [31]Press D, Lemieux B, Yen G, et al. A conditional sterile mutation eliminates surface components from Arabidopsis pollen and disrupts cell signaling duing fertilization[J]. Genes Dev.,1993, 7: 974-985.
    [32]Dickinson H. Pollen dressed for success[J]. Nature, 1993, 364: 573-574.
    [33]黄厚哲,楼士林.植物生长素亏损与雄性不育的发生[J].厦门大学学报自然科学版,1984,23:82—97.
    [34]Ohmasa M. Biochemical studies of cytoplasmic male sterility and mitochondrial enzyme activities[J]. Bull. Natl. Inst. Agri. Sci., 1982, 33:201-233.
    [35]Fukasawa H. Oil the free amino acids in anthers of male sterile wheat and maize[J]. Jpn. J. Genet., 1953, 29: 135-137.
    [36]王延枝,何其敏.同核异质水稻雄性不育系花粉发育过程中生化特征的初步研究[J].武汉大学学报自然科学版,1985,2:81—85.
    [37]Wu F,Murry L R. Proteolytic activity in anther extracts of fertile and cytoplasmic male sterile Petunia. Plant Physiol, 1985, 79: 301-305.
    [38]Edwardson I R. Cytoplasmic male sterility[J]. Bot. Rev., 1970, 36: 341-420.
    [39]杜士宾,巴利洛娃,袁妙葆,俞志隆,李桃生译.植物细胞质雄性不育的遗传学原理[M].北京:农业出版社,1980.
    [40]朱广廉,曹宗巽.太谷核不育小麦不育株和可育株花药内游离氨基酸成分的比较分析[J].植物生理学报,1984,10:185-189.
    [41]朱广廉,邓兴旺.太谷核不育小麦花药内游离脯氨酸和总氨基酸含量的变化及其与育性的关系[J].植物学报,1984,26:616-622.
    [42]孙日飞,方智远,张淑江,等.萝卜胞质大白菜雄性不育系的生化分析.园艺学报,2000,27(3):187-192.
    [43]张明方,陈竹君.榨菜保持雄性不育系和保持系花器发育过程中内源激素变化[J].浙江农业大学学报,1997,23:154-157.
    
    
    [44]Singh S, Sawhney U K. Plant hormones in relation to stamen development and male sterility in rapeseed[J]. Abst. 10th Intl. Rapeseed Cong, 1999, 182.
    [45]田长恩,张明方.油菜细胞质雄性不育系及其保持系不同发育阶段内源激素动态变化初探[J].中国农业科学,1998,31(4):20-25.
    [46]李英贤,张爱民.植物雄性不育激素调控子研究进展[J].中国农业通报,1995,11(3):25-28.
    [47]Sawhney U K, Shukla A. Male sterility in flowering plants: are plant growth substances involved[J]. Amer. J. Bot., 1994, 81:1640-1647.
    [48]夏玉先,唐尚格.棉花473A育性表达中花药脱落酸和玉米素+玉米素核苷含量变化[J].棉农学报,1995,7:169-171.
    [49]Spena A, Estrueh J J, er al. Anther-specific expression of the rolB gene of Agrobacterium rhizo genes increases IAA content in anthers and alters anther development and whole flower growth[J]. Theor. Appl. Genet., 1992, 84:520-527.
    [50]耿飒,麻密.Ipt基因定位表达对羟基因烟草育性的影响[J].植物学报,2000,42:217-220.
    [51]何启伟.十字花科蔬菜育种[M].北京:农业出版社,1993.
    [52]杨广东,李燕娥,石跃进,等.蔬菜的雄性不育与基因工程[J].长江蔬菜,2001,(4):28-30.
    [53]郭晶心,孙日飞,宋家祥,等.大白菜雄性不育系小孢子发生的细胞形态学研究[J].园艺学报,2001,28(5):409~414.
    [54]王福青,李敏,曲永梅.大白菜雄性败育的显微结构观察[J].植物学通报,2001,18(1):105-109.
    [55]梁燕,王鸣,赵稚雅.结球白菜同核异质雄性不育系同工酶研究[J].园艺学报,1994,21(3):264-268.
    [56]梁燕,王鸣,赵稚雅.结球白菜细胞质雄性不育系花药和花粉的发育[J].西北农业大学学报,1994,22(3):19-23.
    [57]冯辉,邵双.大白菜温度敏感型雄性不育遗传特性分析[A].中国园艺学会第九届学术年会论文集[C].北京:中国科学技术出版社,2001,246-248.
    [58]李家文,王贵臣,李惠芬,等.白菜光合作用初步研究[J].园艺学报,1963,2(3):271-282.
    
    
    [59]张振贤,郑国生,赵德婉.大白菜光和特性研究[J].园艺学报,1993,20(1):38-44.
    [60]张振贤,陈利平,王绍辉,等.田间大白菜光合速率日变化的研究[J].山东农业大学学报(自然科学版),2000,31(3):249-252.
    [61]张振贤,梁书华,陈利平.田间大白菜光合速率日变化与“午睡现象”的研究[J].植物学报,1994,36(增刊):97-101.
    [62]魏珉,吴淑芸,张启沛.大白菜小株采种种株的光和特性[J].园艺学报,1998,25(2):159-164.
    [63]王文雅.大白菜部分三体光合作用研究[D].2001.
    [64]李家文.白菜起源和进化问题的探讨[J].园艺学报,1962,1(3/4):297-304.
    [65]林维申.中国白菜分类的探讨[J].园艺学报,1980,7(7):21-26.
    [66]谭其猛.试论大白菜品种的起源分布和演化[J].中国农业科学,1979,4:68-75.
    [67]曹家树.芸薹类蔬菜(n=10)染色体G-带的研究[J].园艺学报,1994,21(3):257-263.
    [68]曹家树.中国白菜起源、演化和分类研究进展.园艺学年评,1996.
    [69]曹家树,曹寿椿.中国白菜与同属其他类群种皮形态的比较和分类[J].浙江农业大学学报,1994,20(4):393-399.
    [70]曹家树,曹寿椿,易清明.白菜及其相邻类群基因组DNA的RAPD分析[J].园艺学报,1995,22(1):47-52.
    [71]曹家树,曹寿椿,缪颖,等.中国白菜各类群的分支分析和演化关系的研究[J].园艺学报,1997,24(1):35-42.
    [72]曹家树,曹寿椿.白菜起源的杂交验证初报[J].园艺学报,1995,22(1):93-94.
    [73]曹家树,曹寿椿.中国白菜叶部性状动态观察及其演化方向研究[J].南京农业大学学报,1996,18(2):34-41.
    [74]叶静渊.从杭州历史上的名产“黄芽菜”看我国白菜的起源、演化和发展[A].农史研究[C].北京:农业出版社,1990,71-83.
    [75]叶静渊.明清时期白菜的演化与发展[J].中国农史,1990,(1):53-60.
    [76]扬广东,朱祯,等.转基因大白菜外源基因的遗传和表达初步研究[A].中国园艺学会第九届学术年会论文集[C].北京:中国科学技术出版社,
    
    2001,237-241.
    [77]陈云鹏,曹寿椿,缪颖.芸薹属蔬菜遗传多样性的RAPD初步分析[J].上海农学院学报,1999,17(2):85-89.
    [78]漆小泉,朱德蔚.大白菜和紫菜薹自交系染色体组DNA的RAPD分析[J].园艺学报,1995,22(3):256-262.
    [79]孙德岭.芸薹属蔬菜基因组亲缘关系研究[D].天津,2001.
    [80]申书兴,赵前程,刘世雄,等.四倍体大白菜小孢子植株的获得与倍性的鉴定[J].园艺学报,1999,26(4):232-237.
    [81]申书兴,郭英华,等.同源四倍体大白菜小孢子培养获得三体的研究[J].Adwances in Chromosome Sciences.2001,vol 1.
    [82]申书兴,陈苏,李振秋,等.四倍体大白菜小孢子培养获得初级三体的细胞学研究[J].园艺学报,2000,27(2):145-147.
    [83]申书兴,李振秋,张成合,等.大白菜3号,6号染色体双三体及其初级三体的鉴定[J].园艺学报,2002,29(5).
    [84]毛节琦,徐绍英,丁守仁.大麦初级三体减数分裂过程中额外染色体的行为[J].遗传,1983,5(5):9-10.
    [85]吴鹤鸣,周刊杨,谢小凰.同核异质粳稻雄性不育系花粉和花药发育的细胞学观察[J].江苏农业科学.1987,3(1):19-21
    [86]宋仁敬,张庆勤.黔型小麦雄性不育系及其保持系花药和花粉发育的细胞形态学观察[J].贵州农业科学,1988,(4):7-13
    [87]北京大学生物系植物遗传育种专业.雄性不育和雄性能育小麦花药和花粉发育的细胞形态学观察[J].植物学报,1976,18(2):141-149
    [88]席湘媛.小麦雄性不育系花药和花粉发育的细胞形态学观察[J].山东农学院学报,1980,(1):15-21
    [89]吕世友,李彦舫,陈祖锵,等.花粉发育的研究进展[J].植物学通报,2001,18(3):340-346.
    [90]Alice K, Bhowol J G Studies on the trisomics of Penniseturn americium (L.)Leeke: Morphological and Cytological Behavior of Primary Trisomics[J].Cytologia, 1986, 51:679-692.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700