命题泛逻辑的演算理论及推理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究课题源于国家自然科学基金项目(No.60273087)“经验知识推理理论研究”与北京市自然科学基金项目(No.4032009)“不精确推理理论研究”。
     如何处理各种不确定性和演化已成为当前人工智能深入发展的关键。已十分完善的经典数理逻辑是刚性逻辑,只能解决确定性问题。如何使经典数理逻辑柔性化,以包容各种不确定性和演化,是逻辑学研究面临的新挑战。在此背景下,各种非标准逻辑和现代逻辑大量涌现。何华灿教授在研究各种逻辑规律的基础上提出了能包容各种逻辑形态和推理模式的泛逻辑学理论框架,为研究复杂系统中的不确定性和演化过程奠定了理论基础。
     本文属于泛逻辑的基础理论研究,围绕“命题泛逻辑的演算理论”这个主线,对命题泛逻辑的语义、语构和推理进行了深入研究。主要研究成果和创新点如下:
     1.将广义重言式理论引入命题泛逻辑,对h,k取一些固定值时的广义重言式理论进行了刻画,得到一些重要结论:当c∈[0.75,1]时,关于I_(h=c)而言,F(S)中只有3种不同的广义重言式,即,可达0-重言式、0~+-重言式和重言式:当h=1,k=0.5时,关于I_(h=1,k=0.5)而言,F(S)中只有5种不同的广义重言式,即可达0-重言式、0~+-重言式、可达(1/2)-重言式、(1/2)~+-重言式和重言式:当h=0.75,k=0.5时,关于I_(h=0.75,k=0.5)而言,F(S)中对每一有理数均存在可达广义重言式,且是类类互异的。
     2.当h∈(0,1]时,以零级泛与运算模型为逻辑“与”的解释,以零级泛蕴涵运算模型为逻辑“蕴涵”的解释,建立命题泛逻辑演绎系统UL_(h∈(1,1]),并证明其可靠性和完备性。
     3.当h∈(0,1],k∈(0,1)时,以一级泛与运算模型为逻辑“与”、一级泛蕴涵运算模型为逻辑“蕴涵”、一级泛非运算模型为逻辑“非”为背景,引入一种新的代数系统L∏G~-,以此代数为语义建立命题演绎系统UL_(h∈(0,1])~-,并证明其可靠性和完备性。
     4.提出了基于泛逻辑且针对常见模糊推理模型的推理规则和泛蕴涵推理机;用含有泛蕴涵推理机的模糊系统对一元、二元函数的图形进行描绘;针对三种模糊系统进行了实验数据比较。结果表明,在相同的规则下,含有泛蕴涵推理机的系统误筹最小。
     上述研究成果为最终解决命题泛逻辑的标准完备性奠定了理论基础,为进一步建立谓词泛逻辑提供了理论保障。
How to deal with various uncertainties and evolution become the key problems for further development of AI. The well-developed classical mathematical logic is the rigid logic and can only solve problems of certainty. How to make classical mathematical logic more flexible to contain various uncertainties and evolution is a new challenge that logics faces. Under this situation, all kinds of non-classical and modern logic are much proposed. Based on studies of general law of logics, Professor Huacan He proposed a universal logic principle frame which can contain many logical modalities and reasoning modes. It established a theoretical basis for the studies of complex uncertainty problems and evolution process.
    This thesis is a theoretical research on universal logic. Centered on the calculus of propositional universal logic, its semantics, syntax and reasoning are deeply studied. The main results and main innovations in this thesis are as following:
    1. The generalized tautologies theory is introduced into the propositional universal logic, and that theories for some fixed value of h and k are described, hence, some important results are obtained: when c∈[0.75, 1], if the semantic is explained by I_(h=c), there are only three different generalized tautologies in F(S), that is, accessible 0-tautology、 0~+-tautology and tautology; when h=1, k=0.5, if the semantic is explained by I_(h=1,k=0.5), there are only five different generalized tautologies in F(S), that is, accessible 0-tautology、 0~+-tautology、accessible (1/2)-tautology、 (1/2)~+-tautology and tautology in F(S); when h=0.75, k=0.5, if the semantic is explained by I_(h=0.75,k=0.5), the accessible tautologies exist for each rational number in F(S), and they are difference each other.
    2. When h∈ (0,1], the propositional calculus deductive system UL_(h∈(0,1])) of universal logic is built up based on the 0-level universal AND operators as logic conjunction and 0-level universal IMPLICATION as logic implication. And its soundness and completeness are proved.
    3. When h∈(0,1], k∈ (0,1), based on the 1-level universal AND as logic conjunction,
引文
[1] 何华灿王华等.泛逻辑学原理[M].北京:科学出版社,2001,8.
    [2] 彭漪涟 马钦荣等.逻辑学大辞典[M].上海:上海辞书出版社,2004,12.
    [3] 王元元.计算机科学中的逻辑[M].北京:科学出版社,1989.
    [4] Shoenfield J. R. Mathematical Logic[M]. New York: Addison-Wesley Publishing Company 1967.1.
    [5] 莫绍揆.数理逻辑概貌[M].北京:科学技术文献出版社,1989.
    [6] 张家龙.数理逻辑发展史-从莱布尼兹到哥德尔[M].北京:社会科学文献出版社,1993.
    [7] 王国俊.数理逻辑引论与归结原理[M].北京:科学出版社,2003.
    [8] Atanassov K. Intuitionstic fuzzy sets[J]. Fuzzy Sets and Systems, 1986, 20(1): 86-96.
    [9] 罗铸楷,胡谋,陈廷槐.多值逻辑的理论及应用[M].北京:科学出版社,1992.
    [10] 周礼泉.模态逻辑引论[M].上海:上海人民出版社,1986.
    [11] L.A. Zadeh, etl. Local and Fuzzy Logics, in M. Dunn and G. Epstein, Eds, Modern Uses of Multiple-Value Logics[M], Dordrecht: Reidel 1977: pp. 106-107.
    [12] 刘叙华.模糊逻辑与模糊推理[M].长春:吉林大学出版社,1989.
    [13] 周昌乐 认知逻辑导论[M].北京:清华大学出版社,广西科学技术出版社,2001,5.
    [14] J. ALukasiewicz. On three-valued logic[J]. Ruchlozoczny, 1920, 5(2): 170-171.
    [15] L.A.Zadeh, Fuzzy Sets[J]. Information and Control, 1965, 8(3): 338-357.
    [16] D.M. Gabbay and F. Guenthner, Handbook of philosophical logic[M]. 2nd ed, Volume 1-12, Dordrecht: Kluwer Academic Publishers, 2001-2004.
    [17] L.A.Zadeh. Why the success of fuzzy logic is not paradoxical[J]. IEEE Expert, 1994, 9(4): pp: 47-49.
    [18] Marinos P.N. Fuzzy logic and its application to switching systems[J]. IEEE Trans., Comput., 1969,18(4):343-348.
    [19] Kendel A. On minimization of fuzzy functions[J]. IEEE Trans. Comput., 1973, 22(9):826-832.
    [20] Roberto L.O. Cignoli etl. Algebraic foundations of many-valued reasoning[M]. Dordrcht/Boston/London: Kluwer Academic Publishers,2000.
    [21] Neff T.P., Kandel A. Simplification of fuzzy switching functions[J], Int.J.Comput. Inform.Sci., 1977, 6(1):55-70.
    [22] 裴道武.Kleene逻辑函数的特征与极小化[J].工程数学学报,2000,17(4):81—85.
    [23] Goguen J.W. The Logic of inexact concepts[J]. Synthese, 1968, 19(3):325-373.
    [24] J.Pavelka. On fuzzy logic(Ⅰ)[J]. Z. fur Mathematik Logic u Grundlagen d Mathematic, 1979, 25(1): 45-52.
    [25] J.Pavelka. On fuzzy logic(Ⅰ)[J]. Z. fur Mathematik Logic u Grundlagen d Mathematic, 1979, 25(2): 119-134.
    [26] J.Pavelka. On fuzzy logic(Ⅰ)[J]. Z. fur Mathematik Logic u Grundlagen d Mathematic, 1979, 25(3): 447-464.
    [27] P.Hajek. Metamathematics of fuzzy logic[M]. Dordrcht/Boston/London: Kluwer Academic Publishers, 1998.
    [28] P.Hajek. Basic fuzzy logic and BL-algebra[J]. Soft Computing, 1998, 2(1),124-128.
    [29] P.Hajek, L.Godo and F.Esteva. A complete many-valued logic with product conjunction[J]. Archive for Mathematical Logic. 1996;35(2): 191-208.
    [30] R.Cignoli, F.Esteva, L.Godo and A.Torrens. Basic fuzzy logic is the logic of continuous t-norms and their residua[J]. Soft Computing, 2000, 4(1): 106-112.
    [31] F.Esteva, L.Godo. Monoidal t-morro based logic: towards a logic for left-continuous t-norms[J]. Fuzzy sets and systems, 2001, 124(2): 271-288.
    [32] S.Jenei, F.Montagna. A proof of standard completeness for Esteva and Godo's logic MTL[J]. Studia Logic, 2002, 70(2):183-192.
    [33] U.HAohle. Monoidal logic[J]. In: Kruse/Gebhardt/Palm(eds.). Fuzzy systems in computer science, Vieweg, Wiesbaden, 1994, pp. 233-243.
    [34] U.Hohle. Commutative, residuated 1-monoids[J]. In Non-classical logics and their applications to fuzzy subsets, U.Hohle and E.P.Klement(eds.), Kluwer Acad. Publ., Dordrecht, 1995, pp. 53-106.
    [35] S.Gottwald. A treatise on many-valued logics[M]. Studies in Logic and Computation 9, Research Studies Press Ltd., Bsldock, UK, 2001.
    [36] 王国俊.Fuzzy命题演算的一种形式演绎系统[J].科学通报,1997,42(10):1041-1045.
    [37] Pei Daowu, Wang Guojun. The completeness and applications of the formal system[J]. Science in China(Series F), 2002, 45(1): 40-50.
    [38] 王国俊.非经典逻辑与近似推理[M].北京:科学出版社,2000
    [39] 裴道武.强正则剩余格值逻辑系统L~N及其完备性[J].数学学报,2002,45(7):745-752.
    [40] Daowu Pei. On equivalent forms of fuzzy logic systems NM and IMTL[J]. Fuzzy Sets and Systems, 2003, 138(2): 187-195.
    [41] Xu Y, Qin K Y. Lattice-valued Propositional Logic(Ⅰ)[J]. Journal of Southwest Jiaotong University, 1993, (1): 22-27.
    [42] Xu Y, Qin K Y. Lattice-valued Propositional Logic(Ⅱ)[J]. Journal of Southwest Jiaotong University, 1993, (2): 123-128.
    [43] Xu Y etl. L-valued Propositional Logic[J]. Information Sciences, 1999,114(2): 205-235.
    [44] Y Xu, D Ruan, K Y Qin and J Liu. Lattice-Valued Logic[M]. Springer-Verlag Berlin Heidelberg New York, 2003.
    [45] L.A.Zadeh. Outline of a new approach to the analysis of complex systems and decision processes[J]. IEEE Trans. Systems, Man and Cybernetics, 1973, SMC(1): 28-44.
    [46] J. F. Bandler. A new approach to approximate reasoning using a fuzzy logic[J]. Fuzzy Sets and Systems, 1979, 2(3): 309-325..
    [47] I. B. Turksen and Z. Zhong, An approximate analogical reasoning scheme based on similarity measures and interval valued fuzzy sets[J], Fuzzy sets and systems 1990, 34(3): 323-346..
    [48] D. S. Yeung and E. C. C. Tsang. A comparative study on similarity-based fuzzy reasoning methods[J]. IEEE Trans. Syst., Man, Cybern. B, 1997, 27(2): 216-227.
    [49] S. Raha, N.R. Pal, and K. S. Ray. Similarity-Based Approximate Reasoning: Methodology and Application[J]. IEEE Trans. Syst., Man, Cybern. PART A: Systems and Humans,. 2002, 32(4): 541-547.
    [50] L.K. Hyung, Y.S. Song and K.M. Lee. Similarity measure between fuzzy sets and between elements[J]. Fuzzy Sets and Systems, 1994, 62(2): 291-293.
    [51] T.Takagi and M.Sugeno, Fuzzy identification of systems and its applications to modeling and control[J], IEEE Trans. Systems Man Cybernet, 1985, 15(1): 116-132.
    [52] M.Sugeno and G.T.Kang, Structure identification of fuzzy model[J], Fuzzy sets and systems, 1988,28(1): 15-33.
    [53] D.Dubois and H.Prade, Fuzzy sets in approximate reasoning. Part 1: Inference with possibility distributions[J]. Fuzzy Sets and Systems, 1991, 40(2): 143-202.
    [54] 吴望名模糊推理的原理和方法[M].贵阳,贵州科技出版社,1994.9.
    [55] 张文修、梁怡.不确定性推理原理.西安:西安交通大学出版社,1996.
    [56] Yang Xu, etl. Fuzzy Reasoning Based on Generalized Fuzzy If-Then Rules, International Journal of Intelligent Systems, 2002, 17(8): 977-1006.
    [57] Yang Xu Etienne E. Kerre, Ruan, Zhenming Song, Fuzzy Reasoning Based on the Extension Principle[J], International Journal of Intelligent Systems, 2001, 16(4): 469-495,.
    [58] 李洪兴 模糊控制的插值机理[J],中国科学E辑,1998,28(3):259-267.
    [59] 李洪兴.从模糊控制的数学本质看模糊逻辑的成功[J].模糊系统与数学,1995,4(1):1-14.
    [60] Fuzzy控制的本质与一类高精度Fuzzy控制器的设计[J],李洪兴,控制理论与应用,1997,14(6):868-872.
    [61] 王国俊.模糊推理的全蕴涵三I算法[J].中国科学(E辑),1999,29(1):43-53.
    [62] Guojun Wang. On the logic foundation of fuzzy reasoning[J]. Information Sciences, 1999, 117(1):47-88.
    [63] Minsheng Ying. A logic for approximate reasoning[J]. J. Symbolic Logic, 1994, 59(8): 830-837.
    [64] Chen Qihao, Shin Kawase, On fuzzy-valued fuzzy reasoning[J], Fuzzy sets and systems, 2000,113(2): 237-251.
    [65] C. Elkan. The paradoxical success of fuzzy logic[J]. IEEE Expert, 1994, 9(1): 3-8.
    [66] 吴望名.关于模糊逻辑的一场争论[J].模糊系统与数学,1995,9(2):1-9.
    [67] Wang Li-xin. A course in fuzzy systems and control[M]. Prentice-Hall, Inc. 1997.
    [68] 何华灿 人工智能导论[M].西安:西北工业大学出版社,1988.
    [69] 何华灿 刘永怀 何大庆 经验性思维中的泛逻辑[J].中国科学(E辑),1996,26(1):72-78.
    [70] 何华灿,刘永怀,白振兴,艾丽蓉,王瑛,一级泛非运算研究[J],计算机学报,1998,1(增刊):24-28.
    [71] 何华灿,刘永怀等,泛“蕴含”运算和泛“串行推理”运算研究[J],软件学报,1998,Vol.9(6):469-47.
    [72] 何华灿.论第二次逻辑学革命[C].中国人工智能进展2003,32-41.
    [73] 薛占熬,张小红,何华灿.论广义相关性在柔性逻辑中的重要性[J].计算机科 学,2004,31(2):113-116.
    [74] 刘永怀,何华灿,魏宝刚.M范数的定义、性质及生成定理[J].西北工业大学学报,1997,15(1):102-107.
    [75] 谷晓巍,何华灿,邢春晓.基于广义相关性的泛类比度和泛逻辑组合规则[J].软件学报,2001 12(1):126-133.
    [76] 陈丹,何华灿等.基于连续可控T范数的模糊控制方法研究[J].控制理论与应用,2001,18(5):7-17.
    [77] 马盈仓,何华灿.一类剩余格上的三I算法.计算机科学[J].2004,31(5):127-129.
    [78] 马盈仓,何华灿.基于泛逻辑学的模糊推理规则[J].计算机科学.2004,31(8):100-102.
    [79] Ma yingcang, He Huacan. The Fuzzy Reasoning Rules Based on Universal Logic[C], 2005 IEEE International Conference on Granular Computing (Vol. 2), Edited by Xiaohua Hu etl. IEEE Press. Beijing, China, 2005: 561-564.
    [80] 张小红,何华灿,李伟华.泛逻辑的基本形式演绎系统UL及其可靠性[J].计算机科学,2003(30)No.11,21-24.
    [81] 张小红,何华灿,李伟华.形式系统UL的弱完备性[J],计算机科学,2003,30(12):103-107
    [82] 罗敏霞,何华灿.理想状态下泛逻辑形式演绎系统B的完备性[J].计算机科学,2005,32(6):93-95.
    [83] Fu lihua, He huacan. Research on information requiment of zero-oder universal implication operators in fuzzy reasoning[C]. Proceeding of 5th world congress on intelligent control and automation, Hangzhou, IEEE Press, 2004.
    [84] 陈丹,何华灿,王晖.一种新的基于弱T范数簇的神经元模型[J].计算机学报,2001,24(10):1115—1120.
    [85] 鲁斌,何华灿.自适应神经模糊推理系统建模研究[J].计算机科学,2003,30(10):40~44.
    [86] Lu Bin, He Huacan. Analysis of Universal-Logics-based fuzzy neural networks[C]. In:Proceeding of the 5th International Symposium on Instrumentation and Control Technology, Beijing, 2003. USA: SPIE Press, Vol. 5253, Session 6, No. 14.
    [87] 陈志成,何华灿,毛明毅.基于泛逻辑的分形与混沌逻辑初探[J].计算机科学,2004,30(6):149-152.
    [88] 陈志成,何华灿,毛明毅,刘 峰基于格图象的康托集分维与泛逻辑运算[J]. 计算机科学,2004,31(4):92—95.
    [89] 周延泉,何华灿,李金荣.利用广义相关系数改进的关联规则生成算法[J].西北工业大学学报,2001,19(4):639—643.
    [90] 王澜,何华灿.基于广义相关系数的Agent行为决策模型[J].计算机科学,2005,32(3):175-177.
    [91] 金翊 何华灿 吕养天.三值光计算机的基本原理[J].《中国科学》E辑 2003,33(2):111-115.
    [92] E.P.Klement, R.Mesiar and E.Pap. Triangular Norms[M]. Kluwer Academic Publishers, 2000.
    [93] J.C. Fodor and M.Roubens, Fuzzy preference modelling and multieriteria decision support[M], Kluwer, Dordrecht, 1994.
    [94] C. Alsian, E. Trillas and L. Valverde, On some logical connectives for fuzzy sets theory[J], Jouranl of Mathematical Analysis and Applications, 1983, 93(1): 15-26.
    [95] J. C. Fodor, A new look at fuzzy connectives[J], Fuzzy Sets and Systems, 1993, 57(2): 141-148.
    [96] E. Trillas, S. Cubillo and J.L. Castro, Conjunction and disjunction on ([0; 1];≤)[J], Fuzzy Sets and Systems, 1995, 72(2): 155-165.
    [97] W.M. Wu, Fuzzy reasoning and fuzzy relational equations[J], Fuzzy Sets and Systems, 1986, 20(1): 67-78.
    [98] H.Bustince, P.Burilio and F.Soria, Automorphisms, Negations and implication operators[J]. Fuzzy Sets and Systems, 2003,134(3): 267-272.
    [99] O.Cord'on, F.Herrera etl.in, Searching for basic properties obtaining robust implication operators in fuzzy control[J], Fuzzy sets and systems, 2000,111(3): 237-251.
    [100] O.Cord'on, F.Herrera and A.Peregrin, Applicability of the fuzzy operators in the design of fuzzy logic controllers[J], Fuzzy Sets and Systems, 1997,86(1): 15-41.
    [101] D.Dubois and H.Prade, A theorem on implication functions defined from triangular norms[J], Stochastica, 1985, 8(3): 267-279.
    [102] J.C. Fodor, Contrapositive symmetry of fuzzy implications[J], Fuzzy Sets and Systems, 1995, 69(2): 141-156.
    [103] A.D. Nola and A.G.S. Ventre, On fuzzy implication in de morgan algebras[J], Fuzzy Sets and Systems, 1989, 33(2): 155-164.
    [104] D. Pei, R_0 implication: characteristics and applications[J], Fuzzy Sets and Systems, 2002, 131(2): 297-302.
    [105] P. Smets and P. Magrez, Implication in fuzzy logic[J], International Journal of Approximate Reasoning, 1987, 1(3): 327-347.
    [106] I.B.Turksen, V.Kreinovich and R.R. Yager, A new class of fuzzy implications. Axioms of fuzzy implication revisited[J], Fuzzy sets and systems, 1998, 100(2): 209-229.
    [107] S. Weber, A general concept of fuzzy connectives, negations and implications based on t-norms and t-conorms[J], Fuzzy Sets and Systems, 1983, 11(2): 115-134.
    [108] R. R. Yager, On the implication operator in fuzzy logic[J], Information Sciences, 1983, 31(2): 141-164.
    [109] C. Dujet and N. Vincent, Force implication: A new approach to human reasoning[J], Fuzzy Sets and Systems, 1995, 69(1): 53-63.
    [110] R. R. Yager, On some new classed of implication operators and their role in approximate reasoning[J], Information Sciences, 2004 167(2): 193-216.
    [111] C. Alsina, E. Trillas. When (S, N)-implication are (T-T1)-conditional functions?[J]. Fuzzy Sets and Systems, 2003, 134(2), 305-310.
    [112] 王国俊.修正的Kleene系统中的∑-(α-重言式)理论[J].中国科学(E辑),1998,28(2),2:146-152.
    [113] 杨晓斌,张文修.Lukasiewicz系统中的广义重言式理论[J].陕西师范大学学报(自然科学版),1998,26(4):6-9.
    [114] 杨晓斌,张文修.Lukasiewicz多值逻辑系统中的广义重言式理论[J].模糊系统与数学,2000,14(1):8-12.
    [115] 裴道武.多值逻辑系统中的子代数与广义重言式[J].陕西师范大学学报(自然科学版),2000,28(2):18-22.
    [116] Pei Daowu and Li Jun. Generalized Tautologies in Product Logical Systems[J].模糊系统与数学,2002,16(4):19-27.
    [117] 马晓珏,王国俊.F(S)在Lukasiewicz逻辑系统中的一种分划[J].陕西师范大学学报(自然科学版),2004,32(2):1-4.
    [118] 吴洪博,文秋梅.Gainse-Rescher逻辑系统中的一种降级算法及其性质[J].数学研究,2002,35(1):60-64.
    [119] 吴洪博,阎满富.Godel逻辑系统中F(S)的一个分划及其应用[J].工程数学学报,2001,18(4):61-68.
    [120] 王国俊.MV-代数、BL-代数、R_0-代数与多值代数[J].模糊系统与数学,2002,16(2),1-15.
    [121] Francesc Esteva, Godo etl. Residuated fuzzy logics with an involutive negation[J]. Archive for Mathmatieal Logic. 2000, 39(1): 103-124.
    [122] Song Shiji.Triple I Method of Fuzzy Reasoning[J]. Computers and Mathematics with Applications, 2002, 44(5): 1567-1579.
    [123] 周保魁.王国俊.不同蕴涵算子下的三I算法[J].陕西师范大学学报(自然科学版),1998,26(4):1-5.
    [124] 裴道武,FMT问题的两种三I算法及其还原性[J].模糊系统与数学,2001,15(4):1-7.
    [125] 袁和军,李骏.推广形式下的三I算法[J].陕西师范大学学报(自然科学版).2002.30(1):22-26.
    [126] Li Shaowen,Xiong Fanlun.An algorithm of characteristic expansion for fuzzy reasoning based on triple I methodiC]. Proceedings of rhe 4th world congress on intelligent control and automation Shanghai:June 2002, 1:464-468
    [127] 宋士吉,吴澄.模糊推理的反向三I算法[J].中国科学(E辑),2002,32(2):230-246.
    [128] 王国俊,宋庆燕.一种新型的三I算法及其逻辑基础[J].自然科学进展.2003,13(6):575-581.
    [129] Pei Daowu. On the strict logic foundation of fuzzy reasoning[J], Soft Computing, 2004,8(8):539-545.
    [130] Li Yong ruing, Shi zhongke etl. Approximation theory of fuzzy systems based upon genuine many-valued implications-SISO cases[J]. Fuzzy sets and systems, 2002,130(2): 147-157.
    [131] Li Yong ruing, Shi zhongke etl. Approximation theory of fuzzy systems based upon genuine many-valued implications-MIMO eases[J]., Fuzzy sets and systems, 2002, 130(2): 159-174.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700