Al-3.5Cu-(0.4Mg,1.0Li)合金组织性能及In的微合金化作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上世纪五十年代,Silcock等人就发现在Al-Cu合金中添加微量(~0.05wt.%)铟(In),镉(Cd),锡(Sn)等能显著促进合金时效动力学并提高峰值强度。关于In元素对Al-Cu-Mg,Al-Cu-Li等体系的微合金作用也已有一些研究,但In元素的作用机理至今没有统一的解释。因此,系统地进行三体系加铟元素的研究,并从中总结得出统一可信的作用机理,对合金的微合金化设计非常有指导意义。
     本研究设计并熔铸了Al-Cu,Al-Cu-Mg,Al-Cu-Li三组有In无In对比合金,另加Al-Cu-Li-Mg-In合金。利用硬度测试,拉伸性能测试等方法研究了In对合金力学性能的影响;示差量热扫描法(DSC),透射电镜(TEM,HREM),三维原子探针(3DAP)等微观组织观察手段系统直观地研究In对各合金组织结构的影响,对合金中出现的异常相进行初步确认,最后统一分析In在2xxx合金中的作用机理。主要结论如下:
     (1)在Al-Cu合金中加入微合金化元素In后,加快了合金的时效响应速率,175℃峰值时效所需时间不到基础合金的1/3,时效峰值强度提高了20HV,时效后期三元合金θ'相的粗化速率远远小于基础Al-Cu合金。实验不仅发现了位于刃面θ'相端头的In'粒子,还观察到了位于宽面θ'相顶角处的In'粒子,证实了In'粒子几乎全部作为0’相的非均匀形核位置。
     (2)Al-Cu-In时效析出序列研究表明基础合金析出序列:SSSS→GP区→θ"+θ'→θ'→θ,在加入微合金化元素In后变为:SSSS→In'→In'+θ';这是由于In元素与空位之间的强相互作用力使得淬火态空位大部分被In原子捕获,不利于GP区的形成;而与空位结合的In'粒子活动能力增加,运动中的In'-V团簇一旦碰到铜原子团簇就会作为θ'相的形核位置。In对Al-Cu合金的微合金化作用主要通过空位实现。
     (3)Al-Cu-Li合金T6态主要析出T1和θ'相,加入0.5wt.%In后合金组织发生了根本性的改变:T1相数量稀少,取而代之的是一种弥散分布的方块相,同时0’相析出数量也较基础合金有增多。时效前加入6%预变形后方块相消失,而T1相数量大幅度增加,证明方块相形成与T1相呈竞争关系。
     (4)通过各种测试分析手段研究方块相,证实其为简单立方相,晶格常数约为0.84nm,与基体位向关系为{001)p//{001)α,<010>p//<010>α。分析结果显示该相可能为富锂的γ1或Al5Cu6Li2。
     (5)方块相在基体内均匀形核,而片状T1相应变能大导致其更容易在位错或其它非均匀形核位置形核长大。微合金化元素铟与空位间的强相互作用力使其在淬火态或时效早期捕捉了大量空位,从而减少了T1相形核非常关键的位错环,T1相析出动力减少,析出困难。此时T1相无力争夺方块相形核所需的Cu原子,Li原子,方块相大量析出。
     (6)175°CT6人工时效,Al-Cu-Mg合金的拉强度为345 MPa,屈服强度为258 MPa,合金主要析出相为θ’与S’,另外存在少量Ω相。时效前加入预变形Al-3.4Cu-0.34Mg合金拉强度提高40MPa,屈服强度提高74MPa,合金析出大量Ω相,θ’相较T6状态细小,数目稍有增加,S’相数目减少。在Al-Cu-Mg合金与Al-Cu-Mg-Ag合金中位错均可作为Ω相的非均匀形核位置,后者预变形对Ω相的抑制作用主要因为位错破坏了该相更优越的非均匀形核位置:Mg-Ag co-clusters,而前者的促进作用是从没有适合的非均匀形核位置到位错作为非均匀形核处。
     (7)在Al-Cu-Mg合金中添加0.5wt.%In,合金拉强度增加25MPa,屈服强度增加50MPa;在时效早期,与二元Al-Cu合金中一样,In抑制GPB区形成,促进S’与θ’相析出。与Al-Cu-Li-In合金不同的是,再添加0.4%Mg元素,四元合金中的方块相不再出现,T1相此时为五元合金的最主要的析出强化相,合金强度比四元合金高80MPa。这是因为Mg元素的添加如预变形位错一样会为T1相提供众多的非均匀形核位置,降低该相的形核驱动力,争夺方块相形成所需的Cu,Li原子。同样In元素在五元合金中会促进S’与θ’相析出。
     (8)In元素在2xxx系合金中的作用可概括为:一方面由于In与溶质原子的强相互作用,In粒子作为富Cu相(θ’)与富Mg相(S’)的非均匀形核质点,促进其析出;另一方面通过减少T1相非均匀形核位置间接促进方块相的析出。
Silcock had found that trace addition (~0.05 wt.%) of In, Cd or Sn in Al-Cu alloys could dramatically accelerate the precipitation kinetics, and increase the peak strength.There were also some researches about Indium effecting on Al-Cu-Mg, Al-Cu-Li, yet no unified mechanism was established up to date.Thus, systematically and comprehensively works on the microalloying effects of In to 2xxx series Aluminums are aspired to a reliable mechanism, and instructional significance for alloy design.
     Three groups of Al-Cu, Al-Cu-Mg and Al-Cu-Li alloys with-or-without In, and another Al-Cu-Li-Mg-In alloy were prepared. Micro Vickers Hardness, ambient tensile properties measurements were used to study the effects on mechanical properties.Microstructure evolution, precipitate identification were carried out by Differential Scanning Calorimetry (DSC), Transmission Electron Microscope (TEM and high resolution TEM) and three dimensional atom probe (3DAP). Finally this paper comes to the following conclusions:
     (1)Indium additions speed aging response rate comparing to In-free Al-Cu alloy, the time needed to peak hardness is even less than 1/3 of base alloy aging at 175℃;peak hardness is 20HV higher; theθ' precipitates coarse much slower at the late stage of aging. In'were also observed at one corner of platelets having their broad faces in the plane of view other than the traditional heads of edge-on platelets positions, proving that almost all In'could act as the heterogeneous nucleation sites forθ'.
     (2)The base alloy precipitates process:SSSS→GP. zones→θ"+θ'→θ'→θ, has transformed to:SSSS→In'→In'+θ'with 0.5 wt.% Indium additions. Most quenched-in vacancies were seized by Indium atoms due to the strong interaction between Indium atoms and vacancies, thus depressed the formation of GP. zones; the vacancies-seized In' could move freely, the moving In'-V clusters would act as the heterogeneous nucleation sites for ;θ'once meeting to Cu atoms. In general, Indium affects Al-Cu alloy mainly through vacancies.
     (3) T1 and 0'phase dominate the Al-Cu-Li microstructure in T6 temper, an earth-shaking change take place after adding 0.5% Indium:In place of the{111}αplate T1 phase, the significant occurrence of a novel disperse cubic phase was detected, meantimeθ'was also found a little increasing. Inversely, the cubic phase was then substituted by T1 in T8 temper (6% predeformation+155℃).
     (4)Further study of the cubic phase shows that it belongs to the cubic system, lattice constant a≈8.4A, following the orientation with the aluminum matrix:{001}p//{001}α,<100>p//<100>α.3DAP and Simulation for HREM analysis indicate it to be Li-richγ1(Al4Cu9) orχ(Al5Cu6Li2).
     (5)The cubic phase tend to nucleated in the matrix homogenously, while plate-like T1 nucleated easier in dislocations heterogeneously because of it's big volumetric energy. Just like in Al-Cu-In alloy, most quenched-in vacancies, which would collapsed into loops, were seized by Indium atoms. T1 phase precipitation become hard without these loops acting as heterogeneous nucleation sites.The cubic phases then precipitate fluently without T1 competitive for Cu and Li atoms.
     (6) The tensile strength and yield strength of Al-Cu-Mg alloy is 345 MPa and 258 MPa, respectively, withθ'and S'dominating the microstructure, and a little amount ofΩ.6% prior aging deformation give 40MPa and 74MPa rise to US and YS, respectively, there are large amount ofΩphase,θ'become finer and a little more, while S'decrease. There comes to a conclusion:dislocations could act as the heterogeneous nucleation sites in both Al-Cu-Mg and Al-Cu-Mg-Ag alloy. The depressing phenomenon ofΩin the latter one is just because deformation disturbed the superior sites:Mg-Ag co-clusters and the acceleration can't compensate it's lose.While in the former one, the heterogeneous sites rise from none to some dislocations, thus it shows a promotion ofΩ.
     (7) 0.5% Indium addition increase the US 25MPa and YS 50MPa, suppress GPB zones formation, like GP zones depressed in Al-Cu alloy, and make S'andθ'in a greater amount. In quinary Al-Cu-Li-Mg-In alloy, T1 phase again substitute cubic phase, the strength is 80MPa higher. Mg atoms will nucleate T1 just like dislocations do, consuming Cu, Li atoms which are required by cubic phase.S'andθ'are still increased.
     (8) The microalloying effects of Indium in 2xxx series could be summarised as:accelerateθ'and S'for the strong interaction between Indium and Cu and Mg; on the other hand, reduce heteregeneous nucleation sites of T1 phase, making cubic phase precipitate swimmingly.
引文
[1]H. K. Hardy. Journal of the Institute of Metals,1950-51,78:169
    [2]I. J. Polmear. The effects of small additions of silver on the aging of some aluminum alloys.Transactions of the Metallurgical Society of AIME,1964,230: 1331-1339.
    [3]H. Kimura, R. Hasiguti.Interaction of vacancies with Sn atoms and the rate of GP zone formation inan Al-Cu-Sn alloy. Acta Metallurgica,1961,9:1076
    [4]侯贤华.相变机理研究及其对合金性能的影响.2006,广西大学:南宁.
    [5]B.C.Muddle, I. J. Polmear. The Precipitate Q phase in Al-Cu-Mg-Ag alloys. Acta Metallurgica,1989,37 (3):777-789
    [6]蒙多尔福.合金的组织与性能(王祝堂,张振录译).北京:冶金工业出版社,1988.
    [7]A. Wilm. Metallurgie,1911,8:223
    [8]J. Lau, M. Kulak. A new paradigm in the design of aluminium alloys for aerospace applications. Materials Science Forum,2000,331/337:127-140
    [9]I. J. Polmear. Recent development in light alloys.Material Transactions JIM, 1996,37(1):12
    [10]彭志辉.航空用高强度合金.材料导报,1997,11(6):18-21
    [11]王祝堂.合金及其加工手册.长沙:中南大学出版社.1988.
    [12]S.P. Ringer, T. Sakura,I. J. Polmear. Origins of Hardening in Aged Al-Cu-Mg-(Ag) Alloys. Acta Materialia,1997,45 (9):3731-3744
    [13]陈志国.微合金化合金的微观组织演变与性能研究.2004,中南大学:长沙.
    [14]杨守杰,陆政.锂合金研究进展.材料工程,2001,5:44-47
    [15]R. Grimes, A. J. Cornish, W. S.Miller, et al. Metals and Materials,1985,1: 3571
    [16]E. J. Lavernia, N. J.Grant. Aluminium-lithium alloys Journal of Materials Science,1987,22 (5):1521
    [17]C.J. Pell, B.Evans,C.Baker. In:Proceeding of 2nd International Al-L i Conference.1983.3631
    [18]W.S.Miller, J. White,D.J.Loyd. In:Proceeding of 4th International Al-L i Conference.1987.1391
    [19]小岛阳,中村正久.轻金属,1986,10:56-58
    [20]邱惠中.锂合金的发展概况及其应用.宇航材料工艺,1993,(4):42-49
    [21]#12
    [22]魏修宇.Al-Li-Cu-Mg-Zr合金微合金化及腐蚀行为研究.2004,中南大学:长沙.
    [23]K. K. Sankaran, J.E.O'Neal. Effect of second-phase dispersoids on deformation behavior of Al-Li alloys. Al-Li Ⅱ.Met Soc AIME.1983.
    [24]郑子樵.锂合金.第二届全国锂合金研讨会论文集.1993,中南工业大 学出版社:长沙.
    [25]M. Zinkevich, T. Velikanova, M. Turchanin, et al. Aluminium-Copper-Lithium, Physical Chemistry,2005.
    [26]武恭.合金材料手册.北京:科学出版社,1994.
    [27]王祝堂.合金及其加工手册第二版.长沙:中南大学出版社,2000.
    [28]唐仁正.物理冶金基础.北京:冶金工业出版社,1997.
    [29]张荻,司鹏程.高比强低密度的Al-Li合金.宇航材料工艺,1990,(3):11-20
    [30]黄光杰.锂合金的发展、应用和展望.材料导报,1997,11(2):21-24
    [31]J. Robert, R. J. Roija. Advanced materials and Processes,1992,(1):23
    [32]S.C.Wang, M. J. Starink. Precipitates and intermetallic phases in precipitation hardening Al-Cu-Mg-(Li) based alloys. International Materials Reviews, 2005,50(4):193-215
    [33]H. K. Hardy, J. M. Silcock. Journal of the Institute of Metals,1955-56,84:423
    [34]B.Noble, G. E. Thompson. Tl(A12CuLi) precipitation in aluminium-copper-lithium alloys:electron microscope examination of microstructure. Metal Science Journal,1972,6:167-174
    [35]J. C.Huang, A. J. Ardell. Strengthening mechanisms associated with T1 particles in two Al-Li-Cu alloys. Mater.Sci.Technol,1987,48:373-383
    [36]K. S.Vecchio, D.B.Williams. Convergent beam electron diffraction analysis of the T1(A12CuLi) phase in Al-Cu-Li alloys. Metall.Trans A,1988,19 (12):2885-2891
    [37]C. P. Blankenship, E. A. Starke. Structure-property relationships in Al-Li-Cu-Mg-Ag-Zr alloy X2095.Acta Metallurgica and Materialia,1994,42 (3):845-855
    [38]R. M. Allen, J. B.V.Sande. ORIENTED GROWTH OF PRECIPITATES ON DISLOCATIONS IN Al-Zn-Mg-2.A MODEL Oriented growth of precipitates on dislocations in Al-Zn-Mg-2.A Model.Acta Metallurgica,1980, 28(9):1197-1206
    [39]魏修宇,郑子樵,潘峥嵘.预变形对2197锂合金显微组织和力学性能的影响.稀有金属材料与工程,2008,(11):1996-1999
    [40]袁志山,陆政,谢优华.预变形对高强Al-Cu-Li-X锂合金组织和性能影响.稀有金属材料与工程,2007,36(3):493-496
    [41]B.M. Gable, A. W. Zhu, A. A. Csontos, et al.The role of plastic deformation on the competitive microstructural evolution and mechanical properties of a novel Al-Li-Cu-X alloy. Journal of Light Metals,2001,1 (1):1-14
    [42]K. S.Kumar, S.A. Brown,J. R. Pickens.Microstructural evolution during aging of an AlCuLiAgMgZr alloy. Acta Materialia,1996,44 (5):1899-1915
    [43]H. K. Hardy. Aluminium-Copper-Cadmium Sheet Alloys. Journal of the Institute of Metals,1954-55,83:337-346
    [44]A. H. Sully, H. K. Hardy, T. J. Heal. Journal of the Institute of Metals,1949-50, 79:269
    [45]A. K. Mukhopadhyay, K. S.Prasad,C.R. Chakravorty. Precipitation in an Al-Cu-Mg alloy containing trace addition of In. Materials Science Forum, 1996,217-222:753-758
    [46]J. M. Silcock, H. M. Flower. Comments on a comparison of early and recent work on the effect of trace additions of Cd, In, or Sn on nucleation and growth of θ'in Al-Cu alloys. Scripta Materialia,2002,46:389-394
    [47]B.M. Gable, B.C.Muddle. Factors Influencing the Heterogeneous Nucleation of θ'in Al-Cu-In Alloys. Materials Science Forum,2006,519-521:585-590
    [48]L. B.Blackburn, E. A. Starke. Effect of In additions on microstructure mechanical property relationships for an Al-Cu-Li alloy. Aluminium Lithium 5. 1989.751.
    [49]Y. Y. Lee, B.S.Chun. Journal of Korea Institute of Metallic Materials,1994, 32:156
    [50]D. L. Gilmore, E. A. Starke. Trace element effects on precipitation processes and mechanical properties in an Al-Cu-Li alloy Metallurgical and Materials Transactions A,1997,28(7):1399-1415
    [51]R. Sankaran, C.Laird. Effect of trace additions Cd, In and Sn on the interfacial structure and kinetics of growth of &thetas'plates in Al-Cu alloy. Material Science and Engineering,1974,14 (3):271-279
    [52]H. Suzuki, M. Kanno, I. Araki. Precipitation of the Intermediate Phase in Al-Au-Sn Alloys. Journal of the Institute of Light Metals,1975,25 (11): 413-421
    [53]N. Boukos, E. Rocofyllou, C.Papastaikoudis.Microstructure of AlLiCuMgZr alloys with In additions. Materials Science and Engineering A,1998,256: 280-288
    [54]A. Raho,M. Kadi-Hanifi. Influence of Cd and In on the Formation Kinetics of the δ'Metastable Phase in Al-Li-In(Cd) Alloys. Material Science Forum,2006, 519-521:479-482
    [55]K. M. Enttwistle,J. H. Fell,K. Koo. Journal of the Institute of Metals,1962-63, 91:84
    [56]S.Kerry,V.D. Scott. Structure and orientation relationship of precipitates formed in Al-Cu-Mg-Ag alloys. Metal Science Journal,1984,18 (6):289-294
    [57]A. Garg, J. M. Howe. Convergent-beam electron diffraction analysis of the Ω phase in an Al-4.0 Cu-0.5 Mg-0.5 Ag alloy. Acta metallurgica and materialia, 1991,39(8):1939-1946
    [58]J. H. Auld. Structure of metastable precipitate in some Al-Cu-Mg-Ag alloys. Materials Science and Technology,1986,2 (8):784-787
    [59]B.A. Shollock, C.R. M. Grovenor, K. M. Knowles. Compositional studies ofω and O precipitates in an Al-Cu-Mg-Ag alloy. Scripta metallurgica and materialia,1990,24 (7):1239-1244
    [60]Y. C.Chang, J. M. Howe. Composition and stability of Ω phase in an Al-Cu-Mg-Ag Alloy Metallurgical and Materials Transactions A 1993,24(7): 1461-1470
    [61]W. M. Rainforth, L. M. Rylands, H. Jones. Nano-beam analysis of Ω precipitates in a Al-Cu-Mg-Ag alloy. Scripta Materialia,1996,35 (2):261-265
    [62]横田纯一,廣泽涉一,里達雄.轻金属,1999,49(2):51
    [63]S.P. Ringer, K. Hono,I. J. Polmear. Nucleation of precipitates in aged Al-Cu-Mg-(Ag) alloys with high Cu:Mg ratios. Acta Materialia,1996,44 (5): 1883-1898
    [64]B.P. Huang, Z.Q.Zheng. Independent and combined roles of trace Mg and Ag additions in properties precipitation process and precipitation kinetics of Al-Cu-Li-(Mg)-(Ag)-Zr-Ti alloys. Acta Materialia,1998,46(12):4381-4393
    [65]S.Hirosawa, T. Sato, A. Kamio.Effects of Mg addition on the kinetics of low-temperature precipitation in Al-Li-Cu-Ag-Zr alloys. Materials Science and Engineering A,1998,242:195-201
    [66]S.P.Ringer, B.C.Muddle, I. J. Polmear. Effects of cold work on precipitation in Al-Cu-Mg-(Ag) and Al-Cu-Li-(Mg-Ag) alloys Metallurgical and Materials Transactions A,1995,26(26):1659-1671
    [67]G. Itoh, Q.Cui, M. Kanno. Effects of a small addition of magnesium and silver on the precipitation of T1 phase in an Al-4% Cu-1.1%Li-0.2%Zr alloy. Materials Science and Engineering A,1996,211:128-137
    [68]郑子樵,黄碧萍,尹登峰.微量Ag和Mg在2195合金中的合金化作用.中南工业大学学报,1998,29(1):42-45
    [69]M. Murayama, K. Hono. Three Dimensional Atom Probe Analysis of Pre-Precipitate Clustering in an Al-Cu-Mg-Ag Alloy. Scripta Materialia,1998, 38:1315-1319
    [70]孟亮,耿东生.有害杂质及Ce对8090合金薄板不同加载方向断裂特性的影响.金属学报,1995,31(1):40-46
    [71]王芝秀.Li、Ag、Sc对Al-Cu-Mg系合金的组织和性能的影响.2003,中南大学:长沙.
    [72]王瑞琴.2050合金微合金化及其组织和性能的研究2008:长沙.
    [73]M. Kanno, H. Suzuki, O. Kanoh. The Precipitation of θ'Phase in an Al-4%Cu-0.06In Alloy. Journal of Japanese Institute of Metals,1980,44 (10): 1139-1145
    [74]L. Bourgeois, J. F. Nie, B. C.Muddle. Assisted nucleation of θ'phase in Al-Cu-Sn:the modified crystallography of tin precipitates. Philosophical Magazine,2005,85 (29):3487-3509
    [75]L. Bourgeois, T. Wong, X. Y. Xiong, et al.Interaction between Cu and Sn in the Early Stages of Ageing of Al-1.7at.%Cu-0.01at.%Sn. Materials Science Forum,2006,519-521:495-500
    [76]C.G. Cordovilla, E. Louis. Characterization of the microstructure of a commercial AI-Cu alloy (2011)by differential scanning calorimetry (DSC). Journal of Materils Science,1984,19:279-290
    [77]D. Bakavos, P.B.Prangnell, B. Bes, et al. The effect of silver on microstructural evolution in two 2xxx series Al-alloys with a high Cu:Mg ratio during ageing to a T8 temper. Materials Science and Engineering A,2008, 491(1-2):214-223
    [78]S.Hirosawa,T.Sato, A. Kamio, et al. Classification of the role of microalloying elements in phase decomposition of Al based alloys. Acta Materialia,2000,48(8):1797-1806
    [79]C.R. Hutchinson, S.P. Ringer. Precipitation processes in Al-Cu-Mg alloys microalloyed with Si Metallurgical and Materials Transactions A 2000,31 (11):2721-2733
    [80]L. Reich, S. P. Ringer,K. Hono. Origin of the initial rapid age hardening in an Al-1.7 at.% Mg-1.1 at.% Cu alloy. Philosophical Magazine Letters,1999,79 (9):639-648
    [81]G. B.Brook. Precipitation in Metals, Special Report No.3.1963, Fulmer Research Institute.
    [82]S.P. Ringer, K. Hono, I. J. Polmear. Proc.4th Int. Conf. on Aluminium Alloys. 1994, Georgia Inst. Technol.:Atlanta.574-581.
    [83]J. M. Silcock. Journal of the Institute of Metals,1955-56,84:19
    [84]M. Murayama, K. Hono.Role of Ag and Mg on Precipitation of T1 Phase in an Al-Cu-Li-Mg-Ag alloy. Scripta Materialia,2001,44 (4):701-706
    [85]J. M. Silcock. The Structural Aging Characteristics of Aluminium-Copper-Lithium Alloys.Journal of the Institute of Metals,1959-60, 88:357-364
    [86]H. Kimura, R. R. Hasiguti.Acta Metallurgica,1961,9:1076-1078
    [87]K. M. Entwistle. Journal of the Institute of Metals,1962-63, (91):84
    [88]P. Hewitt, E. P. Butler. Mechanisms and Kinetics theta prime Dissolution in Al-3%Cu. Acta Metallurgica,1986,34 (7):1163-1172
    [89]K. D. Woo, S.W. Kim. The mechanical properties and precipitation behavior of an Al-Cu-Li-(In,Be)alloy. JOURNAL OF MATERIALS SCIENCE,2002,37: 411-416
    [90]F. S.Lin, S.B. Chakrabortty, E. A. Starke. Microstructure-property relationships of two AI-3Li-2Cu-0.2Zr-XCd alloys Metallurgical and Materials Transactions A,1982,13(3):401-410
    [91]A. Looijenga-Vos,M. J. Buerger. Space-group determination and diffraction symbols[C].International tables for crystallography, T. Hahn, Editor.2005, Springer:Netherlands.
    [92]B.Skrotzki, G. J. Shiflet, E. A. Starke. On the effect of stress on nucleation and growth of precipitates in an Al-Cu-Mg-Ag alloy. Metallurgical and Materials Transactions A,1996,27(11):3431-3444
    [93]B.T. Sofyan, K. Raviprasad, S.P. Ringer. Effects of microalloying with Cd and Ag on the precipitation process of Al-4Cu-0.3Mg (wt%) alloy at 200℃. Micron,2001,32:851-856
    [94]I. S.Suh, J.K. Park. Influence of the elastic strain energy on the nucleation of Ω phase in Al-Cu-Mg(-Ag) alloys. Scripta Metallurgica et Materialia,1995,33 (2):205-211
    [95]A. Zhu, B.M. Gable, G. J. Shiflet, et al.Trace element effects on precipitation in Al-Cu-Mg-(Ag, Si) alloys:a computational analysis. Acta Materialia,2004, 52:3671-3679
    [96]H. Suzuki, I. Araki, M. Kanno, et al.Effects of Silicon addtion on the aging behavior of an Al-2Cu-0.9Mg alloy. Journal of Japan Institute of Light Metals, 1977,27(5):239-245
    [97]R. D. Schueller, A. K. Sachdev,F.E. Wawner. Interfacial structure of the cubic σ phase. Scripta Metallurgica and Materialia,1992,27:1289-1294
    [98]R. D. Schueller, A. K. Sachdev,F. E. Wawner. Identification of A Cubic Precipitate Observed In An Al-4.3Cu-2Mg/SiC Cast Composite. Scripta Metallurgica and Materialia,1992,27:617-622
    [99]R. D. Schueller, F.E. Wawner,A. K. Sachdev. Nucleation mechanism of the cubic a phase in squeeze-cast aluminium matrix composites Journal of Materials Science,1994,29 (2):424-435
    [100]I. C.Barlow, W. M. Rainforth,H. Jones. The role of silicon in the formation of the (A15Cu6Mg2) σ phase in Al-Cu-Mg alloys.Journal of Materials Science, 2000,35 (6):1413-1418
    [101]S.C.Barr, L. M. Rylands, H. Jones, et al. Formation and Characterictics of coarsening resisitant cubic sima phase in Al-4.2Cu-1.6Mg-0.2Si. Materials Science and Technology,1997,13:655-659
    [102]J. W. Christian. The theory of transformations in metals and alloys (Pergamon, 2002.
    [103]J. M. Silcock. The Structural Ageing Characteristics of Al-Cu-Mg Alloys with Copper:Magnesium Weight Ratios of 7:1 and 2.2:1.Journal of the Institute of Metals,1960-61,89:203-211
    [104]A. Garg, Y. C.Chang, J. M. Howe. Precipitation of the Ω phase in an Al-4.0Cu-0.5Mg alloy. Scripta Metallurgica et Materialia,1990,24 (4): 677-680
    [105]B.Q.Li, F.E. Wawner. Dislocation Interaction with Semicoherent Precipitates (Ω Phase) in Deformed Al-Cu-Mg-Ag Alloy. Acta Materialia, 1998,46(15):5483-5490
    [106]A. M. Zahra, C. Y. Zahra. Comments on "Cluster Hardening in an Aged Al-Cu-Mg Alloy".Scripta Materialia,1998,39 (11):1553-558
    [107]N. Unlu, B. M. Gamble, G. J. Shiflet, et al.The effect of cold work on the precipitation of Ω and 6∥ in a ternary Al-Cu-Mg alloy. Metallurgical and Materials Transactions A,2003,34(12):2757-2769
    [108]B.M. Gable, G. J. Shifle, E. A. Starke. The effect of Si additions on Ω precipitation in Al-Cu-Mg-(Ag) alloys. Scripta Materialia 2004,50(1): 149-153
    [109]C.R. Hutchinson, X. Fan, S.J. Pennycook, et al. On the origin of the high coarsening resistance of Omega plates in Al-Cu-Mg-Ag alloys. Acta Materialia, 2001,49(14):2827-2841
    [110]I. J. Polmear, R. J. Chester. Abnormal Age Hardening In An Al-Cu-Mg Alloy Containing Silver And Lithium. Scripta Materialia,1989,23:1213-1218
    [111]A. Garg, Y. C.Chang, J. M. Howe. Interfacial structure and transformation mechanism of the Ω phase in Al-3.9 Cu-0.5 Mg-0.5 Ag alloy. Acta Metallurgica and Materialia,1993,41(1):235-251
    [112]K. M. Knowles, W. M.Stobbs. The structure of{111}age-hardening precipitates in Al-Cu-Mg-Ag alloys. Acta Crystallographica B,1988,44 (3): 207-227
    [113]L. Reich, M. Murayama, K. Hono. Evolution of Ω Phase in an Al-Cu-Mg-Ag Alloy-Three Dimensional Atom Probe Study. Acta Materialia,1998,46(17): 6053-6062
    [114]Q.Li. DSC and TEM characterizations of thermal stability of an Al-Cu-Mg-Ag alloy Journal of Materials Science 1997,32(13):3401-3406
    [115]S.P. Ringer, W. Yeung, B.C.Muddle, et al.Precipitate stability in Al-Cu-Mg-Ag alloys aged at high temperatures.Acta Metallurgica and Materialia,1994,42(5):1715-1725
    [116]肖代红,王健农,丁冬雁.预拉伸处理对Al-5.3Cu-0.8Mg-0.3Ag合金性能和时效过程的影响.热加工工艺,2003,(4):1-5
    [117]刘延斌,刘志义,余日成,等.预拉伸对Al-Cu-Mg-Ag合金室温性能的影响.金属热处理,2007,32(4):64-67
    [118]K. Hono, I. J. Polmear. Pre-Precipitates Clustering in An Al-Cu-Mg-Ag Alloy. Scripta Metallurgica and Materialia,1994,30 (6):695-700
    [119]B.M. Gable, G. J. Shiflet,E. A. Starke. Alloy development for the enhanced stability of Omega precipitates in Al-Cu-Mg-Ag alloys. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science,2006, 37A(4):1091-1105
    [120]W. A. Cassada, G. J. Shiflet, E. A. Starke. Mechanism of A12CuLi (T1) nucleation and growth. Metallugical Transactions A,1991,22:287-297

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700