凝固条件对Mg-Zn-Y合金显微组织及形核动力学过程的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金是实际应用中最轻的金属结构材料,具有高的比强度、比刚度和减震性,而且易于回收,在汽车、电子、航空等领域有广阔的应用前景。常规铸造镁合金显微组织及第二相比较粗大,高温易氧化,室温和高温强度都不理想,难以满足高性能结构材料的需求。快速凝固技术能显著细化晶粒、扩展固溶度及形成新的亚稳相,从而大幅度提高合金的强韧性和耐蚀性,因此快速凝固技术被广泛应用于制备高性能和新型镁合金。Mg-Zn系合金属于典型的高强镁合金,但该类合金的强度很难满足在更高条件下应用,尤其难以满足在较高温度范围内应用。Y在提高镁合金的强度和耐热性方面有很大的应用价值。
     本文采用常规凝固技术制备出三种不同成分的Mg-Zn-Y合金,将合金在石英管中重熔后用单辊制带设备制备不同冷却速度的快速凝固Mg-Zn-Y合金条带。采用OM、SEM、EDS、XRD和TEM分析了常规凝固及快速凝固Mg-Zn-Y合金的显微组织和相组成,用DSC分析了合金升温过程中所发生的相变。运用与时间有关的非均质形核理论计算了在快速凝固Mg-Zn-Y合金中各竞争相的形核孕育期时间与温度的关系,研究了快速凝固合金的形核动力学过程。
     研究表明,在常规凝固条件下,Mg-Zn-Y合金组织为树枝晶,随着Y的增加和Zr的添加,晶粒逐渐细化,等轴趋势明显加强。合金的晶界析出相主要以两种形态存在:一是在三角晶界形核,呈“鱼骨状”;一是几乎包围整个晶粒,呈连续网状。快速凝固Mg-Zn-Y合金条带的横截面组织分为三个区域:近辊面细晶区、内部柱状晶区、自由面等轴晶区;随着转速的增大,自由面等轴晶区的厚度越来越薄,并在某些地方消失。快速凝固Mg-Zn-Y合金条带贴辊面组织为等轴晶,晶粒内部有细小的颗粒状析出物,随着转速的增大,晶粒逐渐变细,颗粒状析出物越来越少。Mg7Zn2Y合金条带中析出物为Mg-Zn二元相,Mg7Zn3Y和Mg7Zn3Y0.55Zr合金条带中析出物为Mg-Zn-Y三元相。
     合金成分的变化和凝固条件的不同引起相的变化。在常规凝固条件下,Mg7Zn2Y合金主要由α-Mg、Mg_7Zn_3、Mg_(12)YZn相组成,Mg7Zn3Y和Mg7Zn3Y0.55Zr合金中主要由α-Mg、Mg_3YZn_6、Mg_3Y_2Zn_3相组成。快速凝固条件下,Mg7Zn2Y条带主要由α-Mg和Mg_2Zn_(11)相组成,Mg7Zn3Y和Mg7Zn3Y0.55Zr合金条带中主要由
As the lightest metal structure material, magnesium alloys are found using widely in automotive, electronic and aeronautical industries because of a number of desirable features, including high strength/weight, high hardness/weight, damping characteristic and recycled easily. The microstructures、 secondary phase of as-cast alloys are coarse and easily oxidized in high temperature, the room temperature strength and elevated temperature strength is undesirable, which is difficult to meet the needs of high performance structure materials. The rapid solidification appears under this condition, the materials made by rapid solidification have many advantages, such as high strength、high toughness、wonderful corrosion resistance because of fine grains、large solid solubility、 new metastable phase. New magnesium alloys with high performance can be developed by rapid solidification. Mg-Zn based alloy is typical high strength magnesium alloy. But its strength is difficult to apply in higher condition. Its strength and heat resistance can be improved by the addition of Y.
    The rapidly solidified samples of Mg-Zn-Y alloys were prepared using single-roller equipment. In this thesis, the microstructures, phase composition were systemically investigated by using measurements of OM, XRD, SEM, EDS, TEM. The phase transformation was studied by DSC. An expression adapts to the heterogeneous nucleation rate was induced, utilizing time depended nucleation theory.
    Microstructures of as-cast Mg-Zn-Y alloys are dendritic morphology. As the addition of Y and Zr, the grain size is refined. The grain boundary appears two kinds of morphology: one is "fish bone", which nucleates in triangle grain; the other is continuous graticule, which enclose the whole grain. Microstructures of the cross section of rapidly solidified Mg-Zn-Y alloy ribbons are composed of three regions: fine equiaxed region near the copper roll side, the inner columnar grain region and the outer equiaxed region near the free surface. The microstructure of the region near the copper roll side is fine equiaxed morphology, as the increasing of the rotation speed, the thickness of the outer equiaxed region near the free surface becomes thinner, even disappears in some region.
引文
[1] 张鹏,曾大本.异军突起的镁合金压铸[J],特种铸造及有色合金,No.6,2000,p55-57
    [2] Decker, Raymond F, The renaissancein magnesium [J], Advanced Mater & Pro, 1998, 154(3): 31-33
    [3] 刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社,2002:1-84
    [4] Eigenfeld K, Tilch W, Erchov S, et al. Integrated magnesium technology [J]. Advanced Engineering Materials, 2004, 6(7): 520-525
    [5] Clow, Byron B. Magnesium industry overview [J]. Advanced Mater & Proc, 1996, 150(4): 33-34
    [6] 曾小勤,王渠东,吕宜振等.镁合金应用新进展[J].铸造,1998,(11):39-43
    [7] 虞觉奇,易文质等.二元合金状态图集[M],上海:上海科学技术出版社,1987.10
    [8] L.Y. Wei, G.L. Dunlop, H.Westengen. The intergranular microstructure of cast Mg-Zn and Mg-Zn-RE alloys [J], Metallurgical and Material Transaction A. Vol. 26(1995.8), p1947-1955
    [9] 曾荣昌,柯伟,徐永波等.Mg合金的最新发展及应用前景[J],金属学报,Vol.37,No.7(2001),p673-685
    [10] Wei L Y, Dunlop G L, Westengen H. Solidified Behaviour and Phase Constituents of Cast Mg-Zn-Misch Metal Alloys [J]. Journal of Materials Science, 1997, (32): 3335-3340
    [11] 陆树荪等.有色合金及其熔炼[M].北京:国防工业出版社,1983.5
    [12] 张静,潘复生,彭建,丁培道,汪凌云.镁合金中的合金系和合金相[A].首届中国国际轻金属冶炼加工与装备会议文集.294-297
    [13] 沙桂英,徐永波,韩恩厚.铸造Mg-RE合金的显微组织及蠕变性能[J].材料研究学报.2003,17(6):603
    [14] Sugamata M, Hanawa S, Kaneko J. Structures and Mechanical Properties of??Rapidly Solidified Mg-Y Based Alloys [J]. Materials Science and Engineering A, 1997, 226(22): 861
    [15] 郭学锋,魏建锋,张忠明.镁合金与超高强镁合金[J].铸造技术,2002,23(3):133
    [16] Inoue A, Kato A, Zhang T, et al. Mg-Cu-Y Amorphous Alloys with High Mechanical Strengths Produced by Metallic Mold Casting Method [J]. Materials Transaction, 1991, 32(7): 609
    [17] Kawamura Y, Morisaka T, Yamasaki M. Structures and Mechanical Properties of Rapidly Solidified Mg_(97)Zn_1RE_2 Alloys[J]. Materials Science Forum, 2003, 419-422: 751
    [18] Kawamura Y, Hayashi K, Koike J, et al. High Strength Nanocrystalline Mg-Al-Ca Alloys Produced by Rapidly Solidified Powder Metalurgy Processing[J]. Materials Science Forum, 2000, 350-351: 111
    [19] Miyazaki T, Kaneko J, Sugamata M. Structure and Properties of Rapidly Solidified Mg-Ca Based Alloys [J]. Materials Science and Engineering A, 1994, 181-182: 1410
    [20] Kawamura Y, Inoue A. Development of High Strength Magnesium Alloys by Rapidly Solidification [J]. Materials Science Forum, 2003, 419-422: 709-714
    [21] Inoue K, Kawamura Y, Nishida M. Rapidly Solidified Powder Mg-(Ag,Sc)-Ⅹ Alloys with High Strength [J]. Materials Science Forum, 2003, 419-422: 757
    [22] Kim S H, Kim D H, Kim N J. Structure and Properties of Rapidly Solidified Mg-Al-Zn-Nd Alloys [J]. Materials Science and Engineering A, 1997, 226-22: 1030
    [23] 陈振华.镁合金[M].化学工业出版社,2004
    [24] Larionova T V, Park W W, You B S. A Ternary Phase Observed in Rapidly Solidified Mg-Ca-Zn Alloy [J]. Scripta Materialia, 2001, 45(1): 7
    [25] Koike J, Kawamura Y, Hayashi K, et al. Mechanical Properties of Rapidly Solidified Mg-Zn Alloys [J]. Materials Science Forum, 2000, 350:105
    [26] Vostry PJ, Stulikova I, Kiehn J, et al. Electrical Resistometry of Mg-based Microcrystallin Alloys and Mg-based Composites [J]. Materials Science Forum,??1996, 210-213(2): 635
    [27] A.R.E. Singer, Recent Development in the Spray Forming of Metals: Part Ⅰ. Met. Power Rep, 1986, 41(2): 109-122
    [28] P. Beiss. PM Methods for the Production of High Speed Steel. Metal Powder Report. 1983, 38(4): 185-192
    [29] E.J. Lavemia, N.J. Grant. The Structure and Properties of Mg-Al-Zr and Mg-Zn-Zr Alloys Produced by Liquid Dynamic Compaction. Mater [J]. Sci. Eng. 1987 (95): 225-237
    [30] E.J. Lavemia, N.J. Grant. Spray Deposition of Metals: A Review. Mater, Sci. Eng, 1988(98): 381-386
    [31] Yu H. Afluid mechanics model of the planar flow melt spinning process under low Reynolds Number conditions [J]. Metallurgical Transaction, 1987, 18B: 557-563
    [32] Niu Jitai,Physical Simulation Technology of Materials during Hot Processing. Beijing:National Defense Press,1999:1(牛济泰.材料和热加工领域的物理模拟技术,北京:国防工业出版社,1999:1)
    [33] 张诗昌,段汉桥,蔡启舟,魏伯康等.主要合金元素对镁合金组织和性能的影响[J],铸造第50期第6卷,2001年6月.148
    [34] 张静,潘复生,郭正晓等.含镁合金系中的合金相[J].兵器材料科学与工程,2002,25(6):50-56
    [35] Ju Yeon Lee, Do Hyung Kim, Hyun Kyu Lim, et al. Effects of Zn/Y ration on Microstructure and mechanical properties of Mg-Zn-Y alloy [J]. Materials Letters 59(2005): 3801-3805
    [36] 袁广银,刘满平,王渠东等.Mg-Al-Zn-Si合金的显微组织细化[J].金属学报,2002,38(10):1105-1108
    [37] 袁广银,曾小琴,吕宜振等.锑合金化对镁基合金力学性能的改善作用[J],材料工程,No.4,2001,P10-15
    [38] 崔忠圻.金属学与热处理[M].机械工业出版社,2001
    [39] D.H. Base, S.H. Kim, D.H. Kim, W.T. Kim. Deformation behavior of Mg-Zn-Y alloys reinforced by icosahedral quasicrystalline particle [J]. Acta Materialia,??2002, 50: 2343-2356
    [40] D.H. Bae, M. H. Lee, S.H. Kim, D.H. Kim, W.T. Kim. Application of quasicrystalline particles as a strengthening phase in Mg-Zn-Y alloys [J]. Journal of Alloys and Compound, 2002, 342: 445-450
    [41] S.Yi, E.S. Park, J.B. Ok, W.T. Kim, D.H. Kim. (Icosahedral phase+a-Mg) two phase microstructrues in the Mg-Zn-Y ternary system [J]. Material scince and engineering, 2001, A300: 312-315
    [42] Morries M A, Morries D G. Microstructures and mechanical properties of rapidly solidified Cu-Cr alloys [J]. Acta Metal, 1987, 35(10): 2511-2522
    [43] 黄正华,郭学锋,袁森.快速凝固AZ91D镁合金的组织研究[J].中国有色金属学报,2004,14(6):939-944
    [44] 赵红亮,郑飞燕,关绍康等.厚条带Mg2Al2Zn基合金的显微组织研究[J].材料科学与工程学报,2005,23(4):607-609
    [45] 黄正华.AZ91D-M镁合金组织与性能的研究[D].西安:西安理工大学.硕士学会论文:2004
    [46] 程天一,章守华.快速凝固技术与新型合金[M].北京:宇航出版社,1990:125-300
    [47] F. Hehmann, F. Sommer, B. Predel. Extension of solid solubility in magnesium by rapid solidification [J]. Materials Science and Engineering A, 1990, 125: 249-265
    [48] 张国栋.单辊成形装置及快冷软钎料的研制[D].甘肃工业大学硕士论文.1999.
    [49] 沈宁副,汤亚力,关绍康,张东捷.凝固理论进展及快速凝固[J],金属学报,1996,Vol.32.No.7.P.673
    [50] Z.H. Zhang, X.F. Bian, Y. Wang, et al. Solidification Microstructure formation of an Al-Ce-Sr alloy under conventional and rapid solidification conditions[J]. Journal of Alloys and Compounds, 2002, 346, 134-141
    [51] Tumbull D. and Fisher J.C, J. Chem. Phy, 1949, Vol17, P.71
    [52] Christian J.W, Transformation in Melts and Alloys, Pergaman Press, London, 1965, P.403[53] J. Feder, K.C. Russell, J. Lothr, G. M. Pdund. Advance in Phys. Plil. Mag, 1966, 15: 111
    [54] C.A. Cahill, A.V. Grosse, J. Phys. Chem, 1965, 69:518
    [55] J. Perepezko, Mater. Sci. Eng. 1984, 65:125
    [56] G.S. Shao, T.P, M.A.P, Int. J. Rapid Solidification, 1993, 8:41
    [57] 徐耀祖.相变原理[M].北京:科学出版社,1988
    [58] 张承忠.金属的腐蚀与保护[M].北京:冶金工业出版社,1985:30-104
    [59] 陈晶阳.变质处理对AZ70变形镁合金组织及性能影响的研究[D].郑州:郑州大学硕士论文,2005
    [60] 孙雅茹.镁合金表面处理方法及耐蚀性能研究[D].沈阳:沈阳工业大学硕士论文,2003
    [61] 张志富.镁合金腐蚀与防护的研究[D].西安:西北工业大学硕士论文,2004
    [62] 朱日彰.金属腐蚀学[M].北京:冶金工业出版社,1993:1
    [63] 徐萍.Ce、Nd、Sr对AZ91镁合金显微组织和腐蚀性能的影响[D].武汉:武汉理工大学硕士论文,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700