真空排水系统建模及仿真的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
真空排水系统是一种具有潜在应用前景的生态污水收集系统。目前,国内外其基础理论及设计方法还停留在定性分析及经验计算的层次上。随着该系统的广泛应用,系统规模的扩大及对能耗问题的关心,其输送机理,设计方法及运行特性等研究还有待进一步深入。本文对真空排水系统终端、管网及真空站的建模及仿真方法进行了深入的研究,实现了系统层次的动态模拟,分析了系统能耗。给出了一种能细致刻画真空排水管道气-液两相流动的双流体模型及其求解方法。以真空排水系统中常见的情景为例,在更精细的尺度上实现了真空管道非恒定流动的数值模拟。以期为该系统的优化设计、运行与管理服务。
     建立了真空排水系统各子系统的数学模型:1.建立了真空排水系统的两种用户终端的数学模型。2.给出了基于连续性方程,一维气-液两相流稳态压降方程及节点压头方程的真空排水管网的水力模型。导出了动提升压降系数的物理意义,并利用Woldesemayat和Ghajar的Dix修正式给出了优化的计算方法。回顾及比较了四种理论或半经验摩擦压降计算方法(修正的海曾-威廉法、Averil-Heinke法,杜克勒Ⅱ法和段金明法)。为弥补现有方法不足,介绍了一种基于真空管道实验的实验二相系数方法。3.提出了真空站的数学模型,其包含三个控制方程,分别是气相质量方程、液相质量方程和容积方程。
     以系统的数学模型为基础,首次为真空排水系统定义了一个一维等温气-液两相流的物理域,并在Matlab\Simulink\Simscape软件环境下建立了其仿真模块库。以一个典型室外真空排水系统为例建立了其计算机模型,实现了系统层次的仿真,得到了各集水单元处的污水流量、管网水力特性、真空站的运行参数等重要信息。该平台特别适用于今后复杂的大规模真空排水系统。
     首次在理论上解答了在真空排水系统运行中备受关注的能耗问题。提出并讨论了三种基于不同假设的,用于描述真空排水系统能耗的数学模型(压力耦合-间歇模型、非耦合-间歇模型、非耦合-稳态模型),对室外系统的单位能耗,室内系统的单次能耗做了预测和比较。其中,压力耦合-间歇模型最接近真实系统,可用于设备的选型和控制策略的优化,但其求解需要在前述计算机平台上进行Monte Carlo模拟。
     提出了一种能更精细刻画真空管道内气-液两相非恒定流动的,基于等温假设的四方程双流体模型。给出了真空排水管道数值模拟常见边界条件的处理方法。通过将水平管道数值模拟的稳态压降与现有理论和半经验计算结果对比,在一定程度上验证了本研究双流体模型数值模拟的可靠性和精确性。首次对真空排水系统中几种典型的应用情境作了数值实验,其中包括:室外锯齿形管道铺设、室内U形提升管道铺设、室内系统中的上排式立管系统。观察到了气液两相在管内的非恒定流动过程,并讨论了其形成机理。
     本研究工作是真空排水系统研究由定性分析到定量计算的一个积极探索,以期为该系统的优化设计、运行与管理提供参考。
Vacuum sewerage system (VSS) is a promising ecological wastewater collection system. However, its basic theories and design methods at home and abroad have still remain in the level of qualitative analysis and empirical calculation yet. With the extensive applications, scale enlargement and interest in the energy consumption of VSSs, a deeper insight into their transfer mechanisms, design methods and operating characteristics is needed. The modeling and simulation methods of user terminals, pipeline networks and vacuum stations in VSSs were investigated in this paper. A system-level dynamic simulation was achieved and the system energy consumptions were analyzed. A two-fluid gas-liquid model and its solution method dedicated to vacuum pipelines were presented. Some common scenarios in VSSs were chosen as examples here to illuminate the numerical simulation of unsteady two-phase flows in vacuum pipelines with a more delicate scale. This study would be a foundation for the follow-up study on optimization design, operation and management.
     Subsystem mathematic models of VSSs were established:1. Mathematical models of two types of user terminal in VSSs were built.2. A hydraulic model of vacuum pipeline networks based on continuity equations, pressure loss equations of one-dimension gas-liquid two phase flows, and point head equations was introduced. The physical meaning of the dynamic lift loss coefficient was deduced, of which an optimized calculation method was developed based on the improvement to the correlation of Dix made by Woldesemayat and Ghajar. Four theoretic or semi-empirical calculation methods of friction loss (e.g. modified Hazen-Williams formula, Averil-Heinke method, DuklerⅡmethod and Duan method) were reviewed and compared. To make up for their deficiencies, an experimental two-phase coefficient method for friction loss calculation based on vacuum pipeline experiments was introduced.3. The mathematic model of vacuum station was also built, which comprises three governing equations, e.g. the gas phase mass equation, liquid phase mass equation and volume equation.
     Based on the system mathematic model, a physical domain of one-dimension isothermal gas-liquid two-phase flow for VSS modeling was defined and a simulation block library was established in Matlab\Simulink\Simscape software environment for the first time. A typical outdoor VSS was taken as an example here to illuminate the modeling process. A system-level system-level dynamic simulation was achieved. Some important information, e.g. the sewage flow rates at each collection unit, hydraulic characteristics of the pipeline network and operation parameters of the vacuum station were obtained. This simulation platform is especially suitable for future large-scale VSSs.
     The concerned problem of energy consumption in VSSs was solved for the first time. Three energy consumption models (e.g., pressure-coupled intermittent model, uncoupled intermittent model and uncoupled continuous model) for VSSs based on different hypotheses were proposed and discussed. The specific energy demand in outdoor systems and energy demand per flush in indoor systems were predicted and compared. Among the three models, the pressure-coupled intermittent model turns out to be closest to the real system and can be used for equipment selection and control strategy optimization. However, its solution requires in the Monte Carlo simulation in computer platform.
     A four-equation two-fluid model for transient gas-liquid two-phase flows in vacuum pipelines based on an isothermal hypothesis was put forward. The treatment methods of common boundary conditions for the numerical simulation of vacuum pipelines were firstly presented. The steady pressure loss of horizontal pipe in this numerical simulation was compared with existing theoretic or semi-empirical calculation methods. The results verified the reliability and accuracy of the numerical simulation to a certain extent. Some typical scenarios were numerically investigated for the first time, e.g. saw-tooth pipelines in outdoor systems, U-shape transport-pocket pipelines and uphill-type risers in indoor systems. The transient phenomena of gas-liquid two-phase flows were observed, of which the mechanisms were discussed.
     This study is an active exploration of VSSs from the qualitative analysis to the quantitative calculation, which will provide a reference to system optimization design, operation and management.
引文
[1]杨维娟,戴镇生.新兴的真空式和压力式下水道.给水排水.1996,22(6):52-55
    [2]周敬宣,叶林,李艳萍.真空下水管道系统.中国给水排水.1998,14(1):61-63
    [3]Peter Wesley Newton, Keith Douglas Hampson and Robin. Drogemuller. Technology, Design and Process Innovation in the Built Environment. London: Taylor & Francis,2009
    [4]D. W. Averill and G. W. Heinke. Vacuum Sewer Systems. Report prepared for the Northern Science Group of the Canadian Department of Indian Affairs and Northern Development,1973
    [5]USEPA. EPA/625/4-77-011, Alternatives for small wastewater treatment systems (2) pressure sewers/vacuum sewers. EPA Technology Transfer Seminar Publication,1977
    [6]Water Environment Federation. Alternative Sewer Systems, Manual of Practice FD-12.2nd ed. USA:McGraw-Hill,2008
    [7]尹军.真空式排水管道系统及其应用.吉林建筑工程学院学报.1999,1999(3):32-36
    [8]Jorge I. Camacho, Doug Biglen and Jafeth Baez. Vacuum sewer systems:A viable alternative for wastewater collection? Pipelines 2009:Infrastructure's Hidden Assets. San Diego, CA, United states:American Society of Civil Engineers,2009: 360,1552-1561
    [9]Geoffrey F. Read. Sewers:Replacement and New Construction. Oxford: Butterworth-Heinemann,2004
    [10]EN 1091—1996, Vacuum sewerage systems outside buildings
    [11]EN 12109—1999, Vacuum drainage systems inside buildings
    [12]DWA-A 116-1E, Special Sewerage Systems-Partl:Vacuum drainage outside of buildings
    [13]USEPA. EPA/625/1—91/024, Manual Alternative Wastewater Collection System. USA:USEPA,1991
    [14]WSA 06—2004, Vacuum Sewerage Code of Australia
    [15]AS 4310—2004, DN 80 piston type vacuum interface valves for municipal sewer systems
    [16]Jumichi Yamanaka and Takuji Aoyama. The new design method for the vacuum sewerage system and the reverse siphon system with pressure balancing pipe for the vacuum sewerage system. Journal of the Japanese Society of Irrigation, Drainage and Reclamation Engineering.1996,64(6):575-580
    [17]伊藤贵浩,白川英辉,清水修.真空式下水道收集ツステムの真空弁能力試验.下水道研究凳表会講演集.2002,39:533-535
    [18]清水修,池田圭介.饼用方式75mm真空弁の吸引能力につじて.下水道研究凳表会议演集.2003,40:589-591
    [19]Fuyuki Ohgaki. Development of underground vacuum station. Ebara Engineering Review.2006,213(10):23-28
    [20]周传记.MD-90飞机真空废水系统设计.民用飞机设计与研究.2000(2):27-30
    [21]杨晚生,张吉光,张艳梅.高速客车的真空卫生系统.给水排水.2002,28(8):42-44
    [22]冯亮.飞机机载真空排污系统的维护.民用飞机设计与研究.2002(2):37-40
    [23]滕红华.铁路客车节水真空厕所的系统设计.环境科学与技术.2004,27(3):75-77
    [24]A. Chiumenti, F. Da Borso and R. Chiumenti. The effectiveness of the vacuum system as a slurry management for pig houses in ITALY. Livestock Environment Ⅶ-7th International Symposium. Baltimore, MD, United states:American Society of Agricultural and Biological Engineers,2005,263-270
    [25]段金明,周敬宣,林洪,等.铁路站场固定式真空地面卸污系统设计.中国给水排水.2006,22(18):41-44
    [26]易柏军,周敬宣,张知予,等.豪华客车节水真空卫生间.真空.2006,43(1):67-69
    [27]张继杰,黄焱歆,俞德池.上海火车站固定式真空卸污工程技术特点.铁道劳动安全卫生与环保.2007,34(5):246-248
    [28]邹红.京沪高速铁路列车地面卸污系统设计.中国给水排水.2008,24(20):40-42
    [29]高航,耿炜.全自动污水提升装置在地铁中的应用研究.天津建设科技.2008(S1):92-94
    [30]S Stanko and I. Mahrikova. Sewer system condition, type of sewers and their impacts on environmental management. Threats to Global Water Security, Springer Netherlands,2009,359-364
    [31]World Health Organization. Inadequate Plumbing Systems Likely Contributed to SARS Transmission,2003
    [32]J. A. Swaffield. Sealed building drainage and vent systems--an application of active air pressure transient control and suppression. Building and Environment. 2006,41(10):1435-1446
    [33]马信国.建筑排水技术发展的若干问题.给水排水.2006,32(4):63-69
    [34]陈朱蕾,周磊,周敬宣,等.厨余垃圾与粪便现场处理工艺研究及设计.环境工程.2005,23(3):54-57
    [35]Stefan Achleitner, Michael Moderl and Wolfgang Rauch. CITY DRAIN(?) -An open source approach for simulation of integrated urban drainage systems. Environmental Modelling & Software.2007,22(8):1184-1195
    [36]高林峰,刘小莉,龚志鹏,等.污水输送站的智能建模及预测控制仿真综述.系统仿真技术.2006,2(1):38-44
    [37]刘兴坡.城镇排水管网设计模式系统观.给水排水.2008,34(5):110-112
    [38]C. J. Little. A comparison of sewer reticulation system design standards gravity, vacuum and small bore sewers. Water SA.2004,30(5):685-692
    [39]Clayton T. Crowe. Multiphase flow handbook. Boca Raton, FL:CRC Press,2006
    [40]Mamoru Ishii. Thermo-fluid dynamics of two-phase flow. Paris:Eyrolles,1975
    [41]Herbert Stadtke. Gasdynamic Aspects of Two-Phase Flow:Hyperbolicity, Wave Propagation Phenomena, and Related Numerical Methods. Weinheim:Wiley-VCH, 2006
    [42]李旻,周敬宣.真空排污系统若干重要问题的分析与探讨.中国给水排水.2010,26(10):39-43
    [43]李艳萍,周敬宣,阳国柱.真空气控延时水阀.中国专利:002559684,2001-10-31
    [44]刘旭华,周敬宣,胡国良.真空厕所终端控制系统的研究.真空.2007,44(3):54-55
    [45]李旻,周敬宣,阳国柱.真空排水系统室外集水单元的关键技术与设计.中国给水排水.2009,25(2):48-50
    [46]E. P. Skillman. Design Criteria for Vacuum Wastewater Transfer Systems in Advanced Base Applications. CA:Civil Engineering Lab Navy,1979
    [47]Donald D. Gray, Laura L. Miller and Edward H. Winant. Experimental Study of Vacuum Transport in a Horizontal 50-Millimeter Pipe. West Virginia:Department of Civil Engineering, West Virginia University,1989
    [48]段金明,周敬宣,林洪.真空排污管网水力计算方法及设计程序.中国给水排水.2006,22(6):46-49
    [49]Duan Jinming and Zhou Jingxuan. Studies on frictional pressure drop of gas-non-Newtonian fluid two-phase flow in the vacuum sewers. Civil Engineering and Environmental System.2006,23(1):1-10
    [50]Marek Kalenik. Experimental investigations of hydraulic resistance on lifts in pipelines of a vacuum sewage system. Environment Protection Engineering.2008, 34(3):65-73
    [51]Dariusz Choinski. Real-time simulation of two-phase flow in vacuum sewerage with pressure control. Proceedings of 11th IEEE International Conference on Methods in Automation and Robotics. Miedzyzdroje:2005,813-818
    [52]Dariusz Choinski, Mieczyslaw Metzger and Witold Nocon. Multiscale three-phase flow simulation dedicated to model based control. Proceedings of the 8th international conference on Computational Science Part Ⅱ. Krakow, Poland: Springer-Verlag,2008:5102,261-270
    [53]A. E. Dukler, M. Ⅲ Wicks and R. G. Cleveland. Frictional pressure drop in two-phase flow-Part A and B. Am.Inst.Chem.Eng.J.1964,10:38-51
    [54]R. W. Lockhart and R. C. Martinelli. Proposed correlations of data for isothermal, two-component flow in pipes. Chemical Engineering Progress.1949,45(1949): 39-48
    [55]邹廉.广州白云国际会议中心真空排水系统设计简介.给水排水.2008,31(1):88-90
    [56]洪青春.真空排水系统在上海某地铁商场公厕改造中的应用.中国给水排水.2009,25(22):31-34
    [57]刘珺,王悦明,张聪敏,等.铁路旅客列车污物处理系统的研究及设想.中国铁路.1998(6):31-34
    [58]薛强,邱慧.真空卸污系统在北京南站的应用.铁道劳动安全卫生与环保.2009,36(5):261-263
    [59]刘海玉.青岛客站列车地面卸污系统设计.铁道标准设计.2009(8):89-92
    [60]薛珺.“抽吸—破碎—输送”三功能真空的研究:[硕士学位论文].武汉:华中科技大学图书馆,2007
    [61]李艳萍,周敬宣,陈朱蕾.厨余垃圾破碎-真空抽吸器.中国专利:2004200576446,2006-03-29
    [62]C. K. Krishnakumar and Saigh. Jet pump macerator pump sewage handling system.美国专利:4791688,1988-12-20
    [63]T纳斯基.一种真空排污系统.中国专利:01124996,2002-02-27
    [64]周敬宣,李艳萍,阳国柱.真空收集罐.中国专利:001312863,2001-06-13
    [65]李湘梅,周敬宣,李旻,等.真空排水系统真空罐排放的关键技术与设计.中国给水排水.2009,25(22):42-45
    [66]Marian Kwietniewski, Katarzyna Miszta-Kruk and Joanna Pienkowska. Results of the vacuum station monitoring in a selected vacuum sewerage system. Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments IV. Wilga, Poland:SPIE,2006:6159 Ⅱ,61591B-61593B
    [67]Katarzyna Miszta-Kruk and Marian Kwietniewski. Fault tree reliability evaluation method for a vacuum sewerage system. Environmental Engineering:Proceedings of the Second National Congress of Environmental Engineering. Lublin, Poland: Taylor & Francis,2006,151-157
    [68]李旻,周敬宣,温兴锁.谈真空排水系统中的气液比及其与能耗的关系.给水排水.2010,36(12):69-72
    [69]D. H. Beggs and J. P. Brill. A study of two-phase flow in inclined pipes. Journal of Petroleum Technology.1973,25(5):607-617
    [70]P. L. Spedding, J. J. J. Chen and Van Thanh Nguyen. Pressure drop in two phase gas-liquid flow in inclined pipes. International Journal of Multiphase Flow,1982, 8(4):407-431
    [71]Paul Coddington and Rafael Macian. A study of the performance of void fraction correlations used in the context of drift-flux two-phase flow models. Nuclear Engineering and Design.2002,215(3):199-216
    [72]Melkamu A. Woldesemayat and Afshin J. Ghajar. Comparison of void fraction correlations for different flow patterns in horizontal and upward inclined pipes. International Journal of Multiphase Flow.2007,33(4):347-370
    [73]C. Kleinstreuer. Two-Phase Flow:Theory and Applications. New York:Taylor & Francis,2003
    [74]HG/T 20570.7-95,工艺系统工程设计技术规定:管道压力降计算
    [75]段金明.真空排污系统输送机理及系统优化研究:[博士学位论文].武汉:华中科技大学图书馆,2006
    [76]Marnoru Ishii and Takashi Hibiki. Thermo-Fluid Dynamics of Two-Phase Flow. New York:Springer,2006
    [77]D. A. Drew and S. L. Passman. Theory of Multicomponent Fluids. New York: Springer-Verlag,1998
    [78]D. Drew, L. Cheng and R. T. Lahey. The analysis of virtual mass effects in two-phase flow. International Journal of Multiphase Flow.1979,5(4):233-242
    [79]R. T. Lahey, L. Y. Cheng and D. A. Drew, et al. The effect of virtual mass on the numerical stability of accelerating two-phase flows. International Journal of Multiphase Flow.1980,6(4):281-294
    [80]Iztok Tiselj and Stojan Petelin. Modelling of two-phase flow with second-order accurate scheme. Journal of Computational Physics.1997,136(2):503-521
    [81]K. E. Carlson, R. A. Riemke and S. Z. Rouhani, et al. RELAP5/MOD3 Code Manual, Vol.1-7. NUREG/CR-5535, EG&G Idaho, Idaho Falls,1990
    [82]N. Zuber. On the dispersed two-phase flow in the laminar flow regime. Chemical Engineering Science.1964,19(11):897-917
    [83]J. H. Stuhmiller. The influence of interfacial pressure forces on the character of two-phase flow model equations. International Journal of Multiphase Flow.1977, 3(6):551-560
    [84]Tadashi Watanabe and Yutaka Kukita. The effect of the virtual mass term on the stability of the two-fluid model against perturbations. Nuclear Engineering and Design.1992,135(3):327-340
    [85]J. W. Park, D. A. Drew and Jr R. T. Lahey. The analysis of void wave propagation in adiabatic monodispersed bubbly two-phase flows using an ensemble-averaged two-fluid model. International Journal of Multiphase Flow.1999,24(7):1205-1244
    [86]D. Bestion. The physical closure laws in the CATHARE code. Nuclear Engineering and Design.1990,124(3):229-245
    [87]I. Tiselj, G. erne and A. Horvat, et al. WAHA Code Manual. Ljubljana:Jozef Stefan Institute,2004
    [88]S. Chandrasekhar. Hydrodynamic and Hydromagnetic Stability. Oxford:Oxford University Press,1961
    [89]I. N. Bronstejn, K. A. Semendjajev, G. Musiol, and et al. Taschenbuch der Mathematik. Frankfurt:Verlag Harri Deutsch,1995
    [90]T. Gallouet and J. M. Masella. A Rough Godunov Scheme. Paris:C.R.A.S.,1996: 77-84
    [91]Randall J. LeVeque. Numerical Methods for Conservation Laws. Seattle: Birkhauser,1994
    [92]T. J. Chung. Computational fluid dynamics. New York:Cambridge,2010
    [93]Nicolis, I. Prigogine. Self-Organization in Non-Equlibrium Systems. New York: Wiley-Interscience,1977.
    [94]T. Sun, P. Meakin and T. J(?)ssang. A minimum energy dissipation model for drainage basins that explicitly differentiates between channel networks and hillslopes. Physica A:Statistical Mechanics and its Applications.1994,210(1-2): 24-47
    [95]艾华宁,路广遥.功耗率最小原理在流体管网计算中的运用.给水排水.2010,36(S1):381-383

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700