小型三功能水源(地源)热中央空调的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人民生活水平的提高,家用空调和生活热水已成为现代人居环境中不可缺少的部分,通常是分别购买两套设备,即家用空调机组和热水器。这两套设备在实际运行中不仅浪费能源,而且造成严重的环境热污染,存在着矛盾,也不符合可持续发展的要求。本论文在这种背景下,创造性地研究和开发出了带热水供应的小型地下水源热中央空调机组,该机组可以实现一机多功能——供冷、供暖、供热水,不仅具有丰厚的经济效益,而且具有良好的环境效益。
     本文对所研制的样机进行了理论分析和试验研究,并取得了阶段性的成果,主要有以下几个方面:
     (1) 采用焓分析法和(火用)分析法分别对地下水源制冷工况与地下水源制热工况进行了理论分析,计算出了理论上样机的性能系数、热力完善度、(火用)效率以及冷凝器、压缩机、蒸发器和节流阀的(火用)损失,为样机的改进和试验提供依据;
     (2) 在近标准工况、地下水源制冷工况和地下水源制热工况下,分别对样机进行了性能试验,结果表明:样机运行稳定、性能良好;
     (3) 在地下水源制冷兼制热水模式和地下水源制热兼制热水模式下,本文进行了冷凝热回收制备热水对机组影响的试验研究,每种模式又分为内置热水箱中水为静态和内置热水箱与外置热水箱循环加热热水两种情况。在试验过程中,对每种情况下机组的高压部分、低压部分以及水系统进行了测试,并详细总结出了各参数的变化规律以及对样机性能的影响,结果表明:在制冷工况下回收冷凝热制热水对机组的影响很小,而在制热工况下制备热水对机组有不容忽视的影响。此外,在单独制热水模式下本文也进行了冷凝热回收制备热水对机组影响的试验研究,对机组的高压部分、低压部分以及水系统进行了测试,并详细总结出了各参数的变化规律,结果表明:在单独制热水模式下空调机组的各个参数均处在动态变化中;
     (4) 本文通过试验确定了内置热回收水箱套管式换热器的传热系数K:内套管K=150.2⊿T~(0.5547),外套管K=19.1⊿T~(0.7171),此模型可作为其它机型热回收水箱的设计依据。由内置热水箱的保温试验得出:热损系数U_L=4.57W/m~2·K,时间常数τ_C=20.33h,温位方程θ=42.4e~(τ/20.33)K,保温率方程η_B=e~(τ/20.33),保温层能够满足保温要求;
     (5) 本文对所设计的5种技术方案采用价值工程的方法进行了评价,结果表明:采用本文小型三功能地下水源热中央空调机组供冷、供暖及供生活热水的方案为最优方案。
With the development of the people's living standard, household air-conditioner and hot water have become an indispensable part in our daily life. We usually have to buy two units separately, household air-conditioner and water heater. When the two units work they not only waste energy but also cause serious environmental heat pollution, and contradiction exists between them. This system don't meet the requirement of the sustainable development .So this paper designs and studies the small scale GWHP central air-conditioning unit with hot water supply, this unit has three functions-cold supply, heat supply and hot water supply. The unit will bring us both economic benefits and environmental benefits.This paper has made the theoretical analysis and experimental study on the sample unit ,and draws some conclusion as follow:(1) Groundwater-source refrigeration operating mode and Groundwater-source heat operating mode are analysed theoretically by means of enthalpy analysis and exergy analysis, Calculating out the performance coefficient , finishing degree of heating power , exergy efficiency of sample unit and the exergy loss of condenser compressor , evaporator and expander, then offering the basis for improvement and test of the sample unit;(2) Under standard mode, Groundwater-source refrigeration operating mode and Groundwater-source heat operating mode, carrying on performance test to the sample unit respectively, the result shows: The sample unit operates stably, performance are good;(3) Under refrigeration operating and hot water supply mode and heat operating and hot water supply modes, this paper has carried on the experimental study on the influence of condensing heat recovery for hot water, each mode is divided into two kinds of situations to heat hot water , water in inside tank is in static behavior and water in inside tank circulates with water in outside tank .In the course of testing, high-pressure system , low- pressure system and water system have been tested under each kind of situation, and summarizing the change law of every parameter and impact on performance of sample unit in detail, the result shows :Condensing heat recovery for hot water has little impact on sample unit under refrigeration operating mode, but the impact on unit can't be ignored under heat operating mode .In addition, under single hot water supply mode this paper also has carried on the experimental study on the influence of condensing heat recovery for hot water , high-pressure system , low- pressure system of the unit and water system have been tested ,and summarizing the change law of every parameter in detail, the result shows : Each parameter of the air-conditioning unit is in the dynamic change under single hot water supply mode;(4) This paper confirms heat transfer coefficient K of the sleeve pipe type heat exchanger of the inside hot water tank through the test: Interior sleeve pipe K =150.2 △T~0.5547, exterior sleeve pipe K =19.1 △T~0.7171, this two models can be used to design the condensing heat recovery water tank of other unit types. The warm - keeping test of the inside hot water tank
引文
[1] 刘耀斌等.户式中央空凋发展方向的探讨.制冷与空调,2003,3(5):18~21.
    [2] 王惠想等.建筑空调能耗与城市热岛效应.河北建筑科技学院学报.2004,21(1):23~27.
    [3] 一色尚次等.余热回收利用系统实用手册[M].北京:机械工业出版社,1988.
    [4] 燃气热水器占市场总量的57%.中国住宅设施,2004,(6):61.
    [5] 谈荣梅,屠春雨.燃气热水器使用时对室内空气质量影响的调查[J].环境与健康杂志,1995,12(6):281.
    [6] 谭卫国,曾宏.四起使用燃气热水器致CO中毒调查报告[J].环境与健康杂志,1997,14(1):26.
    [7] 谭顺民,郑利平,罗贤成等.冷凝式燃气热水器的节能分析.燃气与热力,2003,23(5):287~289.
    [8] 沈维道,蒋智敏,童钧耕等.工程热力学.北京:高等教育出版社,2004.
    [9] 徐艳芳,于大文等.基于Yong概念的可持续发展策略分析.华北电力大学学报,2003,30(5):21~25.
    [10] 王成,陆振辉等.燃气热水器与电热水器运行费用比较.燃气与热力,2002,22(6):538~539.
    [11] 王恕清,陈文祥等.热水空调器产品性能、实验方法及社会效益分析与探讨.制冷与空调,2004,4(1) 83~85
    [12] Rousseau P G, Greyvenstein G P. Enhancing the Impact of Heat Pump Water Heaters in the South African Commercial Sector. Energy, 2000, 25 (1): 51~70.
    [13] Mei Y C, Ronald E, Brewer W H, etal. Experimental Study of an R-407C Heat Pump Water Heater. In: ASHRAE Transactions, 2001, 107(1): 224~229.
    [14] 李中领等.地源热应用于户式中央空调的发展前景.建筑热能通风空调,2004,23(2):51~55.
    [15] 范存养.热空调及各种热回收系统和空调节能技术[M].同济大学科学技术情报站,1980.
    [16] Cdlin, M. An 18MW Turbine Driver Heat Pump at Arlov Sugar Refinery[C]. In: 16th International Congress of refrigeration, 1983, 7~8.
    [17] Westinghouse Electric Co. Beer Pasteurize With Heat Pump [J]. ASHRAE Journal, 1980, (9): 13~15.
    [18] Reay, D. A. Macmlchel, D. B. A. 热设计和应用[J].新能源, 1983, (1): 3~7.
    [19] R. E. Cook. Water Storage Tank Size Requirement for Residential Heat Pump/Air Conditioner Desuperheater Recovery[C]. ASHRAE Transactions, 1990, 96 (2): 715~719.
    [20] W. M. Ying. Performance of Room Air conditioner Used for Cooling and Hot Water Heating[C]. ASHRAE Transactions, 1989, 95 (2): 441~444.
    [21] K. C. Toh. and S. K. Chan. Thermosiphon Heat Recovery from an Air conditioner for a Demestic Hot Water System [C]. ASHRAE Transactions, 1993, 99 (1): 259~264.
    [22] K. H. Kohloss. Use of Heat Rejection Equipment to Conserve Energy [J]. ASHRAE Transactions, 1984, 90 (1): 377~384.
    [23] D.A.雷伊 and D.B.A.麦克米查尔著.热设计和应用——工厂经理、工程师、建筑师和设计师的应用手册[M].北京:国防工业出版社,1985.
    [24] 高田秋一.热技术的最新发展和进步[C].见:第八届全国制冷和热学术会议,1997,18~20.
    [25] A. S. Lloyd, P. E: F. H. Kohloss, P. E: Elliott, P. E. Bfore and After Metered Data and Daily Load Profiles of Retrofit Commercial Heat Pump Water Heaters. ASHRAE Transactions, 1985, vol. 91 (2B-2): 1463~1472.
    [26] H 基恩.热.第二卷:电动热的应用.北京:机械工业出版社,1987.
    [27] 马最良,杨自强,马光昱.我国热空调的同顾和发展[J].暖通空调,2000,30(10):24~27.
    [28] 任守宇.冷凝废热在空气调节机上的应用[J].暖通空调,1978,(2):14~16.
    [29] 马最良,唐金泉.人工冰场制冷系统冷凝废热利用的可能性分析[J].制冷学报,1987,(3):22~27.
    [30] 陆亚俊,马最良,陈晖.带热水供应的节能性冷藏柜运行特性的实验研究[J].哈尔滨建筑大学学报,1990,23(6):36~39.
    [31] 荣国华.夏季制冷机冷凝热的同收利用[J].暖通空调,1998,28(2):27~29.
    [32] Shi Wenxing. Thermodynamics Analysis and Thermoeconomics Evaluation on Heat recovery Inverter Air Cooling Heat Pump with Demestic Hot Water[C]. In: 7th International Energy Agency Conference on Heat Pump Technologies, 2002, vol (2): 889~894.
    [33] 余颖俊,王梦云.空调冷凝热的同收利用[J].工程设计CAD与智能建筑,2000,(8):1~4.
    [34] 邹才福.中央空调废热同收利用在酒店使用情况分析[C].见:2001年全国热和空调技术交流会论文集,2001,152~154.
    [35] 伊京俊.应用热交换器回收制冷废热的评价[J].节能,1998,(7):25~27.
    [36] 解东明.家用制冷设备制取热水装置的研制.山东师大学报(自然科学版),1998,13(4) 398~400.
    [37] 季杰,裴刚等.空调——热水器一体机制冷兼制热水模式的性能模拟和实验分析[J].暖通空调,2003,33(2):19~23.
    [38] 季杰,裴刚等.空调——热水器一体机单独制热水模式的性能模拟和实验分析.暖通空调,2004,34(12):96~98.
    [39] 季杰等.家用空调和热水器一体化装置.中国专利,00240603,9,2001—07—06.
    [40] 陆刃波.调查与统计.北京:国务院发展研究中心市场调查研究所.
    [41] 河南绿源制冷有限公司样本:地温(水源)热中央空调.
    [42] 徐伟等译.地源热工程技术指南.北京:中国建筑工业出版社,2001.
    [43] 王芳,范晓伟,周星辉等.我国水源热研究现状[J].流体机械,2003,31(4):57~59.
    [44] 吕金扬,陈显余.深井蓄热性地下水热系统[J].见:全国暖通空调制冷1994年学术年会资料集.北京:中国建筑工业出版社,1994,497~501.
    [45] AHRAE. Commercial/Institutional Ground—Source Heat Pump Engineering Manual [M]. Atlanta: ASHRAE, 1995.
    [46] S. P. Kavanaugh, K. Raffery. Ground—Source Heat Pump Design of Geothermal Systems for Commercial and Institutional Building [M]. Atlanta: ASHRAE, 1997.
    [47] M.J>Hatten. Ground—Water Heat Pumping: Lessons Learned in 43 Years at One Building [J]. ASHRAE Transactions, 1992, 98 (1): 1031~1037.
    [48] 龚宇烈,赵军,李新国等.地源热在美国工程应用及其发展[C].见:2001年全国热和空调技术交流会议论文集.北京:中国建筑工业出版社,2001,249~253.
    [49] J. Donald Kroeker, Ray C. Chewing. Heat Pump in an Office Building [J]. ASHRAE Transactions, 1948, vol. 54: 221~238.
    [50] J. Donald Kroeker, Ray C. Chewing. Costs of Operating the Heat Pump in the Equitable Building [J]. ASHRAE Transactions, 1954, vol. 60: 157~176.
    [51] E. C. Knipe, K. D. Raffery. Corrosion in Low Temperature Geothermal Application [J]. ASHRAE Transactions, 1985, vol. 91 (2B-1): 81~91.
    [52] Kevin Raffery. A Capitalcost Comparison of Commercial Ground—Source Heat Pump System

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700