具有二元光学校正元件的反射式光学系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二元光学是基于光波的衍射理论,利用计算机辅助设计,并利用微电子技术中的超大规模集成电路制作工艺,在片基上(或传统光学元件表面)刻蚀产生多个台阶深度的浮雕结构的衍射光学元件的一门前沿交叉学科。二元光学元件具有体积小、重量轻、设计自由度多、材料可选性宽、色散性能独特及衍射效率高等优点,现已广泛应用于红外光学系统、光纤通信、全息显示、光学扫描、图像识别和图像处理、生物医学、国防军事等领域。将二元光学技术应用于航天光学遥感系统,有助于减小系统的体积和重量,提高系统的性能,降低系统的成本。
     本文围绕二元光学在成像系统设计中的相关理论,设计了具有二元光学校正元件的离轴三反射镜光学系统。二元光学元件扩大了系统的视场,使之达到4°×3°,成像质量接近衍射极限。
     本文的主要内容包括:光学系统技术指标的确定,传统反射式光学系统的设计,具有二元光学校正元件的反射式光学系统的设计,二元光学元件对像差校正作用的分析以及二元光学元件制作误差对衍射效率的影响的分析。
     利用二元光学元件扩大反射式光学系统的视场在理论上是可行的。带有二元光学校正元件的反射式光学系统可设计用于可见光和红外波段的空间目标监视、对地遥感观测等领域。
Binary optics is an advanced interdisciplinary branch of optics based on the optical wave diffraction theory. Binary optical elements (BOEs) are diffractive optical elements (DOEs) that are fabricated on substrates or conventional optical elements using very large scale integration (VLSI) technology. Binary optics has many advantages, such as small size, light weight, more design variables, wide range of optional materials, peculiar dispersion performance, high diffraction efficiency, etc. Therefore, it has been proved to be very useful in many practical applications, for infrared optical systems, optical fiber communication, holographic displays, image processing, biomedicine, national defense and military affairs, etc. Applying binary optical technology on the optical remote sensing system can realize the reduction of system’s size and weight, enhance system’s optical performance, and reduce system’s cost.
     The theories related to hybrid imaging optical systems are investigated in this thesis. A three mirror anastigmat (TMA) system with BOE is designed. The TMA’s field-of-view (FOV) can be expanded into 4°×3°. Result shows that, this system can provide nearly diffraction-limited imaging quality.
     The main work in this thesis can be summarized as follows: the determining of the qualifications of optical system, the design of conventional reflective optical system, the design of reflective optical system with BOE, the analysis of the effect of BOE, and the analysis of the fabrication errors that affect the diffractive efficiencies of BOEs.
     It’s feasible that expanding the FOVs of reflective optical systems utilizing BOEs. The reflective optical systems with BOEs can be designed to operate at visible or infrared wavelengths for applications in surveillance of targets in space, remote sensing and so on.
引文
1马文坡.低轨对地观测卫星凝视成像仪探讨.航天返回与遥感. 2006, 27(4):17~21
    2潘君骅.光学非球面的设计、加工与检验.苏州:苏州大学出版社, 2004:10~11
    3陈世平等.空间相机设计与试验.北京:宇航出版社, 2003:43, 244, 264, 257~259
    4 D. Korsch. A Three-Mirror Space Telescope. Optical Engineering. 1975, 14(6):533~535
    5 D. Korsch. Design and Optimization Technique for Three-mirror Telescope. Applied Optics. 1980, 19(21):3640~3645
    6 W. B. Veldkamp, T. J. Mchugh. Binary Optics. Scientific American, 1992, 266(5):92~97
    7 J. Lcgcr, M. Holz, G. Swanson, et al. Coherent Laser Beam Addition: An Application of Binary Optics Technology. Lincoln Laboratory Journal, 1988,1(2):225~246
    8 N. C. Gallagher. Binary Optics in the 90's. Proc. SPIE, 1998, 1396:722
    9 T. Stone, N. George. Hybrid Diffractive-Refractive Lenses and Achromats. Applied Optics, 1988, 27:2962
    10王玉堂,李育林.微光学发展及战略对策.光子学报, 1994, 23(Z2):1~5
    11徐琰.利用二元光学技术轻量化光学遥感系统.国防科技大学硕士学位论文. 2006
    12 R. H. Katyl. Compensating Optical System. Part I: Broadband Holographic Recorsatruction. Applied Optics, 1972, 11:1241
    13 W. C. Sweatt. Describing Holographic and Optical Elements as Lenses. J. Opt. Soc. Am. , 1977, 67:803~808
    14 W. A. Kleinhans. Aberrations of Curved Zone Plates and Fresnel Lenses. Applied Optics. 1977, 16:1701~1704
    15 G. J. Sweason, W. B. Veldkamp. Infrared Applications of Diffractive Optical Elements. Proc. SPIE, 1988, 885:22
    16 A. P. Wood, Design of Infrared Hybrid Refractive-Diffractive Lenses. Applied Optics, 1992, 31:2253
    17 G. M. Morris. Diffraction Theory for an Achromatic Fourier Transform. Applied Optics, 1981, 20:2017
    18 T. Stone, N. George. Hybrid Diffractive-Refractive Lenses and Achromats. Applied Optics, 1988, 27:2962
    19 D. W. Ricks, J. M. Boteler. Aberration Reduction Using Binary Optics. Proc. SPIE, 1990, 1211:79
    20 D. A. Buralli, G. M. Morris. Design of a Wide Field Diffractive Landscape Lens. Applied Optics, 1989, 28(18):3952
    21 M. W. Farn, M. B. Stern, W. B. Veldkamp, S. S. Medeiros. Color Separation by Use of Binary Optics. Optics Letters, 1993, 18(15):1214
    22 D. Lyons. Image Spectrometry with a Diffractive Optic. Proc. SPIE, 1995, 2480:123
    23 D. Faklis, G. M. Morris. Spectral Properties of Multiorder Diffractive Lenses. Applied Optics, 1995, 34:2462
    24 D. W. Sweeney, G. E. Sommargren. Harmonic Diffractive Lenses. Applied Optics, 1995, 34:2469
    25金国藩,严瑛白,邬敏贤.二元光学.北京:国防工业出版社, 1998:200
    26 T. J. McHugh. An Overview of Binary Optics at Perkin-Elmer Corporation. Proc. SPIE, 1988, 884:100
    27 T. J. McHugh, D.A. Zweig. Recent Advances in Binary Optics. Proc. SPIE, 1989, 1052:85~90
    28 D. M. Brown, A. D. Kathman. Off-axis Spherical Element Telescope with Binary Optic Corrector. Proc. SPIE, 1991, 1555:114~115, 118
    29 Patent 5153772. Binary Optic Corrected Multistage Imaging System. Oct. 6, 1992
    30 R. A. Hyde. Eyeglass 1: Very Large Aperture Diffractive Telescopes. Applied Optics, 1999, 38:4198
    31 R. A. Hyde, S. Dixi, A. Weisberg, M. Rushford. Eyeglass: A Very Large Aperture Diffractive Space Telescope. Proc. SPIE, 2002, 4849:28
    32 T. U. Kampe, T. S. Pagano. SIRAS: The Space Infrared Atmospheric Sounder-An Approach to Next Generation Infrared Spectrometers for Earth Remote Sensing. Optical Spectroscopic Techniques for Space Research, 2001, 60~68
    33 J. T. Early, R. Hyde. Twenty-meter Space Telescope Based on Diffractive Fresnel Lens. UV/Optical/IR Space Telescopes, Innovative Technologies Concepts Conference, 2003:3~5
    34 R. A. Hyde. Large Aperture Diffractive Optics for Space Based Lasers. LLNL, CA*Department of Energy, Washington DC, DE2001-13780/XAB
    35周崇喜,林大键,杜春蕾,郭晴.二元光学反衍混合Schmidt望远系统光学设计.光学学报. 1998, 18: 627~630
    36沈蓓军,郭晴,肖金才,薛永祺.预警卫星大口径拼接组合型二元衍射校正元件制作工艺研究.光学技术, 2001, 27(6):535~536, 540
    37刘玉凤,李林.二元光学透镜在资源卫星中的应用.光学技术. 2004, 30:590~593
    38杨新军,王肇,孙强,母国光.基于二元光学的红外成像光谱仪离轴系统设计.光子学报, 2005, 4:2
    39任智斌等.含衍射透镜的4°视场卡塞格林光学系统.长春理工大学学报, 2007, 30:1
    40厉银喜.性能优异的美国陆地卫星-7.国际太空. 1999, 6:21~22
    41韩心志,焦世举.航天光学遥感辐射度学.哈尔滨:哈尔滨工业大学出版社, 1994:74-75, 203
    42 DALSA Corp. DALSA IT-P1-2048B Image Sensors. 2005, 5:1~14
    43 Kunihiro Tanikawa, Toshihiro Okamura, Jun-ichi Kudo. Multispectral Sensor Using Off-axis Three-mirror Reflective Optics for Airborne Surveillance. Proc. SPIE. 1998, 3498:390~399
    44周崇喜,李展,林大键,杜春雷.红外折/衍混合离轴望远系统设计.光子学报. 1996, 25(12):1101
    45 K. P. Thompson. Aberration Fields in Tilted and Decentered Optical System. PhD Dissertation in University of Arizona. 1980:
    46 DALSA Corp. DALSA FTF4052M Image Sensors. 2005, 5:1~18
    47叶钧等.二元光学元件衍射效率的逐层分析法研究.光学学报, 1996,16(10):1350-1355
    48叶钧等.八台阶二元光学器件套刻误差的逐层分析法研究.浙江大学学报. 1999, 33(2):157~162
    49谈苏庆等.二元光学制作误差的振幅矢量分析法.激光技术. 1996, 20(5):308~311
    50徐平等.二元光学元件制作误差分析与模拟.光学学报. 1996, 16(6):833~838
    51 J. A. Cox, B. Fritz, T. R. Werner. Process Error Limitations on Binary Optics Performance. Proc. SPIE. 1991, 1555:80~88
    52 T. R. Werner, J. A. Cox, J. Gieske, K. Hewitt. The CO-OP DOE Foundry Process Results. Proc. SPIE. 3010:96~104
    53 M. Ferstl, et al. Blazed Fresnel Zone Lenses Approximated by Discrete Step Profiles. Proc. SPIE, 1993, 1732:89~99
    54 M. B. Stern, et al. Fabrication Binary Optics: Process Variables Critical to Optical Efficiency. J. Vac. Sci. Technol, 1991,B9(6):3117~3121
    55 M. Ferstl, et al. Effect of Fabrication Errors on Multilevel Fresnel Zone Lenses. Optical Engineering. 1994, 33(4):1229~1235
    56李红军,卢振武等.线宽误差对菲涅尔透镜衍射效率的影响.光子学报. 2000, 29(6):559~563
    57李红军,卢振武等.对准误差对菲涅尔透镜衍射效率的影响.光学精密工程. 2000, 8(1):11~15
    58 Yasuyusi Unno. Point-spread Function for Binary Diffractive Lenses Fabricated with Misaligned Masks. Applied Optics. 1998, 37(16):3401~3407

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700