足地间三维相互作用力测量方法研究与实验系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
足地间三维相互作用力的测量是人体运动研究中足底信息最全面的获取方式。获取运动中足地间三维相互作用力可以对人体运动进行建模研究,对提高运动训练的效果、改进竞技体育的技术动作以及减少运动的伤病有着重大的意义。目前测量足地间相互作用力的方法主要依靠三维测力板、测力鞋以及测力鞋垫等。三维测力板可测量足地间三维相互作用力,但体积大、重量沉,只能测量站立时,或步行一步的步态参数,这样就限制了它的使用范围。而一些测力鞋与鞋垫只能测量足地间垂直方向受力,并且不适合在运动竞技训练这种高强度冲击系统中应用。综上分析目前可获得足地间三维相互作用力的测量技术还不完善,本文针对人体运动中的足地间三维相互作用力情况展开研究,探索了一种足地间三维相互作用力测量方法与实验系统。通过该实验系统可获取人体运动中足地间三维相互作用力,为人体运动的研究提供指导和帮助。
     在短跑中起跑动作的合理和连贯是非常重要的,有效的起跑涉及足地间三维相互作用力、起跑器的摆放位置以及人体各关节的角度等因素。为提高人体运动研究中起跑技术的有效性,本文提出使用AnyBody数值仿真的方法来验证上述足地间三维相互作用力的测量方法。建立了基于AnyBody软件的起跑仿真模型,并通过计算模型中各块骨骼、肌肉和关节的受力情况,验证了仿真模型的可靠性和合理性。在此基础上设计了明确的人体起跑实验方案,通过实验提高了研究的科学性。本文针对人体起跑实验的需求进行了三维数字测力跑鞋的设计与实现。
     三维数字测力跑鞋由以下三部分组成:(1)一种能够获得足地间三维相互作用力的新型测力器件;(2)采集作用力的数据采集卡;(3)上位机处理部分。三维数字测力跑鞋实现了实验所需要的功能:(1)足地间三维相互作用力与电信号的转换;(2)电信号的采集和存储;(3)所采集数据的分析和显示。
     本文针对三维测力器件的动态测量的需求,设计实现了动态标定方法和装置。研制了模拟鞋地间相互作用的冲击测试环境,并通过基于二元非线性冲击系统的理论分析和数值计算,对三维测力器件进行了标定。
     本文针对不同的起跑技术动作选取问题,结合起跑技术的特点,基于AnyBody仿真提出了使用三维数字测力跑鞋对九种不同起跑技术动作的足地间三维相互作用力进行测量的实验方案。针对实验方案要求设计并实现了三维数字测力跑鞋及其动态标定方法和装置,并与基于Anybody的起跑动作的建模整合成完整的实验平台,为开展人体运动中足地间三维相互作用力的研究提供了一种新方法。通过实验得到了一些可以在实践中指导运动员训练或者借鉴的结论,为体育训练和科研提供指导和帮助。在今后的运动训练中引入该研究方法,可以帮助运动员在训练过程中尽快掌握动作的技术要领,减少盲目的重复,极大地提高训练效率,从而达到最佳的训练效果。
Measurement of the tri-axial force on foot-ground interface is a way of acquisition of the most comprehensive information in the plantar, which facilitates the human-body modeling of movement and may enhance the effect of sports training, improve sports technical movement, and reduce sports injuries. At present, the main methods for measuring tri-axial force on foot-ground interface include the tri-axial force plates and force measurement shoes and insoles. Tri-axial force plates measure the tri-axial force on foot-ground interface, but they are large and heavy. So they can only measure gait parameters of the standing position or a step of walk, thus limiting their application. The force measurement shoes and insoles can only measure the vertical stresses between the foot and ground, and they are not applicable in high-intensity sports and exercise. Therefore, currently available methods for measurement of the tri-axial force on foot-ground interface have drawbacks. A novel experimental system and method is proposed in this paper for measuring the tri-axial force on foot-ground interface in human-body movement, providing guidance and assistance for sports training and scientific research.
     In sprint,the starting action with reasonable and coherent movement is very important. An effective starting action depends on the tri-axial force on foot-ground interface, the location of the starting blocks, the angles of articulations, and other factors. In order to improve the movements in the starting action, a new method using AnyBody numerical simulation is proposed to verify aforesaid measurement system of the tri-axial force on foot-ground interface. Based on AnyBody, a simulation model of the starting action is presented, which is evaluated by calculation of the forces in each bone, muscle and articulation.
     Spiked shoes for the tri-axial force measurement are then proposed and designed for experiments of studying the starting motion. The spiked shoes for tri-axial force measurement are composed of three parts: (1) a novel tri-axial force measurement device for measuring tri-axial force on foot-ground interface; (2) the data acquisition system; (3) the part of signal processing by computer. The tri-axial force measurement spiked shoes have achieved three functions: (1) transformation of the tri-axial force on foot-ground interface to electrical signals; (2) acquisition and storage of the data; (3) display of the data files saved in computer.
     In order to check the output characteristics of tri-axial force measurement device, we have designed dynamic loading test experiments. Based on the second-order nonlinear model of the impact machine system, a dynamic loading test equipment to simulate the impact on the foot-ground interface is developed to validate the tri-axial force measurement device. The experimental curves and the theoretical calculation results show good consistency.
     In this paper, the sport biomechanics analysis is carried out for the crouch starting, and it uses AnyBody for modeling simulation. The spiked shoes for tri-axial force measurement are proposed, designed and used for experiments by changing the starting block’s angles and positions. In the experiment, the AnyBody modeling simulation is incorporated into a complete experimental platform, which provides a new method for measuring tri-axial force on foot-ground interface and may be helpful for improvement of athletes’running speed. In the future, the method may be introduced in sports training to help athletes’master technical key-points of the sports training technical essentials, and improve training efficiency.
引文
[1]王兆其,张勇东,夏时洪.体育训练三维人体运动模拟与视频分析系统.计算机研究与发展2005. 42 (2). pp: 344-352.
    [2]古福明.人体运动计算机仿真建模方法的研究进展.成都体育学院学报2007. 33 (3).pp:90-93.
    [3]章翔,方配素.我国优秀男子1500m运动员各段落途中跑运动学特征研究.天津体育学院学报2005.20 (6). pp: 79-81.
    [4]吴剑,李建设.人体步行时步态的生物力学研究进展.中国运动医学杂志2002. 21 (3). pp: 305-307.
    [5]韦启航.人体足底压力测量.北京生物医学工程2000. 10 (4). pp: 246-254.
    [6]王立平,李建设.足底压力测量技术的发展现状与应用研究.浙江体育科学2004. 26(1). pp: 40-43.
    [7]李建设,王立平.足底压力测量技术在生物力学研究中的应用与进展.北京体育大学学报2005. 28. pp:191-193
    [8]庞伯友,吴其常.中国正常成人平地行走时足底持重点三维力测定.生物医学工程学杂志1990. 7 (4). pp: 289-293.
    [9]王兰美,郭业民,潘志国.人体足底压力分布研究与应用.机械制造与研究. 2005. 34(1).pp:35-38.
    [10]黄榕熙,胡国清,陈雄,刘文艳.人体压力分布测量技术的研究现状与发展综述.生命科学仪器2006. 4 (12). pp: 10-15.
    [11] Fisher O., Barune W. Determination of mass moments of inerntia of human body and its segments (in Gemnan). Treat. Math. Phya. Class. Royal Acad. of Sazooy 1892. Vol.18. pp: 8-26.
    [12] Elftman. Force and energy changes during the walking. Am.1.Physiol, 1939. 25. pp: 339-356.
    [13] Elftman.The functions of muscles in locomotion. Am.1.Physiol, 1939.25.pp:357-366.
    [14] Eberhart H.D. Fundmental studies of the human locomotion and other information relating to design of articulator limbs. Univesrity of California Berkely 1947. pp: 1-20.
    [15] Eberhart H.D. The Pattern of the muscular activity during the walking. Prosthetic Devices research Project. Univesrity of California Berkely 1953. pp: 1-40.
    [16] Bresler B., Frankle J.P. The force and momentsin the leg during level walking. Trans. AM. Soc.Mech. Engrs 1950.72. pp: 27-62.
    [17] Cunningham D.M. Two devices for measuring the force acting on human body during walking. Prc. Soe.Exp.stress Analysis LX 1952.2. pp: 75-90.
    [18] Paul J.P. Force Inst transmitted by joint in the human body. Proc. Inst. Mach. Eng 1967.181. pp: 8-15.
    [19] Elftman. A study of the distribution of Pressure in the human foot. Anat. Record.1984.59. pp: 841-492.
    [20] Carlet G. Essai experimental sur la locomotion humzine. Aun. Soc.Nat zool 1872.16.pp:11-15.
    [21] Morton D.J. Structural factors in static disorder of the foot. Anig Surg 1980.19. pp: 315-326.
    [22] Klenerman L. The foot and its disorders .Blackwell Scientific.1976.
    [23] Soames R.W. Foot pressure patterns during gait. J. Biomed. Eng. 1985.
    [24] Harris R.J. Beath T. Army foot survey: An investigation of foot ailments in Canada soldiers.Nat Rcs council Canada NRC 1947.
    [25] Henry A.P. Waugh W. The use of footprints in assessing the results operations for hallux valgus. J. Bone joint surg1975.
    [26] Grieve D.W. Monitoring gait. BJ Hosp. Med.1980.
    [27]李建设,顾耀东,陆毅琛.运动鞋核心技术的生物力学研究.体育科学2009.(5).pp:40-49.
    [28] Elftman. Cinematic study of the distribution of Pressure in the human foot.Anst Record1934.59 (4).pp:481-491.
    [29] Hertzbery. Some contribution of spplied physical auhiopology to human.lag. Ana.N Y Acad Sci 1955. 63(4).
    [30] Ledcu A. Reyns. Load sharing with in the forefoot. IN: Kenedieds. Disability. Mecmilac 1979.pp:182-183.
    [31] Cavanagh P.R., Michiyoshi A.E. A technique of display of pressure distributions beneath the foot. J biomech, 1980.13 (2). pp: 69-75.
    [32] Scraton P.E., Momaster J.H. Moment distribution of force under the foot. Biomeeh 1976.
    [33] Betts R.P. Static and dynamic foot pressure measurements in clinical orthopaedics. Med biol Engeg computing 1980. 18 (5). pp: 674-684.
    [34]王军,徐新智,张伟.足底压力动态图像分析系统及临床应用.中国临床康复2002.6 (6). pp: 802-803.
    [35]钱振明,段文江.用影象云纹法测量人足底的压力分布.重庆大学学报1992.15 (1).pp: 121-124.
    [36]钱振明.用影象云纹法测量扁平足.第六届全国实验力学学术会议论文集.北京大学出版社1989.
    [37]张萧,卢世璧,陆文莲.人体步态分析系统子系统-测力台系统及其临床应用.医用生物力学1998.17 (4). pp: 358-366.
    [38] Lord M. Foot Pressure measurement: A review of methodology. Journal of Biomedical Engineering1981.3 (2). pp: 91-99.
    [39] Stocks. Force distribution under the foot.A dynamic measuring system.Bio-Med Eng 1974.9.pp:140-143.
    [40] Gerber H. A system for measuring dynamic pressure distribution under the human foot. J.Biomechanics1982.15 (3).pp:225-227.
    [41]徐桂民.脚压测量用传感器.生物医学工程学杂志1994.11 (4).pp:351-356
    [42] Schwarts R.P. Heath AL. The definition of human locomotion on the basis of measurement. J.Bone Jt Surg.1974.29 (1).pp:203-213.
    [43] Miyazaki S., Lwakura H. Foot-force measuring device for clinical assessment of Pathological gait. Med. Biol. Engng. Comput1978.16 (4).pp:429-436.
    [44] Hennacy R.A. A piezoelectric crystal method for measuring static and dynamic pressure distribution inJ the feet. AM. Podiatry ASS 1975.65(2).pp:444-449
    [45] Schaff P. Pressure measurement inside shoes and application in alpine skiing. Biomechanics, Basic and applied research.1987.pp:659-666.
    [46] Nilsson J., Stokes V.P. A new method to measure foot contact. J.Biomechanics1985.18 (8).pp:625-627.
    [47]韦启航.人体步态分析系统-足底压力测量系统的研制.中国生物医学工程学报2000.19 (l).pp:32-40.
    [48]董骤.人体足部生物力学的研究.生物医学工程学杂志2002.19 (l).pp:148-153.
    [49] Tappin J.W., Pollard J., Beaket E.A. Method of measuring shearing forces on the sole of the foot. Clin phys physical means1980.1 (l). pp: 83-85.
    [50] Pollard J.P., Lequesne L.P., Tappin J.W. Forces under the foot. J, Biomed Eng1983.5 (l). pp: 37-40.
    [51] Akhlaghi F., Pepper M.G. In-shoe bi-axial shear force measurement: The kent aheat system.Med.Biol.Eng and Comput.1996. 34 (4).pp:315-317
    [52] Lebar A.M., Harsis J.F., Wertsch I.J. Development of a miniature plantar sacar force sensing transducer. In proceedings of the 15th annual conference of the IEEE EMES. San Diego (USA).1993.pp:989-995.
    [53] Hosein R., Lord M. A study of in-shoe plantar shear in normals. Clinical Biomechanics.2000.15 (1).pp:46-53.
    [54] Davis B.L., Perry J.E, Neth D.C., Waters K.C. Device of simultaneous measurement of Pressure and shear force distribution on the plantar surface of the foot. J App, Biomech, 1998.14 (2). pp:93-94
    [55] Henning E.M., Canavagh P.R. Pressure distribution under the impacting human foot. Biomechanics X-A. Human Kinetics Publishers.Ine.1987.
    [56]王军,徐新智,张伟,刘亚平,刘金祥.足底压力动态图像分析系统与临床应用2002.中国临床康复. 6(6) .pp: 802-803.
    [57]袁刚,张木勋,张建华,程家明.足底压力分布测量系统及临床应用.中国康复2003. 18(1). pp: 22-25.
    [58] Razian, M.A., Pepper M.G. Design, Development, and Characteristics of an In-Shoe Triaxial Pressure Measurement Transducer Utilizing a Single Element of Piezoelectric Copolymer Film. Transactions on Neural System and Rehabilitation Engineering2003. 11(3). pp: 288-292.
    [59] Razian M.A. A miniature piezoelectric triaxial force transducer and a novel charge multiplexing technique for biomedical applications (gait analysis), Ph.D. dissertation, Univ. Kent at Canterbury, Kent, U.K.2000.
    [60]金观昌,张军,张建中,孙超.一种新型人足底压力分布测量系统及其应用.生物医学工程学杂志2005. 22(1). pp: 133-136.
    [61]张潇,卢世璧.人体足底压力的测量与分析.医用生物力学1994. 9(2). pp: 108-105.
    [62] Christian, L., Steven, A.W., Fokkenrood, Jasper, T.M. Evaluation of instrumented shoes for ambulatory assessment of ground reaction forces. Gait & Posture2007. 26. pp: 39-47.
    [63] Morris S.J., Paradiso J.A. Shoe-Integrated Sensor System for Wireless Gait Analysis and Real-Time Feedback. Proceedings of Second Joint EMBS/BMES Conference 2002. pp: 2468-2469.
    [64]王向东,刘学贞,苑廷刚,卢德明.运动生物力学方法学研究现状及发展趋势.中国体育科技2003.39 (2).pp:15-16.
    [65]霍洪峰,赵焕彬,葛毕敬,王海涛.中国运动生物力学研究发展现状.中国体育科技2007. 34 (2). pp: 26-25.
    [66]李建设.略论运动生物力学的研究方法与测量技术.体育科学1999.19 (2).pp: 84-87.
    [67]徐力,郭巧,陈海英.虚拟人体运动系统建模方法研究.系统仿真学报2004.16 (8) pp: 1789-1793.
    [68]韦启航,陆文莲,傅祖芸.人体步态分析系统—足底压力测量系统的研制.中国生物医学工程学报2000. 19(1). pp: 32-40.
    [69]麻静媛.对Novel Pedar足底压力分布测量系统应用技术的初步开发.中国体育科技2002. 38(7). pp: 23-25.
    [70]兰民国. Tekscan压力分布测量系统.测控技术2002. 21(4). pp: 8-10.
    [71]邓晓楠,王人成.人体动态和静态地面反力检测系统的研制.康复医学工程2006. 21(11). pp: 1019-1021.
    [72]孙义,于岱峰,宋春宁.运动人体三维测力分析系统的设计与实现.计算机工程与应用2004.30. pp: 102-104.
    [73]于岱峰,孙义,宋春宁,马翠玉.并行数据采集技术在三维测力系统中的应用.北京体育大学学报2004. 27(4). pp: 500-502.
    [74] Jack Crosbie, Joshua Burns. Are in-shoe pressure characteristics in symptomatic idiopathic pes cavus related to the location of foot pain Gait & Posture 2008.27 (1). pp:16-22.
    [75] Christian Liedtke, Steven A.W. Evaluation of instrumented shoes for ambulatory assessment of ground reaction forces. Gait & Posture 2007.26 (2). pp:39-47
    [76] Martin S.H., Koopman H.F., Peter H. Veltink.Ambulatory Assessment of Ankle and Foot Dynamics. IEEE Transactions on Biomedical Engineering 2007. 54(5). pp: 895 -902.
    [77]宫川千秋.短跑.人民体育出版社2001.
    [78]宁继海,宁周红.短跑起跑时的力学分析.郑州大学学报(自然科学版)1996. 28 (2). pp: 8-9.
    [79]孙达平.短跑理论与实践.河北大学出版社1998.
    [80]刘长春.短跑运动.人民体育出版社1987.
    [81]欧健华.跨栏跑运动的生物力学分析.大众科技2005. 83(9) .pp:240-241.
    [82]黄显良.初学蹲踞式起跑常见问题及对策.田径2008. 8 (2). pp: 10-11.
    [83]李永智. 2种不同起跑动作的生物力学实验研究.中国体育科技2002.38 (5). pp: 55-58.
    [84]李亮.短跑运动员的起跑技术及其训练研究,吉林体育学院学报2009. 25(3). pp:52-53.
    [85]孙亮亮.蹲踞式起跑的运动解析和后起跑器角度的实验分析.太原理工大学2008. pp:15-25
    [86]司文,严壮志,刘书朋.短跑中足底与起跑器间三维作用力研究.中国生物医学工程学报2010. 29(4). pp: 578-582.
    [87] Milan Coh, Stanislav Peharec, Petar Bacic. The sprint start: Biomechanical analysis of kinematic, dynamic and electromyographic parameters. IAAF 2007. pp: 29-38,
    [88]苑廷刚.短跑起跑姿势的运动生物力学分析.国际田联运动教练员2003.165 (2). pp: 1-7.
    [89]徐茂典.蹲踞式起跑动作的生物力学分析.体育科学研究2008. 12(3). pp: 63-65.
    [90] James G., Hopker D.A., Coleman J.D. Wiles, Andrew Galbraith. Familiarization and reliability of sprint test indices during laboratory and field assessment. Journal of Sports Science and Medicine 2009. 38 (8). pp: 528 -532.
    [91] Hosein R., Lord M. A study of in-shoe plantar shear in patients with diabetic neuropathy. Clinical Biomechanics 2000. 15 (4). pp: 278-283.
    [92] Milan ?oh, Katja Toma?in, Stanko ?tuhec.The biomechanical model of the sprint start and block acceleration. Physical Education and Sport2006. 4(2). pp: 103-114.
    [93] Bergamini E., Guillonl P., Pilletl H. The trunk orientation during sprint start estimated using a single inertial sensor. 28 International Conference on Biomechanics in Sports 2010
    [94] Coh M. Kinematic and kinetic parameters of the sprint start and start acceleration model of top sprinters. Gymnica 1998. 28 (4). pp: 33-42.
    [95] Coh, M., Tomazin K., Stuhec S. The biomechanical model of the sprint starts and blocks acceleration. Physical Education and Sport 2006. 4 (2). pp: 103-114.
    [96] Schot P.K. Knutzen K.M. A biomechanical analysis of four sprint start positions. Research Quarterly for Exercise and Sport 1992.63 (2). pp: 137-147.
    [97] Guissard N., Hainaut K. EMG and mechanical changes during sprint start at different front block obliquities. Medicine and Science in Sport and Exercise 1992. 24 (11). pp: 1257-1263.
    [98] Mero Antti, Kuitunen Sami, Harland Martin, Kyrolainen Heikki. Effects of muscle-tendon length on joint moment and power during sprint starts. Journal of Sports Sciences2006.24 (2). pp: 165-173.
    [99]伊藤章.世界一流短跑运动员的疾跑技术.田径科技信息1994. 12 (5). pp: 18-23.
    [100] AnyBody软件官方网站http://www.anybodytech.com/
    [101]刘书朋,司文,严壮志,许昌威.基于The AnyBody?技术的人体运动建模方法.生物医学工程学进展.生物医学工程学进展2010.31 (3). pp: 131-134.
    [102] Michael Damsgaard, John Rasmussen, Soren Torholm Christensen, Egidijus Surma. Analysis of musculoskeletal systems in the AnyBody Modeling System. Simulation Modelling Practiceand Theory2006. 14(8).pp:1100-1111.
    [103]李振华,郭雨霁.力量与肌肉训练图.山东科学技术出版社2008.
    [104]关吉臣,李伟,张元锋.田径运动教学与训练理论.东北林业大学出版社2007.
    [105]张胜年.肌肉力量训练与损伤生物力学基础.河北科学技术出版社2007.
    [106]王延鹏.试用肌电图分析短跑起跑技术肌肉用力特点.西安体育学院学报1995.12 (3). pp: 84-85.
    [107]张秀丽,霍杞江,郑健民.能量法在运动生物力学中的应用介绍.体育学刊. 2003. Vol.10 (1). pp: 53-55.
    [108]国际奥组委官方网站http://www.olympic.org/
    [109] Si Wen, Yan Zhuang-zhi, Li YI, Liu Shu-peng. The crouch start modeling and simulation based on anybody technology. International Journal of Digital Content Technology and its Application 2010.5 (9). pp: 1-5.
    [110] Harland M.J., Steele J.R. Biomechanics of the sprint start. Sports Med. 1997.23 (1).pp:11-20.
    [111] Doherty K. Track and Field Omnibook. Los Altos, CA: Tafnews Press. Sports Medicine2004. 12 (5).pp:32-34.
    [112] Schot P., Knvtzen K. A biomechanical analysis of four sprint star positions. Research Quarterly for Exercise and Sport 2002. pp:137-147.
    [113] Karen, Helmick. Biomechanical analysis of sprint star positioning. Track coach. 2004.pp:5209-5214.
    [114]中国田径协会.田径竞赛规则.人民体育出版社2008.
    [115]朱旭红.国外优秀男子百米起跑反应时与成绩的研究.成都体育学院学报2005.31 (1). pp:47-49.
    [116]章翔.对我国不同水平男子大学生800m运动员一个单步运动学特征的比较.首都体育学院学报2008. 20(6). pp: 46-49.
    [117] Jeffrey R. Mackey, Brian L. Davis. Simultaneous shear and pressure sensor array for assessing pressure and shear at foot/ground interface. Journal of Biomechanics 39 2006. pp: 2893-2897.
    [118] Yanqing Wang, Christine L.M. Effects of orientation disparity between haptic and graphic displays of objects in virtual environments. Human-Computer Interaction- INTERACT’99 Angela Sasse and Chris Johnson (Editors) Published by IOS Press, TC.13, 1999.pp:399-407.
    [119] Kljajic M., Krajnik J. The use of ground reaction measuring shoes in gait evaluation. Clin.Phys. Physiol. Meas1987. 8(2). pp: 133-142.
    [120] Pingchao L., Chingyan Y. The six-component force sensor for measuring the loading of the feet in locomotion. Materials and Design 1999. 20(2). pp: 237-244.
    [121] Stacy J. Morris Bamberg, Gait analysis using a shoe-integrated wireless sensor system. IEEE Transactions on Information Technology in Biomedicine 2008. 12(4). pp: 413– 423.
    [122] Langl S., muensit S. Review of some lesser-known applications of piezoelectric and pyroelectric polymers. Appl. Phys 2006. 85(2). pp: 125-134.
    [123]朱翔明.足底三维压力检测系统.上海大学硕士论文2009. pp: 8-12.
    [124] Akhlaghi F., Pepper M.G. In-shoe biaxial shears force measurement: the Kent shears system. Medical & Biological Engineering& Computing1996. 34(4). pp: 315-317.
    [125] Pham H., Armstrong, Harvey C. Screening techniques to identify people at high risk for diabetic foot ulceration: a prospective multicenter trial. Diabetes Care2000.23 (5). pp: 606-611.
    [126] Macellari V., Giacomozzi C. Multistep pressure platform as a stand-alone system for gait assessment. Medical & Biological Engineering & Computing1996.34 (4). pp: 299-304.
    [127]张雨,王清海,崔剑,姜维维.聚偏氟乙烯压电薄膜应用研究进展.工程塑料应用2003.31 (8). pp: 62-64.
    [128]王国力,赵子婴,白金星. PVDF压电薄膜脉搏传感器的研制.传感技术学报2004. 12(4). pp: 688-692.
    [129] Luo H., Hanaqud S. PVDF film sensor and its applications in damage detection. Joumal of Aerospace Engineering1999. 12(1). pp: 23-30.
    [130] Si Wen, Yan Zhuang-zhi, Liu Shu-peng. A Digital Spiked Shoes for Triaxial Force Measurement using Trigone Frustum and PVDF. Information Technology Journal 2011. 10(1). pp: 140-145.
    [131]国家发明专利严壮志,司文,刘书朋,顾红,邵斌,跑鞋三维测力鞋钉,证书号:752443;专利号:ZL 2009 1 0048329.4.
    [132]国家发明专利严壮志,朱翔明,司文,刘书朋,顾红,邵斌,许以诚,三维测力传感器及其应用,证书号:588549;专利号:ZL 2008 1 0040003.2.
    [133]樊春玲,李志全,唐旭晖.一种新型电荷放大器的设计与研究.传感技术学报2000.13 (4). pp: 297-302.
    [134]王兴举,李进曌.压电式传感器测量电路的性能分析.传感器世界2007.13 (5). pp: 22-24.
    [135]高长银,赵辉,马龙梅,孙宝元.电荷放大器对石英传感器动态特性的影响.压电与声光2006. 28(6). pp: 654-656.
    [136]侯向红,王代华,袁刚.一种快速开关响应式多通道电荷放大器.压电与声光2008. 6(30). pp: 272-275.
    [137]李勇,艾竹君,刘巧云.一种新型电荷放大器的设计方法与电路.合肥工业大学学报2006. 12(29). pp: 1609-1612.
    [138]文玉梅,李平.双开关电荷采样放大器.压电与声光1999. 21(3). pp: 181-185.
    [139]朱蕴璞,孔德仁,王芳.传感器原理及应用.国防工业出版社2005.
    [140]邓长明,刘正山,程昶,张志勇.一种单电源电荷灵敏放大器的设计.核电子学与探测技术2006. 26(5). pp: 630-632.
    [141]赵东升. PVDF压电薄膜制作传感器的理论研究.物理测试2005.23 (2). pp: 23-25.
    [142]杜彦刚,潘英俊,刘嘉敏.基于PVDF压电膜的三向力触角传感头研究.仪器仪表学报. 2004.25 (4).pp:215-218.
    [143]程启华,李永新. PVDF传感器在火炮弹底撞击应力测试中的应用.测试技术学报2007. 21(1). pp: 90-94.
    [144] Bassoni R., Boiano C., Pullia A. A low-noise charge amplifier with fast rise time and active discharge mechanism. IEEE Trans on Nuclear Science2002. 49(5). pp:2436-2439
    [145]刘俊,刘京诚,李敏.准静态电荷放大器的研究.压电与声光2007. 29(2). pp: 156-157.
    [146]苏弘,周波,李小刚,马晓莉.一种低噪声快电荷灵敏前置放大器的研制.核电子学与探测技术2003. 23(2). pp: 105-107.
    [147] Levi V.A., Nahman J.M. Security modeling for power system reliability evaluation. IEEE Trans on Power Systems2001. 16(1). pp: 29-36.
    [148]张登峰,康兴国.小型化电荷放大器设计的一种新方法.兵工自动化1999.1. pp: 53-59.
    [149] Operational Amplifier Specification. Texas Instruments Incorporated 2003
    [150] Heywood, E.J., Jeutter, D.C., Harris, G.F., Tri-axial Plantar Pressure Sensor: Design, Calibration and Characterization. 26th Annual International Conference of the IEEE EMBS, 2004. pp: 2010-2013.
    [151]赵东升. PVDF压电薄膜传感器的研制.物理测试2007.25 (1). pp: 23-26.
    [152]杜彦良,宋颖,孙宝臣. PVDF压电薄膜结构监测传感器应用研究.石家庄铁道学院报2006.19 (1).pp: 1-4.
    [153] Knapp J., Niemann J., Homfna D. Dynamic strain measurement by means or electrical methods and fiber optics. Proceedings of the 1lth International Conference on Experimental Mechanics. Advances in Design, Testing and Analysis1998.1. pp: 161-166.
    [154] Bortsuen W., Rongliang C. The use of piezoceramic transducer of smart structural testing Journal of Intelligent. Material Systems and Structures 2000.11 (9). pp: 713-724.
    [155] Feng W., Tanaka M., Chonan S. A PVDF Piezopolymer sensor for unconstrained cardiorespiratory monitoring during Sleep. International Journal of Applied Electromagnetic and Mechanics2002.16 (4). pp: 181-188.
    [156] Fukada E. History and recent progress in piezoelectric polymers. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, November, 2000.47 (6). pp: 1277-1290.
    [157] Gu Hua, Jin Peng, Zhao Yang. Design and Experimental validation of a wireless PVDF displacement sensor for structure monitoring. Proceedings of SPIE 2004. 5395(1). pp: 91-99
    [158] Reston Rocky R., Kolesar, Edward S. Pressure-sensitive field-effect transistor sensor array fabricated from a piezoelectric polyvinylidene fluoride film. Proceedings of the Annual Conference on Engineering in Medicine and Biology 1989. 3. pp: 918-919.
    [159] Texas Instruments Incorporated. MSP430x2xx Family User’s Guide, 2006
    [160] MSP-FET430 Flash Emulation Tool User’s Guide. Texas Instruments Incorporated.2004
    [161]吴春娥,魏廷存.关于模数转换的讨论.科学技术与工程. 7(9) 2007. pp.1882-1885
    [162] Group D. SD Memory Card Specifications. Matsushita Electric Industrial Co., Ltd. 2000
    [163] Zoest G.G., Den Berg H.T., Holtkamp F.C. Holtkamp. Three-dimensionality of contact forces during clinical manual examination and treatment: A new measuring system. Clinical Biomechanics 2002 .17 (9) pp.719-722.
    [164] Texas Instruments Incorporated. MSP430x22x2,MSP430x22x4 Mixed Signal Microcontroller Specifications 2006
    [165] Si Wen, Yan Zhuang-zhi, Liu Shu-peng. Portable Human Information Integration System for Evaluation Plantar Force. ICIE2010 conference 2010. pp: 19-22.
    [166] Si Wen, Yan Zhuang-zhi, Liu Shu-peng. A Novel Digital Spiked Shoes Design and Testing. CSSE2010 conference 2010.pp:170-172.
    [167]刘德顺,李夕兵.冲击机械系统动力学.科学出版社1999.
    [168]朱萍玉.冲击机械动态反演设计方法研究.中南大学机电工程学院2003. pp: 28-36.
    [169]朱翔明,严壮志,刘书朋,司文.一种可用于同时测量鞋底间三维相互作用力的新型传感器系统.应用科学学报2009.27 (2).pp:172-176.
    [170]国家发明专利申请严壮志,司文,刘书朋,三维测力传感器动态加载荷实验机,申请号:201010023109.9.
    [171] Schepers H.M., Koopman H.F.J.M., Baten C.T.M., Veltink P.H. Ambulatory Measurement of Ground Reaction Force and Estimation of Ankle and Foot Dynamics. Journal of Biomechanics2007.40 (2).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700