用于检测三维力的柔性触觉传感器结构及解耦方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柔性多维触觉传感器的研究对于未来智能机器人的发展而言是非常重要的。所谓的“柔性多维”是指触觉传感器从物理特性上具有类似于人类皮肤一样的柔性,可以覆盖在任意的载体表面测量多维力信息,从而感知目标对象的性质特征。触觉传感器是智能机器人实现与外部环境直接作用的必需媒介,因此,研制符合实际应用要求的触觉传感器已经成为机器人发展中的关键技术之一。此外,柔性多维触觉传感器在体育运动、医疗康复和人体生物力学等研究领域中也有重要的应用。
     本论文在国家自然科学基金项目“一种新型柔性多维阵列触觉传感器的研究(NO.60672024)”和“基于新型压力温度敏感导电橡胶的多功能阵列触觉传感器研究(NO.61072032)”以及国家高技术研究发展计划(863计划)项目“用于检测三维力的人工皮肤”(NO.2007AA04Z220)的支持下,针对目前触觉传感器研究和应用中无法兼有柔韧性和三维力检测功能等难题,设计了一种基于新型力敏导电橡胶的柔性三维触觉传感器,综合应用材料科学、弹性力学、传感技术以及人工智能等多学科理论对传感器敏感材料、传感器结构以及传感器解耦等关键问题进行了研究。
     本文的主要研究内容及取得的创新性成果如下:
     1.对触觉传感器的多种不同整体性结构进行比较研究,在此基础上提出了一种整体两层非对称网状式的传感器结构,打破了传统触觉传感器的“盔甲”式组合阵列结构,为实现传感器的柔性化奠定了基础;采用可“整体液体成型”的新型柔性力敏导电橡胶作为敏感材料,进一步提高了传感器的柔韧性和可延展性,使得触觉传感器的“类皮肤”成为可能;
     2.基于力敏导电橡胶的理想力学特性,建立了三维力并行测量的数学模型,并通过对该模型的求解解决了三维力及各受力点之间复杂的耦合问题,实现了对传感器表面任意单点三维力、多点三维力以及三维面力信息的测量,而非单元组合式触觉传感器检测的阈值量,扩展了触觉传感器可检测三维力信息量的规模,能够进一步满足服务机器人及仿生机器人对触觉传感器三维力检测能力的实际需求;
     3.提出了基于导电橡胶隧道效应的三维力测量模型,并探讨了初步的解耦方法,该模型的研究更多考虑了敏感材料的实际性质,为进一步研究基于力敏导电橡胶的柔性多维触觉传感器提供了理论基础;
     4.对柔性三维力触觉传感器的标定进行了探讨研究,针对传感器的特殊结构设计了新型标定平台,并讨论了基于BP神经网络的传感器标定方法。
     本文研究的新型柔性多维触觉传感器既具有类似于人类皮肤的柔顺性,又具有检测三维力信息的功能,并且该传感器的制备工艺简单,成本较低,利于柔性多维触觉传感器的产品化。研究工作及成果为进一步研究柔性多维触觉传感器及其推广应用奠定了良好的基础。
The design of flexible multi-dimensional tactile sensor is very important to intelligent robots. It has the same flexibility as human skin and can be fixed in any object to perceive some physical properties, especially, multi-dimensional force information can be obtained. Today, the research of tactile sensor which can meet the requirements of the current development of robot is one of the key technologies, and it plays a necessary role to help robot achieve interaction with the external environment. In addition, the flexible multi-dimensional tactile sensor also has important applications in sports, medicine and human biomechanics research.
     This dissertation is originated from the National Natural Science Foundation (NO. 60672024;NO.61072032) and National High Technology Research and Development Program (863 Program NO.2007AA042220). In view of the fact that most current tactile sensors can not simultaneously meet the requirement of flexibility and obtaining multi-dimensional force information,this dissertation makes an innovative research on a novel flexible three-dimensional force tactile sensor.
     The major research and innovative results are as follows:
     1.A novel tactile sensor based on conductive rubber with an integral two layers asymmetrical reticular structure is designed. This sensor used“overall liquid model”technology, and broke through the traditional armor combination of sensor arrays, which contributed to flexible multi-dimensional tactile sensor’s mass production.
     2.Based on the force-sensitive conductive rubber's ideal mechanics characteristics, we established a three-dimensional force parallel detection mathematical model. Based on this model, the sensor can detect the 3-D force information applied on any point, multi-point as well as sensor’s surface. The sensor expanded the scale of 3-D force sensing, and can further satisfy the intelligent robot’s demand.
     3.The three-dimensional force mathematical model based on the conductive rubber’s tunnel effect is proposed, and the preliminary decoupling method is also discussed. This model is more based on the sensitive material's actual nature, and provided theory support for further studying on tactile sensor based on conductive rubber.
     4 . The three-dimensional force sensor's calibration is discussed, and the calibration platform and calibration method based on the BP neural network are mainly proposed.
     The tactile sensor we presented is more skin-like, and it also can detect three-dimensional force information. This study will lay a good foundation for further research on robot’s sensitive skin and promote the use of flexible tactile sensor.
引文
[1]李科杰主编.新编传感器技术手册[M].第一版,北京,国防工业出版社.2002.1:1182.
    [2] R.Andrew Russell. Robot Tactile Sensing[M]. 1990, by Prentice Hall of Australia pty Ltd.
    [3]高国富,谢少荣,罗均.机器人传感器及其应用[M].北京,化学工业出版社.2005:7-12.
    [4] Mark R Cutkosky, Robert D Howe, William R Provancher. Force and Tactile Sensors. Springer Handbook of Robotics[M]. Germany, 2008: 455-476.
    [5]张福学.机器人学-智能机器人传感技术[M].北京,电子工业出版社,1996:101-110.
    [6] Lumelsky V J, Shuq M S, Sensitive Skin[J]. IEEE Sensors Journal, 2001.1(1): 41-51.
    [7] Hoshi, T Shinoda H. Robot Skin Based on Touch-Area-Sensitive Tactile Element[C]. Proceedings of the 2006 IEEE Intemational Conference on Robotics and Automation, 2006: 3463-3468.
    [8] Baglio S, Muscato Savalli N. Tactile Measuring Systems for the Recognition of Unknown Surfaces[J]. IEEE Transaction on Instrument amdmeasurement, 2002.51(3): 522-531.
    [9]张福学,孙慷主编.压电学(下册)[M].第一版,北京,国防工业出版杜,1984.
    [10] G. Murali Krishna and K. Rajanna, Tactile Sensor Based on Piezoelectric Resonance[J]. IEEE SENSORS JOURNAL, VOL.4, NO.5, OCTOBER 2004: 691-697.
    [11] Measurement Specialties Inc. Piezo-film sensors technical manual[R].1999.
    [12]杜彦刚,潘英俊,刘嘉敏.基于PVDF压电膜的三向力触觉传感头研究[J].仪器仪表学报.2004年8月,第25卷第4期增刊:215-218.
    [13] Yong-Kook Kim, Kunnyun Kim, Kang Ryeol Lee, Woo-Sung Cho, Dae-Sung Lee, Won Hyo Kim. Technology development of silicon based CMOS tactile senor for robotics applications[C]. IEEE SENSORS 2006, EXCO, Daegu, Korea, October 22-25, 2006: 734-737.
    [14] Mei Tao, Ge Yu, Ni Libin, and et al.Study on the robot tactile sensor for detecting 3D contact force[J]. Gaojishu Tongxin/High Technology Letters, Vol.10, No.3, Mar, 2000: 53-56.
    [15] J. G. Rocha, C. Santos, J. M. Cabral and S. Lanceros-Mendezt. 3 Axis Capacitive Tactile Sensor and Readout Electronics[C]. IEEE ISIE 2006, July 9-12, 2006, Montreal, Quebec, Canada: 2767-2772.
    [16] Hyung-Kew Lee, Sun-Li Chang, and Euisik Yoon. A Flexible Polymer Tactile Sensor: Fabrication and Modular Expandability for Large Area Deployment[J]. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL.15, NO.6, December, 2006:1681-1686.
    [17]李秀娟,许湘剑.一种采用光波导的触觉传感器[J].仪器仪表学报,2002年6月,第23卷第3期增刊:127-129.
    [18]刘莉.基于磁敏Z元件的机器人触觉传感器及其实验研究[D].哈尔滨工业大学博士学位论文.2000年.
    [19] R Tajima, S Kagami, M Inaba, H Inoue. Development of soft and distributed tactile sensors and the application to a humanoid robot[J].Advanced.Robotics,2002,16(4):381-397.
    [20] Tan H Z, Slivovsky L A, Pentland A, A sensing chair using pressure distribution sensors[J]. IEEE/ASME Transactions, 2001. 6(3): 261-268.
    [21] Baglio.S, Muscato.G, Savalli. N. Tactile measuring systems for the recognition of unknown surfaces[J]. Instrumentation and Measurement, IEEE Transactions, 2002.51(3): 522-531.
    [22] Bemd Herold, Martin Geyer. Fruit contact pressure distributions[J]. Equipment Computers and Electronics in Agriculture, 2001(32): 167-179.
    [23] Byungiune Choi, Hyouk Ryeol Choi, Sungchul Kang. Development of tactile sensor for detecting contact force and slip[C]. IROS 2005, IEEE/RSJ International Conference, 2005: 2638-2643.
    [24]王兰美,郭业民,潘志国.人体足底压力分布研究与应用[J].机械制造与自动化,2005,34(1):35-38.
    [25] Cai Gan-wei, Liang Jie-ping, Liao Dao-xun. Design of flexible robotic manipulators with optimal arm geometries fabricated from three-dimensional braided composite with optimal materia1 properties[J]. Joumal of Xiangtan Mining Institute, 2000, VOL.51, NO.4: 23-28.
    [26] Murakami K, Hasegawa T. New tactile sensing by robotic fingertip with soft skin[C]. Sensors, 2004 Proceedings of IEEE, 2004.2: 824-827.
    [27] Y J Yang, M Y Cheng, W Y Chang and et a1. An integrated flexible temperature and tactile sensing array using PI-copper films[J]. Sensors and Actuators A: Physical, 2008.143(1): 143-153.
    [28] Hoshi T, Shinoda H. A Large Area Robot Skin Based on Cell-Bridge System[C]. IEEE Sensors, 2006, 5th IEEE Conference: 827-830.
    [29] Someya T, Kato Y, Sekitani T and et a1. Conformable, flexible, large area networks of pressure and thermal sensor with organic transistor active matrixes[J]. PNAS, 2005.102(35): 12321-1232.
    [30] Jin-Seok Heo, Jong-Ha Chung, Jung-Ju Lee. Tactile sensor arrays using fiber Bragg grating sensors[J]. Sensors and Actuators A, 2006.l(26): 312-327.
    [31] Giorgio Cannata and M. Maggiali, An Embedded Artificial Skin for Humanoid Robots[C].2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, Seoul, Korea.
    [32] R Andrew Russell. COMPLIANT-SKIN TACTILE SENSOR[C]. Proceedings 1987 IEEE International Conference on Robotics and Automation, Raleigh, NC, USA.
    [33] Nagakubo A. and H Alirezaei. A deformable and deformation sensitive tactile distribution sensor[J]. Robotics and Biomimetics, 2007.
    [34] R Sedaghati, J Dargahi, H Singh. Design and modeling of all endoscopic piezoelectric tactile sensor[J]. International Journal of Solids and Structures, 2005(42): 5872-5886.
    [35] Najarian S, Dargahi J, Molavi M and et a1. Design and Fabrication of Piezoelectric-based Tactile Sensor for Detecting Compliance[C]. Industrial Electronics, 2006 IEEE International Symposium, 2006.4: 3348-3352.
    [36]金观昌,张军,张建中等.一种新型人足底压力分布测量系统及其应用[J].生物医学工程学杂志,2005,22(1):133-136.
    [37]秦岚,李青,孙先逵.一种新型智能机器人触觉传感服装的研究[J].传感技术学报,2006,19(3):824-827.
    [38]乔生仁,潘英俊,刘嘉敏,付果元,秦岚,刘京诚.光波导三向力触觉传感技术及信号处理[J].光子学报,第29卷第1期,2000年1月:63-67.
    [39] E S Hwang, J H Seo, Y J Kim. A polymer-based flexible tactile sensor for normal and shear load detection[C]. Proc. IEEE MEMS’06, 2006: 714-7l7.
    [40] E S Hwang, J H Seom and et a1. A Polymer-Based Flexible Tactile Sensor for Both Normal and Shear Load Detections and Its Application for Robotics[J]. Microelectromechanical Systems, 2007.16(3): 556-563.
    [41] Kentaro Noda, Kazunori Hoshino, Kiyoshi Matsumoto and et a1. A shear stress sensor for tactile sensing with the piezoresistive cantilever standing in elastic material[J]. Sensors and Actuators A, 2006.127: 295-301.
    [42] Yoji Yamada, Tetsuya Morizono, Voji Umetani and et a1. Highly Soft Viscoelastic Robot Skin With a Contact Object-Location Sensing Capability[J]. IEEE Transactions on Industry Electronics, 2005.52(4): 960-968.
    [43]李源,邵力,栗大超,胡小唐,赵大博.用于微结构几何量测量的MEMS三维微触觉传感器的性能测试[J].计量学报,第29卷第1期,2008年1月:21-25.
    [44] Someya. T and S Iba and et al. A Large-Area, Flexible, and Lightweight Sheet Image Scanner Integrated with Organic Field-Effect Transistors and Organic Photodiodes[C]. 2004 IEEE International Electron Devices Meeting IEDM, San Francisco.
    [45] Breazeal and W D Stiehl. A Sensitive Skin for Robotic Companions Featuring Temperature,Force, and Electric Field Sensors[C]. 2006. Intelligent Robots and Systems, Beijing.
    [46] http://www.jdzj.com/DATUM/showart.asp?art_id=3823.
    [47] Bajcsy R. Active Perception[C]. Proc.of IEEE, 1988.76(8): 996-1005.
    [48] Jong-Ho Kim, Jeong-Li Lee, Hyo-Jik Lee and et a1. Design of Flexible Tactile Sensor Based on Three-Component Force and Its Fabrication[C]. Robotics and Automation. 2005 ICRA IEEE International Conference, 2005: 2578-2581.
    [49] M H Lee. Tactile Sensing: New Directions, New challenge[J]. Robotics Research, 2000.19(7): 636-643.
    [50]刘少强,黄惟一,王爱民等.机器人触觉传感技术研发的历史现状与趋势[J].机器人,2002,24(4):362-374.
    [51] Mukai T, Onishi M, Hirano S and et a1. Development of Soft Areal Tactile Sensors for Human-Interactive Robots[J]. IEEE SENSORS 2006, 2006: 831-834.
    [52]胡闻珊,黄英,王敏.机器人敏感皮肤的研究进展[J].合肥工业大学学报,2006.29(12):1624-1626.
    [53]王国建,王德海,邱军等.功能高分子材料[M].上海:华东理工大学出版社,2006:24-27.
    [54]冯圣玉,张沽,李美江等.有机硅高分子及其应用[M].北京:化学工业出版社,2004:105-148.
    [55] BARBA Anna A, LAMBERTI Gaetano, DAMORE Matteo and et a1. Carbon black/silicone rubber blends as absorbing materials to reduce electro magnetic interferences(EMI)[J]. Polymer bulletin 2006.57(4): 587-593.
    [56] Chang Yong Ryu, Seung Hoon Nam, Seung Hwan Kim. Conductive rubber electrode for wearable health monitoring[C]. Proceedings of the 2005 IEEE Engineering in Medicine and Biology, 2005: 3479-3481.
    [57]黄英,李郁忠,周传友.导电硅橡胶导电性和电热性的研究[J].橡胶工业,2000年第49卷:77-81.
    [58]陶兆庆.国外导电橡胶制品的技术进展[J].合成橡胶工业,1995.18(3):17-23.
    [59]李鹏.电磁波屏蔽橡胶的导电机理与屏蔽性能研究[D].大连理工大学硕士学位论文,2005:1-5.
    [60]益小苏.复合导电高分子材料的功能和原理[M].北京,国防工业出版社,2004:1-15.
    [61] E K Sichel, J I Gittleman, Ping Sheng. Electrical properties of carbon-polymer composites[J]. Journal of Electronic Materials, 1982.ll(4): 699-747.
    [62] S Nakamura and Q Sawa. Percolation phenomena and electrical conduction mechanism of carbon black-polyethyelene composites[C]. Asian Intemational Conference on Dielectrics and Electrical Insulation, 1998: 333-336.
    [63] Yangyang Sun, Shijian Luo, Wong C P. Electrical and mechanical properties of carbon black filled ethylene propylene rubber during thermal oxidation aging[C]. Electronic Components and Technology Conference, 2003: 1644-1647.
    [64] Jaime C G.. Carbon black filled polymer composites: Property optimization with segregated microstructures[D]. University of Minnesota, 2001.
    [65] Ying Huang, Bei Xiang, Xiaohui Ming and et al. Conductive Mechanism Research Based On Pressure-Sensitive Conductive Composite Material for Flexible Tactile Sensing[C]. Proceedings of the 2008 IEEE International Conference on Information and Automation, 2008: 1614-1619.
    [66] Zhudi Zhao, Wenxue Yu, Xiujuan He and et al. The conduction mechanism of carbon black-filled polyvinylidene fluoride composite[J]. Materials Letters, 2003.57(20): 3082-3088.
    [67]耿新玲,刘君,任玉柱等.导电硅橡胶研究进展[J].航空材料学报,Vol.26,No.3,2006: 283-288.
    [68] RAJAGOPAL C, SATYAM M. Studies on electrical conductivity of insulatoconductor composites[J]. Journal of Applied Physics, 1978.490(1): 5536-5542.
    [69] Sheng P, Sichel EK, Gittleman J. Fluctuation-Induced Tunneling Conductionin Carbon-PolyVinylchloride Composites[J]. Phys Rev Lett, 1978.40(18): 1197-1200.
    [70] Sichel E K, Gittleman J I, Sheng P. Transport properities of the composite material carbon-polyvinylchloride[J]. Phys Rev B, 1978, 18: 5712-5716.
    [71] Sheng P. Fluctuation-Induced Tunneling Conductionin Disordered Materials [J]. Phys Rev B, 1980, 21: 2180-2195.
    [72] Melachlan C S, Blasziewiczm Newnham R E. Electrical resistively of composites[J]. Journal of American Ceramic Society, 1990.73(8): 217-220.
    [73] Heaney Michael B. Electrical transport measurements of a carbon black-polymer composite[J]. Physica A, 1997.241(12): 296-300.
    [74] HUI LI, XIAO Hui Gang, OU Jin Ping. Effect of compressive strain on electrical resistivity of carbon black-filled cement-based composites[J]. Cement&concrete composites. 2006.28(9): 824-828.
    [75] Shimojo M, Ishikawa M, Kanaya K. A flexible high resolution tactile imager with video signal output Robotics and Automation[C]. Proceedings of IEEE International Conference, 9-11 April 1991: 34-43.
    [76] Shimojo M, Makino R, Namiki A, Ishikawa M, Suzuki T, Mabuchi K. A sheet type tactile sensor using pressure conductive rubber with electrical-wires stitches method[C]. Sensors,2002, Proceedings of IEEE, Vol.2: 12-14.
    [77]谢泉,刘让苏,徐仲榆,彭平,陈林.导电硅橡胶的拉敏特性及导电机理研究[J].特种橡胶制品,1996,第17卷第5期:1-4.
    [78]刘顺华,李鹏,杜纪柱,段玉平,管洪涛,陈光昀.炭黑填充复合型硅橡胶屏蔽性能及拉敏特性研究[J].大连理工大学学报,第46卷第2期,2006年3月:207-211.
    [79]谢泉,刘让苏,徐仲榆,彭平.白炭黑和炭黑含量对导电硅橡胶拉敏特性影响的研究[J].高分子材料科学与工程,1996年1月,Vol.14:94-97.
    [80] Hussain M, Choa Y H, Niihara K. Fabrication process and electrical behavior of novel pressure-sensitive composites[J]. Composites: PartA, 2001.32: 1689-1696.
    [81] J Viiakova, M Paligova, M Omastova and et a1.“Switching effect”in pressure deformaion of silicone rubbe/polypyrrole composites[J]. Synthetic Metals, 2004.146(2): 121-126.
    [82] Karsten WeiB, Heinz W. The Working Principle of Resistive Tactile Sensor Cells[C]. IEEE International Conference Oil Mechatronics&Automation, 2005.l: 471-476.
    [83]王鹏,丁天怀,徐峰等.炭黑/硅橡胶复合材料的压阻特性研究与改进[J].传感技术学报,2004(1):15-18.
    [84] Thomas V Papakostas, Julian Lima, Mark Lowe. A Large Area Force Sensor for Smart Skin Applications [J]. Sensors, 2002, Proceedings of IEEE, 2002.2: 1620-1624.
    [85]王鹏,丁天怀,徐峰,覃元臻.炭黑填充型导电复合材料的压阻计算模型及实验验证[J].复合材料学报,第21卷第6期,2004年12月:34-38.
    [86] Huang Y, Xiang B, Ming X H. Conductive mechanism research based on pressure-sensitive conductive composite material for flexible tactile sensing[C]. International Conference on Information and Automation, China, IEEE, 2008: 1614-1619.
    [87]田疆,田洁,蒲军等.基于导电橡胶的柔性动态触觉传感器系统及其图像恢复的研究[J].机器人,2004年1月,第26卷第1期:54-57.
    [88]罗志增,蒋静坪.一种高分辨率柔性阵列触觉传感器[J].浙江大学学报(工学版),1999年11月,第33卷第6期:569-573.
    [89]罗志增,席旭刚,叶明.用厚膜电路实现阵列触觉信号的采样[J].传感技术学报,2006年2月,第19卷第1期:121-124.
    [90] Shimojo M, Namiki A, Ishikawa M and et a1. A tactile sensor sheet using pressure conductive rubber with electrical-wires stitched method[J]. Sensors Journal, IEEE, 2004.4(5): 589-596.
    [91]黄英,明小慧,向蓓,仇怀利,葛运建.一种新型机器人三维力柔性触觉传感器的设计[J].传感技术学报,第21卷第10期,2008年10月:1695-1699.
    [92]沈春山.基于感压导电橡胶的机器人触觉传感器设计与相关实验研究[D].中国科学院研究生院硕士学位论文,2005.
    [93] Edward S. Multiplexed piezoelectric polymer tactile sensor[J]. Robotic Systems, 1992.9(1): 37-63.
    [94] Bert Tise. A compact high resolution piezoresistive digital tactile sensor [C]. IEEE Int Conf on Robotics and Automation, Phidadetphia, USA: Computer Society Press, 1988.
    [95] Pubrick J. A force transducer employing conductive silicone rubber[J]. Int Conf on Robot Vision and Sensory Controls, 1991: 73-80.
    [96]罗志增.消除阵列触元间相互干扰的一种方法[J].机器人,1994.16(2):114-118.
    [97]罗志增,蒋静坪.一种机器人压阻阵列触觉数据采集的新方法[J].仪器仪表学报,1999年1月,第20卷第1期:31-33,48.
    [98]丁俊香.一种基于理想可流动成型导电橡胶的三维柔性触觉阵列传感器若干问题的研究[D].中国科学技术大学博士学位论文,2011年.
    [99]王国泰,易秀芳,王理丽.六维力传感器发展中的几个问题[J].机器人,1997.19(6): 474-478.
    [100]张晓辉.机器人六维力传感器静态标定研究[J].自动化与仪表,2004(3):86-88.
    [101]刘正士.机器人多维腕力传感器静、动特性若干基本问题的研究[D].合肥工业大学博士学位论文,1996.
    [102]刘迎春,叶湘滨.传感器原理设计与应用[M].长沙,国防科技大学出版社,2004:48.
    [103]陈雄标,袁哲俊,姚英学.机器人用六维腕力传感器标定研究[J].机器人,1997(1),Vol.19,No.1:7-11.
    [104]杨卫超.(微)纳米环境中PZT驱动位移的传感检测与感知研究[D].中国科学技术大学硕士学位论文,2008:57-60.
    [105]黄英.基于压力敏感导电橡胶的柔性多维阵列触觉传感器研究[D].合肥工业大学博士学位论文.2008年.
    [106]张永怀,刘君华.采用BP神经网络及其改进算法改善传感器特性[J].传感技术学报,2002年9月第3期:185-188.
    [107]李海滨,段志信,高理富,康补晓.基于神经网络的六维力传感器静态标定方法研究[J].内蒙古工业大学学报,2006年第25卷第2期:85-89.
    [108] Simon Haykin.神经网络的综合基础[M].北京,清华大学出版社,2001年10月:202-204.
    [109]丛爽著.面向MATLAB工具箱的神经网络理论与应用[M].合肥,中国科学技术大学出版社,2003年5月.
    [110]丛爽著.神经网络、模糊系统及其在运动控制中的应用[M].合肥,中国科学技术大学出版社,2001年5月.
    [111]张立民.人工神经网络的模型及其应用[M].上海,复旦大学出版社,1993.
    [112] Hay kin S.叶世伟,史忠植译.神经网络原理(第2版)[M].北京,机械工业出版社.2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700