2-硝亚胺基-5-硝基—六氢化-1,3,5-三嗪(NNHT)的合成工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2-硝亚胺基-5-硝基-六氢化-1,3,5-三嗪(NNHT)是一种新型的不敏感单质炸药。目前,美国已将其应用于枪炮发射药中,使武器性能得到提高。在弹药M30A1配方中应用NNHT可使发射药的火药力提高8%。不敏感弹药要求有较高安全可靠性,对各类外界刺激有相当的稳定性,降低了由于事故或外界激发对作战人员和装备的破坏,特别是减少了由于小事故而引发灾难性事故的危险。同时对存储、运输环境的要求低,指挥员可以安全、方便地获得所需弹药。对于新型不敏感单质炸药研究是当今重要的研究课题,本文具有较强的理论和实际意义。
     本文以浓盐酸、乌洛托品以及硝基胍为原料合成中间产物2-硝亚胺基-六氢化-1,3,5-三嗪-5-盐酸盐(NIHT·HCl)。通过单因素实验,分别考察了反应时间,反应温度,盐酸浓度对生成中间产物得率的影响。并通过正交试验讨论了三因素对中间产物得率的影响程度大小;反应时间影响最大,反应温度次之,盐酸浓度影响最小;得出反应时间7小时、反应温度38℃、采用分析纯盐酸所得中间产物得率最高,最高得率为71.3%。
     通过熔点和红外光谱,对反应过程中生成的两种中间产物(低熔点和高熔点产物)进行了鉴定,确定低熔点产物就是所需要中间产物NIHT·HCl。实验验证,提高温度把高熔点产物溶于盐酸中可以转化为低熔点产物。
     以浓硝酸为硝化剂,硝化中间产物得到目标产物NNHT。分别考察了加料温度、反应时间﹑硝酸浓度三个因素对目标产物得率的影响;通过正交试验发现加料反应温度对目标产物得率影响最大,硝酸浓度次之,反应时间影响最小。得出反应时间1.5小时、反应温度-22℃、采用98%的硝酸所得中间产物得率最高,第二步目标产物得率可达97.0%,通过红外光谱、核磁共振光谱等方法对其结构进行了表征。
     通过对中间产物NIHT·HCl和目标产物NNHT的制备工艺进行优化,中间产物得率由文献记载的65%提高到71.3%,目标产物两步总得率由文献记载的63%提高到69.5%。
     对目标产物相关性能进行了测试和计算,用密度瓶法测试了目标产物密度、用GJB772A-97方法测定撞击感度、采用GJB772A-97方法测定安定性以及用差示扫描量热法对目标产物进行热分析。并对爆速与爆压进行了理论计算。得出NNHT密度为1.714 g/cm~3,撞击感度的特性落高值H50为28.3cm(10KG落锤)和125.1cm(2.5KG落锤)。理论计算爆速与爆压分别为:7750 m/s、26.2GPa。结果表明目标产物是一种优良的高能不敏感炸药。
As a new insensitive monomer explosive, 2-Nitroimino-5-Nitro-Hexahydro -1,3,5-Triazine (NNHT) had been used for gun propellant with high explosive performanceby United States at present. The explosive capacity of M30Al has been improved upto 8% because of the NNHT. Insensitive explosive has been be deemed to safety andstable to against for external stimuli, store up and transportion. Accident caused bypeople or environmental stimulus will be reduced due to using insensitive explosive.Thus, The investigation on NNHT be of importance and practical significance.
     Among the preparation of NNHT, the intermediate product NIHT ? HCl has beenobtained. It can be synthesized by concentrated hydrochloric acid, naphthamine andnitroguanidine.The time and temperature of the reaction as well as the massconcentration of hydrochloric acid has been considered to investigated the yield ofNIHT ? HCI with the orthogonal method. The result shows that reaction time is thekey factor for composing the NIHT ? HCl, the reaction temperature makes mucheffect on this process and the concentration of hydrochloric acid has little influence.Thus, The optimal process of the reaction for obtaining NIHT ? HCl according themethod mentioned in our subject is at 38 for 7 hours with using analytical reagen℃thydrochloric acid as reactant. The yield is up to 71.3% and is the highest according tothe best crystallizing process.
     Reaction among certain time generation products mainly contain two kinds ofproducts, low melting point and high melting point product. Through the meltingpoint and infrared spectrometry, low melting point product is just what it need NIHT ?HCl, improving the experiment temperature, The high melting point products can betransformed into in hydrochloric acid low melting product. Thus it can improve yieldlow melting products.
     The intermediate products add to 98% thick nitric acid, when feeding in certainscope, maintain temperature after adds material, maintain a period of time, raising temperature in 2 ~ 3 , reactio℃n drawees NNHT after target product. For thesynthesis of target product for single factor and orthogonal test, the author examinesthe charging temperature, reaction time, nitric acid concentration three factors on theinfluence of target product yield. Through orthogonal test can be found feedingreaction temperature on the target product yield maximum impact, nitric acidconcentration, reaction time affect the minimum followed. Charging reactiontemperature in - 22℃or so, adopting 98% of nitric acid, reaction time, keeping 1hour can up to the highest rate of the target product. Highest rate is in 97.3% around.
     In synthesizing intermediate products NIHT ? HCI and target product NNHTprocess, the income product production yield were improved. Intermediate productyield increase by 65% of the document to 71.3%, the target product yield increase by63% of the document to 69.5%. The yield of product is 69.5% and its structure isconfirmed by FT-IR, NMR spectra.
     The performance of NNHT has been tested. The tcrystal structure, impactsensitivity or thermal analysis has been carried on. Moreover, the detonationperformance has been calculated by emprical formula.The density of NNHT is1.714 g/cm~3. The h50 cm for NNHT is 28.3 cm at 10kg drop hammer and 125.1 cm at2.5 kg drop hammer respectively. Its detonation velocity is 7750 m/s and detonationpressure is 26.2 GPa. The result show that NNHT is a high-energy insensitiveexplosives with excellent performance.
引文
[1]石小兵,庞维强,蔚红.钝感推进剂研究进展及发展趋势[J].化学推进剂与高分子材料, 2007, 5(2): 24-32.
    [2]欧育湘,王艳飞,刘进全等.近20年问世的5个新高能量密度化合物[J].化学通报,2006, (7): 69-72.
    [3] Guan S W.Advanced l00%solids rigid polyurethane coatings for pipeline field joints andrehabiHtation[C].The 58th Annual Conference&Exposition.Corrosion NACExpo.2003,16-20.
    [4]孙业斌,许桂珍.从炸药装药装备现状看21世纪发展趋势[J].火炸药学报, 2001, (1):69-72.
    [5]李小童,庞思平,于永忠.杂环化合物氮氧化反应研究的新进展[J].有机化学,2007,(9):1050-1059.
    [6]黄辉,王泽山,黄亨建等.新型含能材料的研究进展[J].火炸药学报, 2005, 28(4):9-13.
    [7]钱立军,佟芍朋,叶龙健.氯化氢脱除法合成三-(三溴苯氧基)-三嗪[J] .塑料,2009,(386):40-42.
    [8]张跃军.2,4,6-三硝基-2,4,6-三氮杂环己酮的合成Ⅰ.以乌洛托品为原料的合成[J].火炸药学报,1999,22(4).
    [9] Sikder A K, Sikder N. A review of advanced high performance, insensitive and thermallystable energetic materials emerging for military and space a pplications[J]. Journal ofHazardous Materials,2004, 112(1-2):1-15.
    [10]梁晓琴,蒲雪梅,田安民.均三嗪含氮取代基衍生物的结构和性质[J].物理化学学报,2008,24(4):639-645.
    [11]罗春华,董秋静,程格.不对称取代的1,3,5-均三嗪衍生物的合成[J].化学试剂,2009,31(10):851-853.
    [12]王昕,绿色火炸药及相关技术的发展及应用[J].火炸药学报,2006,29(5):67-71.
    [13]骆兵,王凤英.LOVA炸药钝感机理探讨[J].安全与环境学报,2004(4): 103-106.
    [14]马元莹,蔡炳源.炸药自由基的检测及钝感机理探讨[J].火炸药学报,2001(3): 58-59.
    [15]董海山.钝感炸药的性能和发展,2002全国火炸药技术及钝感弹药学术研讨会论文集[C].绵阳:中国工程物理研究院化工材料研究所,2002:15-24.
    [16] Wallace I, Blue D. Insensitive munitins aluminized propellant for tactical boosters.NDIA IM Symposiums[C].2000, 286-294.
    [17]董海山.钝感弹药的由来及其重要意义[J].含能材料.2006,14(5):321-322.
    [18]刘艳凤,花成文,苟小锋,赵军龙三嗪类氮杂环蕃的合成与表征[J] .有机化学,2009,29(9):1419-1422.
    [19]欧育湘,徐永江,刘利华.六硝基六氨杂异伍兹烷合成与应用研究最新进展.新型推进剂及新材料研讨会论文集[J].1998,湖北襄樊.
    [20]庞维强,张教强,国际英等.21世纪国外固体推进剂的研究与发展趋势[J].化学推进剂与高分子材料,2005,3(3): 16-21.
    [21]陈沛,赵凤起.国外对GAP复合推进剂钝感性能的研究进展[J].飞航导弹,1999(10):3l-35.
    [22]王凤英,刘天生.高钝感炸药组分配比对安全性影响的研究[J].火炸药学报,2002(3):23-26.
    [23] Badgujar D M, Talawa r M B, S N Asthana, et al. Advances in science and technology ofmodern energetic materials[J].An overview. Hazardous Mater,2008,151(2-3): 289-305.
    [24] Agrawal J P. Recent trends in high-energy materials[J].Prog in Energy ,1998, 24(1):130.
    [25]王昕.美国不敏感混合炸药的发展现状[J].火炸药学报, 2007, 30(2): 78-80.
    [26]余秦伟,杨建明,赵锋伟.1,3,5-三取代六氢均三嗪类化合物的合成[J].火炸药学报,2008,31(3): 50-52.
    [27]佟俊,含三嗪环结构聚合物常压合成新方法探索研究[M].硕士学位论文. 2005,5(4) : 36-98.
    [28] Smolin E.M, Lorenee R.The chemistry of heterocyclic compounds(s-triazines andderivatives)[J].New York: Interscience Publishers Ine.1959,347-348.
    [29] Jinshan Li.A multivariate relationship for the impact sensitivities of energeticN-nitrocompounds based on bond dissociation energy[J].Journal of HazardousMaterials,2010,174:72-73.
    [30] Solodyuk G D,Bolydrev M D, Gidaspov B V, et a1. Oxidation of 3,4-diaminofurazan bysome peroxide reagents[J].Zhkhim,198l,17(4): 861-865.
    [31] Cannizzo L F,Hamilton R S,Highsmith T K,et a1.Furazan—based energeticingredients[R]. ADA 405840,2000.
    [32]彭伟才,董庆年,赵宁.2,4,6-三(2-羟苯基)-1,3,5-均三嗪的结构表征[J].光谱学与光谱分析,2008,28(10): 491-492.
    [33] Blanzat, M.Perez, E.Rico-Lattes, I. New cationic glycolipids.2.Synthesis,characterization, and biological activity of double chain and gemini cationic analogues ofgalactosylceraminde[J]. Langmuir,1999,16(20),6165-6173.
    [34] Colclough E, Synthesis and Characterization of NNHT (2-Nitrimino-5-nitro-hexahydro-1,3,5-triazine) [J].Insensitive Munitions & nergetic Materials TechnologySymposium.2009
    [35]周诚,周彦水,霍欢. 2-硝亚胺基-5-硝基-六氢化-1,3,5-三嗪的晶体结构[J].火炸药学报, 2009, 32(4): 23-26
    [36] Fisher M. Solid rocket propellants for improved IM response part 2IM propellantexamples [J].NIMIC Newsletter, 2003(1): 2-4.
    [37] Zhang J Q, Gao H X, Su L H. Non-isothermal thermal decomposition reaction kineticsof2-nitroimino-5-nitro-hexahydro-1,3,5-triazine (NNHT)[J].Journal of Hazardous Materials,2009, 167: 205-208
    [38]欧育湘,孟征,刘进全.高能量密度化合物CL-20应用研究进展[J].化工进展.2007,26(12):1690-1694
    [39]张海昊,王伯周,刘愆等. 2-硝亚胺基-5-硝基-六氢化-1, 3, 5-三嗪(NNHT )的合成[J].火炸药学报, 2007, 30(6): 48-50
    [40]中国兵器工业集团201研究所,世界兵器发展年度报告[M].西安:2007.385-386.
    [41] Katritzky A.R. Physieal methods in heterocyelic chemistry[J].New York: AcademicPress,1974.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700