桩埋管技术试验及THM耦合理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今社会能源问题已经成为的一个重大问题,人们正不断的开发新能源来缓解由于能源紧缺所带来的压力。其中桩埋管作为地源热泵的一种新的埋管方式,又以其环保、节能、运行可靠等特点在国外得到了广泛的应用。它把地下U型管换热器埋于建筑物混凝土桩基中,使其与建筑结构相结合,充分地利用了建筑物的面积,通过桩基与周围大地形成换热,从而减少了钻孔和埋管费用。这种技术的推广将为绿地面积小、容积率高的建筑物提供新的应用空间,十分适合我国的国情。然而有关其考虑地下水渗流的力场和温度场的耦合研究较为落后,并且大都是应用于石油天然气开发和核废料的储存等领域,而有关于地源热泵地下系统尤其是桩埋管换热器THM耦合的则需要进一步的理论和试验研究。
     基于此,本文在自然基金《地能转换桩-土水系统的THM耦合效应机理研究》(No.40472134)的支持下,对这种新的地能换热装置在热流固耦合理论下的力学、导热特性展开了理论和试验研究。通过室内试验对不同换热管类型的桩进行竖向的荷载测定,分析桩中换热装置对桩的强度的影响。在桩中分别加入U型管、螺旋管,制作出七个桩来模拟埋管换热桩。对实验结果进行了对比分析,得到了考虑U型管总截面积的理论桩身强度与实际值之间的近线性关系。基于V.C.Mei传热模型对桩埋管导热过程进行了初步研究并给定了起在各个接触面的边界条件。探讨了TH耦合的理论模型,考虑了地下水流动的影响下,建立桩埋管换热地下温度场的数值模型,通过大量的三维水-热耦合计算模拟研究,得出了温度场扩散范围随流速变化的走势。在此基础上,推导建立了THM(Thermo-hydro-mechanical)三场耦合的数学模型,并应用其模拟某桩埋管换热的工程试验,分析了模型参数在热-流-力三场耦合下的特性及其规律。
Along with science's and technology's rapid development, society's unceasing progress, the energy question became now a society's major issue already. People are unceasingly developing new energy alleviates. The heat pump which takes one kind through the consumption few high grade energy and rose the quantity of heat from the low temperature level to the high temperature level special installment has received people's favor. And the ground source heat pump also by its characteristics of environmental protection, the energy conservation, the movement reliable and so on obtained the widespread application in overseas. Along with the energy structure's continual readjustment, the public environmental consciousness's unceasing enhancement, this technology will certainly to have a bigger development.
     In the ground source heat pump's family, the heat exchanger pile installation belongs to the new technology. Through install each kind of tubular exchanger installment underground ,it keep off the earth supports and protections, ground reinforcement and transform the shallow layer low temperature geothermal energy.It has the pile foundation and the ground source heat pump function together in advance. This also saves the drill hole working procedure, saves the operating charges and use building ledger wall's area effective. This kind of technology's promotion will be provides the new application space for the small green space area, the volume fraction high building and very suits our country's national condition. It will certainly to become the new application direction.
     The heat exchanger pile model is based on the Fourier heat conduction law in the early time which had not considered that the flowing of ground water and the convection and the machinery disseminate the function, moreover, because all theories are the drill hole bury the heat interchanger, also had never considered the heat interchanger's temperature stress field and the bias field. Generally only uses the simple compound unstable state heat conduction which neglect mechanics field, using a thermal conductivity added value describes in the ground caloric coupling method the moisture content and the air transport process function are bound to bring the big error obviously which the corresponding result will be lead heat interchanger's size to be big and will affect the normal operation of project. And domestic and foreign started some related THM coupling research in the 1990s is applies in petroleum natural gas development and nuclear waste storage and so on. Their fundamental research was the crevasse rock mass coupling question and had does not have THM coupling research of ground place source heat pump underground system particularly the heat exchanger pile.
     Based on above this article under the support of the natural fund "Heat Transform Pile– Hydro-Soil system's THM Coupling effect Mechanism Research" (No.40472134) did theory and the experimental study the mechanics and heat conduction character of this kind of new heat-exchanger pile under heat flow solid coupling theory .
     In this experiment it did not consider that limits side. It carried on the vertical load determination to the different tube type in pile and analyzed the influence of heat-exchanger rig to the pile intensity. Joined the U tube and the spiral pipes to manufacture seven piles, for normal reinforced concrete simulation pile (did not increase any tube) to take the contrast to be tender, two join a U tube, two join three U tubes and two join a spiral pipe. It had analyzed to the experimental result, obtained the relations of the theory supporting capacity and the actual supporting capacity with respect to the U tube quantity.
     With summarize the theory of predecessor's heat transfer model, it has conducted the preliminary study based on the V.C.Mei heat transfer model to the heat exchanger pile. This model was builded on conservation of energy's foundation and constituted by the system energy balance conbined with heat conductivity equation. It was obtained through a series of suppositions and was assigned boundary condition in each contact face.
     It was discussed the TH coupling theoretical model which had considered the ground water influence, established the the numerical model of heat exchanger pile installation underground temperature field and analyzed law of development to temperature field under the different ground water speed of flow law of development to temperature field. Through the massive hydro-thermal coupling research, the proportion relationship between temperature field and time was found. It also has contrasted the temperature change rule of different observation point and obtained the temperature proportional relationship under the different ground water flow speed.
     It was established the THM three coupling mathematical models from the distortion field, the equation of continuity and in the energy- conservation equation in the foundation of several front chapter of experiments and theories. Then the model was used to simulated a heat exchanger pile engineering test which did in Sweden Lausanne by Lyesse Laloui et al. Model serviceability will be established by contrast of simulate and the experimental value. A large number of iterations of numerical simulation work was done by change the model's parameter condition and did some classified contrast and analysis. The contrastive analysis was also done to the stress causes by heat transfer and by the building load. It was also analyzed the stress strain of the pile and surround soil as well as the temperature field development rule considers the THM coupling.
     This paper's research will rationalize the type, quantity design of heat transfer tube in pile and quantity design more rationalize and provide rationale and technology for the heat transfer model, the hydro- thermal coupling, the thermal- mechanic coupling as well as the THM coupling and the parameter about the heat exchanger pile.
引文
[1]蒋慧颖,张铭,闫明.水源热泵系统探讨与应用[J].节能建筑,2007,10:14-17.
    [2]殷平.地源热泵在中国[J].现代空调,2001,3:1-8.
    [3]付祥钊.夏热冬冷地区建筑节能技术[M].北京:中国建筑出版社, 2002.
    [4]徐伟等译.地源热泵工程技术指南[K].北京:中国建筑出版社,2001.
    [5]Gerald W.Huttrer, Geothermal heat pumps: an increasingly successful technology [J]. Renewable Energy.1997, Vol.10. No.2/3, 481-488
    [6]ZHENG DENG. Modeling of Standing Column Wells in Ground Source Heat Pump Systems [Ph. D. Thesis] [D]. Oklahoma: Oklahoma State University, 2004.12
    [7]Kasumi Yasukawa, Shinji Takasugi. Present status of underground thermal utilizations in Japan [J]. Geothermic. 2003, 32: 609-618
    [8]张群力,王晋.地源和地下水源热泵的研发现状及应用过程中的问题分析[J].流体机械.2003,31(5):50-54
    [9]仲智,唐志伟.桩埋管地源热泵系统及其应用[J].可再生能源,2007,25(2): 94-96
    [10]GB50366-2005,地源热泵系统工程技术规范[S].
    [11]方锐,姚永春.钻孔灌注桩施工中应注意的几个问题[J].山西交通科技,2001(12):49-50.
    [12] William S Fleming. Ground source heat pump design and operation—Experience within an Asian Country[J]. ASHRAE Transactions, 1998, Part 2 : 771-774.
    [13] Ball D A, Fischer R D, Hodgett D L. Design methods for ground source heat pump. ASHRAE Transactions, 1983(2):416-440.
    [14] V C Mei. Effect of back-filling material on ground coil performance[J]. ASHRAE Transactions, 1987, Part2:1845-1857.
    [15] Elliott H Spilker. Ground-coupled heat pump loop design using thermal conductivity testing and the effect of different backfill mater ials on vert ical bore length[J]. ASHRAE Transactions,1998,Part2:775-780.
    [16]周积芳,张克龙.地源热泵应用于户式中央空调的分析与展望[J].中国建设信息供热制冷2007,3:15-18.
    [17]李元旦,张旭.土壤源热泵的国内外研究和应用现状及展望[J].制冷空调与电力机械.2002,23:4-7.
    [18]丁勇,刘宪英,等.地热源热泵系统的实验研究综述[J].现代空调,2001(3):12-32
    [19]薛相美.户式中央空调的应用前景[J].家用电器,2000(8):10-11
    [20]黄奕坛,陈光明,张玲.地源热泵研究与应用现状[J].制冷空调电力机械,2003(1):6-10
    [21] Svec O J. Potential of ground-coupled heat source systems[J].International Journal of Energy Research1987(4):571-581.
    [22] Douglas Cane, Andrew Morrison,Christopher J Ireland. Operating experiences with commercial ground source heat pump[J] .ASHRAE Transactions, 1998,Part2 : 677-687.
    [23] David R Dinse. Geothermal systems for school [J] . ASHRAE Journal , May 1997.
    [24]李家伟等.土壤源热泵的理论与实践研究[A]. 1995年暖通空调年会资料集[C],1995:408-410.
    [25]高祖锟.用于供暖的土壤—水热泵系统[J].暖通空调,1995(4):9~12.
    [26]张昆峰等.土壤热源与热泵联结运行冬季工况的实验研究[J].华中理工大学学报,1996,24(1):23~26.
    [27]张旭.太阳能—土壤热源热泵及其相关基础理论研究[Z]:[博士研究报告].上海:同济大学,1999.
    [28]李元旦,魏先勋.水平埋地管埋地换热器夏季瞬态工况的实验及数值模拟[J].湖南大学学报(研究生专刊),1999,26(2):220-225.
    [29]魏唐棣等.地源热泵冬季供暖测试及传热模型[J].暖通空调,2000(1):12-14.
    [30]蒋能照等.空调用热泵技术及应用[M].机械工业出版社,1997:35-36.
    [31]袁媛.浅析水源热泵技术及其特点[J].工业科技,2006,35(4):53-54
    [32]倪龙,荣莉,马最良.含水层储能的研究历史及未来[J].建筑热能通风空调,2007,26(1):18-24
    [33]赵新颖,万曼影,马捷.地下含水层储能及其对环境影响的评估[J].能源研究与利用,2004,(1):51-54
    [34]李新国,陈志豪,赵军,等.桩埋管与井埋管实验与数值模拟[J].天津大学学报,2005,38(8):679-683
    [35]ElliottH Spilker. Ground-coupled heat pump loop design using thermal conductivity testing and the effect of different backfill materials on vertical bore length [ J].ASHRAE Transactions,1998, 104: 775—779.
    [36]Kavanaugh S P. Impactofoperating hours on long-term heat storage and the design of ground heat exchangers [ J].ASHRAE Transactions, 2003, 109(1): 187—192.
    [37]Mustafa Inal,l Hikmet Esen. Experimental thermal perfor-mance evaluation of a horizontal ground-source heat pumpsystem[J].AppliedThermalEngineering,2004, 24: 2 219—2 232.
    [38]DANIEL PAHUD.Geothermal energy and heat storage. doc: 85-133. ISAAC: 2002, 12 .05
    [39] Noorishad J,Tsang C F. Coupled thermohydroelasticity phenomena in variably saturated fractured porous rocks-formulation and numerical solution [A]. In:Stephansson O,Jing L,Tsang CF ed.Coupled Thermo-Hydro-Mechanical Processes of Fractured Media[C]. Amsterdam: Elsevier Science Publishers,1996. 93–134.
    [40] Biot M A. General theory of three-dimensional consolidation [J]. Journal of Applied Physics.1941.12:144–164.
    [41] Minkoff S E,Stone C M,Bryant S,et al. Coupled fluid flow and geomechanical deformation modeling [J]. Journal of Petroleum Science and Engineering.2003.38:37–56.
    [42] Fredrich J,Arguello J,Thome B,et al. Three-dimensional geomechanical simulation of reservoir compaction and implications for well failures in the Belridge Diatomite[A]. In:Proceedings of SPE Annual Technical Conferenceand Exhibition[C]. [s. l.]:[s. n.],1996. 195–210.
    [43] Tsang C F. Linking thermal,hydrological,and mechanical processes in fractured rocks [J]. Annu. Rev. Earth Planet. Sci.1999,27:359–384.
    [44] Zhao C,Hobbs B E,Muhlhaus H B,et al. Computer simulations of coupled problems in geological and geochemical systems[J].Computer Methods in Applied Mechanics and Engineering.2002,191:3 137–3 152.
    [45] Rutqvist J,Tsang C F. Analyses of thermal-hydrologic-mechanical behavior near an emplacement drift at Yucca Mountain [J]. Journal of Contaminant Hydrology.2003,62–63:637–652.
    [46] Oldenburg C M,Pruess K,Bensen S M. Process modeling of CO2 injection into natural gas reservoirs for carbon sequestration and enhanced gas recovery [J]. Energy and Fuels.2001,15:293–298.
    [47]范蕊,马最良.地埋管换热器传热模型的回顾与改进[J].暖通空调,2006,36 (4):25-29
    [48]仇君,李莉叶,朱晓慧.地源热泵埋管换热器传热模型的研究进展[J].广西大学学报(自然科学版),2007:32(增):1-3.
    [49]袁艳平,雷波,余南阳.地源热泵地埋管换热器传热研究(1):综述[J].暖通空调,2008,38(4):25-32.
    [50]杨卫波,施明恒.基于线热源理论的垂直U型埋管换热器传热模型的研究[J].太阳能学报,2007,28(5):482-488.
    [51]刘宪英,胡鸣明,魏唐棣.地热源热泵地下埋管换热器传热模型的综述[J].重庆建筑大学学报,1999,21(4):106-111.
    [52] D. A.Ball et al.Design Method for GSHP[J ]. ASHRAE Trans. DC-83-03 : 416-440.
    [53] E.W. Guernsey et al. Earth as a heat Source or Storage Medium for the Heat Pump[J ].ASHVE , 1949 :321-344.
    [54] G. S. Smith et al. Thermal Conductivity of Soils for Design of Heat Pump Intallations[J ].ASHVE ,1950 :355-370.
    [55] L . R. Ingersoll et al. Theory of Earth Heat Exchanger for the Heat Pump [J ]. ASHVE ,1951 :167-188.
    [56] G. S. Smith et al. Factors Usef ul in Ground Grid Design for Heat Pumps [J ]. ASHVE ,1951 :189-208.
    [57] D.M. Vestal et al. Earth as Heat Source and Sink for Heat Pumps[J ]. ASHVE , 1957 :41-48.
    [58] J . R. Partin. Sizing the Closed Loop Earth Coupling for Heat Pumps[J ]. ASHRAE trans. , HI-85-02 ,p61-69.
    [59] J .A. Edwards et al. Heat Transfer from Eart h2Coupled Heat Exchngers -Experimental and Analytical Results[J].ASHRAE ,trans.,HI-85-02 :70-80.
    [60] J . E.Bose et al. Ground-Coupled Heat Pump Research[J ].ASHRAE t rans., DC-83-08 :375-390.
    [61] P.D.Metz et al. GCHP System Experimental Results[J ].ASHRAE t rans., DC- 83-08 :407-415.
    [62] V. C.Mei et al. Vertical Concent ric Tube Ground-Coupled Heat Exchangers[J ]. ASHRAE t rans.,DC-83-08 :391-406.
    [63] V. C.Mei et al. New Approach for Analysis of Ground-coil Design for Applied Heat Pump Systems[J ].ASHRAE trans. ,HI-85-24 :1216-1224.
    [64] J.D.Deermanet al.Simulationof Vertical U-Tube GCHP Systems Using the Cylindrical Heat Source Solution[J ].ASHRAE trans. , 97(1) :287-294
    [65] T-K. Lei. Development of a Computational Model for a Ground-Coupled Heat Exchanger[J ].ASHRAE trans : 3635.
    [66] V. C. Mei. Performance of a Ground-Coupled Heat Pump wit h Multiple Dissimilar U-Tube Coils in Series[J ].ASHRAE t rans. , 92(A) :30-42
    [67] Norman K. Muraya. Thermal Interference of Adjacent Legsina Vortical U-Tube Heat Exchangerfor a GSHP[J ].ASHRAE t rans :3980
    [68] R. L .D. Cane. Modeling of GSHP Performance[J ].ASHRAE t rans. , N Y-91 -17-5.
    [69] Elliot H. Spilker. GCHP Loop Design Using Thermal Conductivit y Testing and the Effect of Different Backfill Materials on Vertical Bore Length[J ]. ASHRAE trans., SF-98-1-3
    [70]赵军.竖直埋管型地源热泵地下传热及热力性能的研究[D],天津:天津大学, 2002.
    [71]王欣.地源热泵地下垂直式埋管换热器换热研究[D],浙江:浙江大学, 2004.
    [72]刁乃仁,方肇洪.地埋管地源热泵技术[M].北京:高等教育出版社, 2006.
    [73]范蕊,马最良.热渗耦合作用下的地下埋管换热器传热分析[J].暖通空调, 2006, 36 (2).
    [74]范蕊,马最良.地埋管换热器传热模型的回顾与改进[J].暖通空调, 2006, 36(4).
    [75] Carslaw H S , J aeger J C. Conduction of Heat in Solids[M] . Oxford : Claremore Press , 1947.
    [76] Ingersoll L R , Zobel O J , Ingersoll A C. Heat Conduction with Engineering , Geological and Other Applications [M] . New York : McGraw-Hill Co ,1948.
    [77] Carslaw H S , J aeger J C. Conduction of Heat in Solids [M] . 2nd Ed. London : Oxford UniversityPress ,1959.
    [78] Deerman J D , Kavanaugh S P. Simulation of vertical U-tube ground-coupled heat pump systems using the cylindrical heat source solution [ G].∥ASHRAE Trans , 1997 ,103 (1) : 287-295.
    [79] Leong W H , Tarnawski V R , Aittomaki A. Effect of soil type and moisture content on ground heat pump performance[J ] . Int J Ref rig , 1998 ,21 (8) : 595-606.
    [80] Couvillion R J , Hartley J G. Low2intensity heat and moisture t ransfer in moist soils -current models [G].∥ASHRAE Trans , 1986 ,92 (2) : 756 -775.
    [81] Tarnawski V R. Effect of snow cover on ground heat pump performance and soil moisture f reezing[J ] . Int J Ref rig , 1989 , 12 : 71-76.
    [82] Piechowski M. Heat and mass t ransfer model of a ground heat exchanger : theoretical development [J ].International Journal of Energy Research , 1997 ,21 :860-872.
    [83]王明育,马捷,万曼影.地下含水层人工储能耦合模型分析计算[J].能源技术. 2004, 1(25)
    [84]薛禹群.地下水动力学[M].北京:地质出版社,1997.
    [85]范蕊.土壤储冷与热泵集成系统地埋管热渗耦合理论与实验研究[博士学位论文][D].哈尔滨:哈尔滨工业大学,2006.6 .
    [86]朱学愚,谢春红.地下水运移模型[M].北京:中国建筑工业出版社,1990.
    [87]王锦国,周志芳,金忠青.地下水热量运移模拟的BEM-FAM耦合法[J].水利学报.2001,5: 0559-9350.
    [88]倪龙,马最良.含水层参数对同井回灌地下水源热泵的影响[J].天津大学学报.2006,2: 2(39).
    [89]Cekerevac C, Laloui L. Experimental study of the thermal effects on the mechanical behaviour of a clay[J]. International Journal for Numerical and Analytical Methods in Geomechanics 2004,28:209–228.
    [90]Laloui L, Cekerevac C, Vulliet L. Non-isothermal modelling of the cyclic mechanical behaviour of MC clay[J].Proceedings of the 11th International Conference of IACMAG, Torino, 2005: 377–384.
    [91]张强林,王媛.岩体THM耦合模型控制方程建立.西安石油大学学报(自然科学版),2007,22(2)::139-141
    [92] NeauPane K M ,Yamabe T ,Yoshinaka R. Simulation of a fully coupled thermo-hydro-mechanical system in freezing and thawing rock[J ] . Int J Rock Mech Min Sci ,1999 ,36(2) :563-580.
    [93] Rutqvist J ,Borgesson L ,chijimatsu M ,et al. Thermohy-dromechancis of Partially saturated geological media :gov-erning equations and formulation of four finite element models[J ]. Int J Rock Mech Min Sci ,2001 ,38(1) :105-127.
    [94]周江,福井正则.岩体中渗流-热-应力耦合作用的理论研究[J ] .山西矿业学院学报,1995 ,13 (1) :76-81.
    [95]赖远明,吴紫汪,朱元林,等.寒区隧道温度场、渗流场和应力场耦合问题的非线性分析[J ] .岩土工程学报,1999 ,21 (5) :529-533.
    [96]贺玉龙,杨立中,杨吉义.非饱和岩体三场耦合控制方程[J ] .西南交通大学学报,2006 ,41 (4): 419-423.
    [97] Lyesse Laloui, Mathieu Nuth,Laurent Vulliet. Expeimental and numerical investigations of the behaviour of a heat exchanger pile. International Journal For Numerical And Analytical Methods In Geomechanics,2006; 30:763–781
    [98] De Ce’renville Ge’otechnique. Rapport ge’otechnique: Extension Quartier Nord Message 96. Ecublens, Switzerland,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700