温度周期变化和渗透压力作用下大理岩蠕变试验与理论模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着西部大开发的进行,岩土工程所处的环境日益复杂,使得岩体的性质发生了很大的变化,工程灾害也日益增多。温度周期变化(季节)带来的大温差,会使岩体产生温度应力和时效变形,造成岩体裂隙的周期性扩张与收缩。针对上述问题本文开展了一系列温度周期变化与渗透压力作用下大理岩蠕变试验,获得了温度周期变化和渗透压力作用下大理岩时效变形规律;建立了温度周期变化和渗透压力作用下大理岩热黏弹塑性蠕变模型;并将所建立的热黏弹塑性本构方程引入温度-水-应力(THM)三场耦合理论中,采用有限元方法模拟了温度周期变化与渗透压力作用下大理岩的蠕变行为。主要研究工作及获得的有益认识如下:
     1、通过大理岩在不同温度、水压、轴压和围压条件下的三轴蠕变试验,分析了大理岩在不同温度、水压、轴压和围压下轴向变形随时间的变化规律,研究了温度周期变化和渗透压力作用下大理岩蠕变的变形机制,掌握了温度周期变化和渗透压力作用对大理岩三轴蠕变影响的基本规律。试验表明:90℃恒温条件下比30℃恒温条件下大理岩的蠕变变形量和瞬时弹性变形量均减少,同时蠕变变形量和瞬时弹性变形量的比值也减少,30℃至90℃温度周期变化作用下,大理岩轴向蠕变变形随温度周期变化次数的增加呈阶梯状增加,说明温度周期变化造成大理岩的损伤,孔隙水压力的存在使岩石的蠕变变形量与瞬时弹性变形量的比值增大,提高了温度周期变化造成大理岩的损伤影响,而围压的增加使岩石的蠕变变形量与瞬时弹性变形量的比值明显减小,同时对温度周期变化造成大理岩的损伤量增大。
     2、在三轴蠕变试验规律的基础上,把热弹性元件及温度周期变化损伤因子引入西原体模型,建立了温度周期变化和渗透压力作用下大理岩热黏弹塑性蠕变模型。模型与试验相吻合,较好地反映了温度周期变化和渗透压力对大理岩蠕变的影响。
     3、将建立的大理岩热黏弹塑性蠕变本构方程引入THM三场耦合理论,建立了考虑温度周期变化THM三场耦合控制方程组,利用伽辽金法(Galerkin)得到了考虑温度周期变化THM三场耦合控制方程组的等价弱形式,获得了考虑温度周期变化THM三场耦合控制方程组的有限元计算公式。运用Visual Fortran编制了考虑温度周期变化THM三场耦合蠕变的有限元计算程序,模拟再现了温度周期变化和渗透压力作用下大理岩蠕变行为的影响。
With the construction of the western development, the environment of geotechnical engineering is more and more complex, which results in great changes of mechanic properties of the surrounding rockmass and increasing engineering disasters. Large temperature difference by cyclic temperature (annual) makes rockmass generate thermal stress and time-dependent deformation, which results in the periodic expansion and contraction of rock fracture. Aiming at these problems above, a set of creep experiments on marble under cyclic temperature as well as permeable pressure are carried out; the law of time-dependent deformation of marble under cyclic temperature and permeable pressure is mastered; thermo-visco-elastic-plastic creep model of marble under cyclic temperature and permeable pressure is proposed, which is introduced the coupled thermo-hydro-mechanical (THM) theory. Concretely, creep behaviors of marble under cyclic temperature and permeable pressure are simulated by finite element method. In sum, the main work and conclusions including:
     1. The triaxial creep experiment of marble under different temperature, pore water pressure, axial pressure and confined pressure are carried out, and the variation law of time-dependent axial deformation of marble under different temperature, pore water pressure, axial pressure and confined pressure is analyzed, the creep deformation mechanism of marble under cyclic temperature and permeable pressure is investigated, and the basic laws of effects on triaxial creep of marble by cyclic temperature and permeable pressure are mastered. The experimental results indicate that: the ratio of creep deformation of marble to instantaneous elastic deformation under 90℃constant temperature condition is less than 30℃constant temperature condition, the axial creep deformation of marble increases ladderlikely with the numbers of the cyclic temperature, which suggests that the cyclic temperature makes marble mass damage. Because of the exist of pore water pressure, the ratio of creep deformation of marble to instantaneous elastic deformation is bigger, however, the damage of cyclic temperature to marble is not significantly effected. Because of the increasing of confined pressure, the ratio of creep deformation to instantaneous elastic deformation decreases significantly, but the damage of cyclic temperature to marble increases.
     2. Base on the law of triaxial creep experiments, the thermo-elastic component and factor of damage caused by cyclic temperature is induced to k-b model, thermo-visco-elastic-plastic creep model of marble under cyclic temperature and permeable pressure is proposed, which is suitable to the experiments, properly reflects the effect of cyclic temperature and permeable pressure to marble creep.
     3. thermo-visco-elastic-plastic creep model of marble which is proposed above is induced to coupled THM theory, so the coupled THM governing equations about cyclic temperature are proposed, the equivalent weak forms of coupled THM governing equations considing cyclic temperature are obtained by Galerkin method, as well as the calculation formulas of finite element method. Then the calculation program of coupled THM creep about cyclic temperature written in Visual Fortran is developed, the creep progress of marble under cyclic temperature and permeable pressure is simulated. The influence of cyclic temperature and permeable pressure on marble are analyzed.
引文
[1]钟立勋.意大利瓦依昂水库滑坡事件的启示[J].中国地质灾害与防治学报,1991,5(4):77-84.
    [2]庄丽,周顺华,宫全美等.大面积软土基坑放坡开挖引起蠕变的数值分析[J].岩石力学与工程学报,2006,25(增 2):4209-4214.
    [3]周海慧,赵红敏,戴谦训.龙滩水电站左坝肩蠕变体 B 区治理研究及实践[J].三峡大学学报(自然科学版),2007,29(6):490-494.
    [4]王思敬,肖远,杜永廉.广西红水河龙滩水电站坝址左岸边坡层状岩体弯曲蠕变机理分析[J].地质科学,1992,S1:342-352.
    [5]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999.
    [6]赖新芳.沙坡头坝基软岩的力学特性分析与蠕变过程数值模拟[D].西安:西安理工大学,2005.
    [7]刘建军,薛强.岩土热-流-固耦合理论及在采矿工程中的应用[J].武汉工业学院学报,2004,23(3):55-60.
    [8]沈珍瑶,李国鼎,李书绅.缓冲层热-湿-力耦合作用研究简介[J].地质科技情报,1997,16(2):79-83.
    [9]Jing L,Tsang C F,Stephanson O.Decovalex - An International Cooperative Research Project on Mathematical Models of Coupled THM Processes for Safety Analysis of Radioactive Waste Repositories[J].Int.J.Rock.Mech.Min.Sic.& Geomech.Abstr.,1995,32(5):389-398.
    [10]贺玉龙.三场耦合作用相关试验及耦合强度量化研究[D].成都:2003.
    [11]Hart RD,John CMST.Formulation of a Fully-coupled Thermal-Mechanical-Fluid Model for Non-linear Geologic Systems[J].Int.J.Rock.Mech.Min.Sic.& Geomech.Abstr.,1986,23(3):213-224.
    [12]Guvanasen V,Chan Tin.A three-dimensional numerical model for thermo-hydromechanical deformation with hysteresis in a fractured rock mass[J].Int.J.Rock.Mech.Min.Sic.,2000,37(1/2)(89-106)
    [13]Millard A,Durin M,Stietel A,et al.Discrete and Continuum Approaches to Simulate the Thermo-Hydro-Mechanical Couplings in a Large,Fractured Rock Mass[J].Int.J.Rock.Mech.Min.Sic.&Geomech.Abstr.,1995,32(5):409-434.
    [14]Abdallah G,Thoraval A,Sfeir A,et al.Thermal Convection of Fluid in Fractured Media[J].Int.J.Rock.Mech.Min.Sic.& Geomech.Abstr.,1995,32(5):409-434.
    [15]杨立中,黄 涛.初论环境地质中裂隙岩体渗流-应力-温度耦合作用研究[J].水文地质工程地质,2000,27(2):33-35.
    [16]Noorishad J,Tsang CF,Witherspoon PA.Coupled Thermal-Hydraulic-Mechanical Phenomena in Saturated Fractured Porous Rocks:Numerical Approach[J].J.Geophysical Res.,1984,89(B12):1036-1037.
    [17]Nguyen TS,Selvadurai APS.Coupled Thermal-Mechanical-Hydrological Behaviour of Sparsely Fractured Rock:Implications for Nuclear,Fuel Waste Disposal[J].Int.J.Rock.Mech.Min.Sic.& Geomech.Abstr.,1995,32(5)..465-479.
    [18]刘亚晨,刘泉声,吴玉山等.核废料贮存围岩介质不可逆过程热力学和热弹性[J].岩 石力学与工程学报,2000,19(3):361-365.
    [19]Gatmiri B,Delage P.A formulation of fully coupled thermal-hydro-mechanical Behavior of saturated porous media-numerical approach[J].Int.J.Num.& Anal.Methods in Geomech.,1997,21(3):199-225.
    [20]Bower KM,Zyvoloski G.A Numerical Model for Thermo-hydro-mechanical Coupling in Fractured Rock[J].In t.J.Rock.Mech.Min.Sic.,1997,94(8):1201-1211.
    [21]黄涛,杨立中.工程岩体地下水渗流-应力-温度祸合作用数学模型研究[J].西南交通大学学报,1999,34(1):11-15.
    [22]赖远明,吴紫汪,朱元林等.寒区隧道温度场、渗流场和应力场耦合问题的非线性分析[J].岩土工程学报,1999,21(5):529-533.
    [23]梁 冰,孙可明,薛 强.地下工程中的流-固藕合问题的探讨[J].辽宁工程技术大学学报,2001,20(2):129-134.
    [24]王瑞凤,赵阳升,胡耀青.高温岩体地热开发的固流热拐合三维数值模拟[J].太原理工大学学报,2002,33(3):275-278.
    [25]Thomas HR,He Y,Sanson MR,et al.On the development of a model of the thermo-mechanical-hydraulic behaviour of unsaturated soils[J].Engineering Geology,1996,41(1):197-218.
    [26]Neaupane KM,Yamabe T,Yoshinaka R.Simulation of a fully coupled thermo-hydro-mechanical system in freezing and thawing rock[J].Int.J.Rock.Mech.MinSic.,1999,36(5):563-580.
    [27]Rutqvist J,B Orgesson L,Chijimatsu M,et al.Thermohydromechanics of partially Saturated geological media:governing equations and formulation of four finite element models[J].Int.J.Rock.Mech.Min.Sic.,2001,38(1):105-127.
    [28]王芝银,李云鹏.岩体流变理论及其数值模拟[M].北京:科学出版社,2008.
    [29]杨挺青,罗文波,徐平等.黏弹性理论与应用[M].北京:科学出版社,2004.
    [30]羽布缄藤,姜荣超.小岩样的十年蠕变试验[J].采矿技术,1987,(30):20-24.
    [31]Ito H,Sasajima S.A ten year creep experiment on small rock specimens[J].Int.J.Rock Mech.Mine Sci.and Geomech.Abstr,1987,24(2):113-121.
    [32]Karaz R L.Crack growth and development during creep of barre granite[J].Int.J.Rock Mech.Min.Sci.& Geomech.Abstr.,1979,16(11):23-35.
    [33]Kranz R L.Crack-crack and crack-pore interactions in stresses granite[J].Int.J.Rock Mech.Min.Sci.& Geomech.Abstr.,1979,16(11):37-47.
    [34]Kranz R L.The effects of confining pressure andstress difference on static fatiguc of granite[J].J.Geophys.Res.,1980,85(2]:1854-1866.
    [35]E.Maranini,Brignoli M.Creep behaviour of a weak rock:experimental characterization[J].Int.J.Rock Mech.Min.Sci.,1999,36(1):127-138.
    [36]凌建明.节理岩体损伤力学及时效损伤特性的研究[D].上海:同济大学,1992.
    [37]凌建明,孙钧.脆性岩石的细观裂纹损伤及其时效特征[J].岩石力学与工程学报,1993,12(4):304-312.
    [38]扬建辉.砂岩单轴受压蠕变试验现象研究[J].石家庄铁道学院学报,1995,8(2):77-80.
    [39]金丰年.岩石拉压特征的相似性[J].岩土工程学报,1998,20(3):31-33.
    [40]李建林.岩石拉剪流变特性的试验研究[J].岩土工程学报,2000,22(3):299-303.
    [41]陈有亮.岩石蠕变断裂特性的试验研究[J].力学学报,2003,35(4):480-484.
    [42]任建喜.单轴压缩岩石蠕变损伤扩展细观机理 CT 实时试验[J].水利学报,2002,(1):10-15.
    [43]范庆忠,高延法.分级加载条件下岩石流变特性的试验研究[J].岩土工程学报,2005,27(11):1273-1276.
    [44]陈卫忠,朱维申等.节理岩体断裂损伤耦合的流变模型及其应用[J].水利学报,1999,(12):33-37.
    [45]李化敏,李振华,苏承东.大理岩蠕变特性试验研究[J].岩石力学与工程学报,2004,23(22):3745-3749.
    [46]杨延毅.节理裂隙岩体损伤-断裂力学模型及其在岩体工程中的应用[D].北京:清华大学,1990.
    [47]杨延毅.裂隙岩体非线性流变性态与裂隙损伤扩展过程关系研究[J].工程力学,1994,11(2):81-90.
    [48]袁海平.诱导条件下节理岩体流变断裂理论与应用研究[D].长沙:中南大学,2006.
    [49]邓广哲,朱维申.岩体裂隙非线性蠕变过程特性与应用研究[J].岩石力学与工程学报,1998,17(4):358-365.
    [50]邓广哲,朱维申.蠕变裂隙扩展与岩石长时强度效应实验研究[J].实验力学,2002,17(2):177-183.
    [51]Chen S H.Pande G N.Rheological model and finite element analysis of jointed rock masses reinforced by passive,fully-grouted bolts[J].Int.J.Rock Mech.Min.Sci.&Geomech.Abstr.,1994,31(3):273-277.
    [52]Chen S H,Egger P.Elasto-viscoplastic distinct modelling of bolt in jointed rock masses[J].Proc.Comp.Meth.and Adv,in Geomech.,1997,Wuhan,China
    [53]杨松林,徐卫亚.裂隙蠕变的稳定性准则[J].岩土力学,2003,24(3):423-427.
    [54]杨圣奇,徐卫亚,杨松林.龙滩水电站泥板岩剪切流变力学特性研究[J].岩土力学,2007,28(5):895-902.
    [55]杨圣奇,徐卫亚,谢守益等.饱和状态下硬岩三轴流变变形与破裂机制研究[J].岩土工程学报,2006,28(8):962-969.
    [56]徐卫亚,杨松林.裂隙岩体松弛模量分析[J].河海大学学报(自然科学版),2003,31(3):295-298.
    [57]徐卫亚,杨圣奇,杨松林,等.绿片岩三轴流变力学特性的研究(Ⅰ):试验结果[J].岩土力学,2005,26(4):531-537.
    [58]Korzeniowski W.Rheological model of hard rock pillar[J].Rock Mechanics and Rock Engineering,1991,24(3):155-166.
    [59](?)保平,赵阳升,赵金昌等.层状盐岩温度应力耦合作用蠕变特性研究[J].岩石力学与工程学报,2008,27(1):90-96.
    [60]Fujii Y,Kiyama T.Circumferential strain behavior during creep tests of brittle rocks[J].Int.J.Rock Mech.Mine Sci.and Geomech Abstr.,1999,36(3):323-337.
    [61]朱合华,叶斌.饱水状态下隧道围岩蠕变力学性质的试验研究[J].岩石力学与工程学报,2002,21(12):1791-1796.
    [62]刘泉声,出口勉.三峡花岗岩与温度及时间相关的力学性质试验研究[J].岩石力学与工程学报,2001,20(5):715-719.
    [63]刘泉声.花岗岩时温等效原理及其在核废料地下贮存的应用研究[D].武汉:中国科学院武汉岩土力学研究所,2000.
    [64]杨彩红,王永岩,李剑光等.含水率对岩石蠕变规律影响的试验研究[J].煤炭学报,
    2007,32(7):695-699.
    
    [65]曾春雷.高温、高压和渗流耦合作用下软岩力学行为的研究[D].青岛:青岛科技大学,2007.
    [66]黄书岭.高应力下脆性岩石的力学模型与工程应用研究[D].武汉:中国科学院武汉岩土力学研究所,2008.
    [67]崔强.化学溶液流动-应力耦合作用下砂岩的孔隙结构演化与蠕变特性研究[D].沈阳:东北大学,2008.
    [68]范广勤.岩土工程流变力学[M].北京:煤炭工业出版社,1993.
    [69]章根德,何鲜,朱维耀.岩石介质流变学[M].北京:科学出版社,1999.
    [70]金丰年,浦奎英.关于粘弹性模型的讨论[J].岩石力学与工程学报,1995,14(4):335-361.
    [7l]孙钧.岩石流变力学及其工程应用研究的若干进展[J].岩石力学与工程学报,2007,26(6):1081-1106.
    [72]曹树刚,边金,李鹏.岩石蠕变本构关系及改进的西原正夫模型[J].岩石力学与工程学报,2002,21(5):632-634.
    [73]陈沅江,潘长良,曹平等.软岩流变的一种新力学模型[J].岩土力学,2003,24(2):209-214.
    [74]邓荣贵,周德培,张倬元等.一种新的岩石流变模型[J].岩石力学与工程学报,2001,20(6):780-784.
    [75]王来贵,何峰,刘向峰等.岩石试件非线性蠕变模型及其稳定性分析[J].岩石力学与工程学报,2004,23(10):1640-1642.
    [76]张耀平,曹平,赵延林.软岩黏弹塑性流变特性及非线性蠕变模型[J].中国矿业大学学报,2009,38(1):34-40.
    [77]张强勇,杨文东,张建国等.变参数蠕变损伤本构模型及其工程应用[J].岩石力学与工程学报,2009,28(4):732-738.
    [78]丁志坤.岩石粘弹性非定常蠕变方程的参数辨识[D].泰安:山东科技大学,2003.
    [79]丁志坤,吕爱钟.岩石粘弹性非定常蠕变方程的参数识别[J].岩土力学,2004,25(S):37-40.
    [80]吕爱钟,丁志坤,焦春茂等.岩石非定常蠕变模型辨识[J].岩石力学与工程学报,2008,27(01):16-21.
    [81]罗润林,阮怀宁,孙运强等.一种非定常参数的岩石蠕变本构模型[J].桂林工学院学报,2007,27(2):200-203.
    [82]陈宗基,康文法.岩石的封闭应力、蠕变和扩容及本构方程[J].岩石力学与工程学报,1991,10(4):299-312.
    [83]J.F.Shao,Q.Z.Zhu,K.Su.Modeling of creep in rock materials in terms of material degradation[J].Comput Geotech,2003,30:549-555.
    [84]金丰年.岩石的非线性流变[M].南京:河海大学出版社,1998.
    [85]陈祖安.岩石蠕变扩容与损伤变量本构关系[J].地球物理学进展,1993,(4):31-35.
    [86]徐海滨,朱维申,白世伟.岩体粘弹塑性.损伤本构模型及其有限元分析[J].岩土力学,1992,13(1):11-20.
    [87]肖洪天,周维垣,杨若琼.岩石裂纹流变扩展的细观机理分析[J].岩石力学与工程学报,1999,18(6):623-626.
    [88]孙钧,凌建明.三峡船闸高边坡岩体的细观损伤及长期稳定性研究[J].岩石力学与工 程学报,1997,16(1):1-12.
    [89]陈卫忠,朱维申.节理岩体断裂损伤耦合的流变模型及其应用[J].水利学报,1999,(12):33-37.
    [90]孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社,1999.
    [91]V.S.阿巴兹,P.S.拉森.对流换热[M].顾传保,罗棣庵,李心桂译.北京:高等教育出版社,1992.
    [92]陆明万,罗学富.弹性理论基础[M].北京:清华大学出版社,2001.
    [93]张晶瑶,张凤鹏,马万昌等.加热温度变化对岩石强度的影响[J].金属矿山,1996,12:6-8.
    [94]雅.贝尔.地下水水力学[M].许涓铭等译.北京:地质出版社,1985.
    [95]陈宏芳,杜建华.高等工程热力学[M].北京:清华大学出版社,2003.
    [96]方荣.温度周期变化作用下大理岩宏细观力学变形试验研究[D].南京:河海大学,2006.
    [97]H.Yavuz,R.Altindag,S.Sarac,et al.Estimating the index properties of deteriorated carbonate rocks due to freeze - thaw and thermal shock weathering[J].International Journal of Rock Mechanics and Mining Sciences,2006,43(5):767-775.
    [98]M.Mutlut(u |")rk,R.Altindag,G.T(u |")rk.A decay function model for the integrity loss of rock when subjected to recurrent cycles of freezing - thawing and heating - cooling[J].International Journal of Rock Mechanics & Mining Sciences,2004,41:237-244.
    [99]陈卫忠,杨建平,伍国军等.低渗透介质渗透性试验研究[J].岩石力学与工程学报,2008,27(2):236-243.
    [100]朱珍德,张勇,王春娟.大理岩脆—延转换的微观机理研究[J].煤炭学报,2005,30(2):31-35.
    [101]杨圣奇.岩石流变力学特性特性的研究及其工程应用[D].南京:河海大学,2005.
    [102]周青春,李海波,杨春和等.南水北调西线一期工程砂岩温度、围压和水压耦合试验研究[J].岩石力学与工程学报,2005,24(20):3639-3645.
    [103]沈珠江.岩土破损力学:理想脆弹塑性模型[J].岩土工程学报,2003,25(3):253-257.
    [104]刘泉声,许锡昌,山口勉等.三峡花岗岩与温度及时间相关的力学性质试验研究[J].岩石力学与工程学报,2001,715-719:20(5).
    [105]许锡昌,刘泉声.高温下花岗岩基本力学性质初步研究[J].岩土工程学报,2005,22(3):332-335.
    [106]黄小华.温度-水-应力下开挖扰动区裂隙花岗岩体流变过程研究及细胞自动机模拟[D].武汉:中国科学院武汉岩土力学研究所,2007.
    [107]杨挺青.粘弹性力学[M].华中理工大学出版社,1990.
    [108]薛 毅.最优化原理与方法[M].北京:北京工业大学出版社,2001.
    [109]李青麒.软岩蠕变参数的曲线拟合计算方法[J].岩石力学与工程学报,1998,17(5):559-564.
    [110]何学秋,薛二龙,聂百胜等.含瓦斯煤岩流变特性研究[J].辽宁工程技术大学学报,2007,26(2):201-203.
    [111]Xia-Ting Feng,Bing-Rui Chen,Chengxiang Yang,et al.Identification ofvisco-elastic models for rocks using genetic programming coupled with the modified particle swarm optimization algorithm[J].International Journal of Rock Mechanics & Mining Sciences,2006,43:789-801.
    [112]刘亚晨.核废料贮存裂隙岩体水热耦合迁移及其与应力的耦合分析[D].武汉:中国科学院武汉岩土力学研究所,2000.
    [113]刘晓旭.三场耦合的数学模型研究及有限元算法[D].成都:西南石油学院,2005.
    [114]李庆扬,王能超,易大义.数值分析[M].武汉:华中科技大学出版社,1986.
    [115]多尔特曼,蒋宏耀等译.岩石和矿物的物理性质[M].科学出版社,1985.
    [116]普里克郎斯基,拉普杰夫合著.地下水的物理性质和化学成分[M].地质出版社,1954.
    [117]骆邦其.水和蒸汽的体膨胀系数和压缩率[J].中国核科技报告,1996,S1:1-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700