西南典型亚热带森林生态系统汞的输入、输出与来源特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汞是一种强毒性的重金属元素,在环境中容易通过食物链富集而对人类健康造成极大危害。汞在大气中主要以Hg0形态存在,其含量可占大气总汞90%以上。因此,对于大气汞的来源研究是掌握汞的全球生物地球化学循环的关键。陆生生态系统是汞生物地球化学循环的主要场所,而森林生态系统是其中最大的生态系统,且常被认为是汞的活性库。森林土壤是森林生态系统贮存汞的主要场所,每年可以通过扩散作用向大气排放大量的汞,同时,又经大气干湿沉降过程而将汞输入到土壤中。因此,汞在森林生态系统中的环境行为是汞全球循环的重要组成部分。
     西南地区是我国森林覆盖率第二大区,其中亚热带森林面积占到四分之三,是西南地区最具代表性的森林生态系统。针对不同生态系统可能发生的汞污染问题,前人已做了大量研究工作,但有关亚热带森林生态系统汞的输入、输出的研究还很匮乏。因此,本文选取具有典型中亚热带森林生态系统的缙云山国家自然保护区和四面山风景名胜区为研究区域,以中亚热带分布最为广泛的针阔混交林、落叶阔叶林等为研究对象,采取野外实地监测的方式,研究典型中亚热带森林生态系统汞的特征,探究森林土壤-大气界面汞交换机制及影响因素,其成果对于揭示不同气候条件下森林与大气间汞交换的规律,估算全球自然汞排放量,大气汞污染防治,研究汞的生物地球化学循环,汞的环境风险预测等有非常重要的意义。
     结果表明,整个研究期间,缙云山大气气态总汞浓度夏季最高,其次为冬季和春季,秋季最低。缙云山一年四季的气态总汞含量均相对稳定,波动较小。夏季的最大小时平均浓度为4.99ng·m-3,表明缙云山夏季受到更多的人为活动影响。四面山大气气态总汞浓度冬季最高,其次为夏季和春季,秋季最低。冬季的最大小时平均浓度达到3.68ng·m-3,高于春、夏、秋三季。缙云山的气态总汞浓度仅低于贵阳、北京、广州和长三角地区的监测结果,高于上海、韩国首尔、美国芝加哥以及长白山、雷公山、贡嘎山及日本冲绳、美国Great Mountain Forest和美国纽约州阿迪朗达克山脉背景点的监测结果。四面山的气态总汞浓度低于贵阳、北京、广州、长三角地区和贡嘎山的监测结果,高于上海、韩国首尔、美国芝加哥,以及长白山、雷公山、日本冲绳、美国Great Mountain Forest和美国纽约州阿迪朗达克山脉背景点的监测结果。缙云山自然保护区和四面山风景名胜区区,大气汞浓度与气温显著正相关,与光照也是显著正相关;两个采样点大气汞浓度与相对湿度成显著正相关。
     缙云山和四面山72小时后向轨迹聚类分析确定重庆、贵州、四川、中国中东部地区为可能的汞来源区。分析得到:缙云山和四面山2012年均为四种类型的气团,其中,均为cluster3所占比例最大(缙云山52%和四面山54%)。cluster3与缙云山和四面山大气气态总汞浓度最高值相关(缙云山4.99ng·m-3四面山3.68ng·m-3)。Cluster3气团主要是重庆主城地区这一汞污染最严重区域之一。
     林地土壤与大气间的汞交换通量表现为双向性,且总体表现以土壤汞释放为主。通过观察四种不同林地不同季节汞交换通量的变化趋势特征发现:(1)所有林分的汞交换通量均在早上6:00开始增加,最大值均出现在正午时分,最小值均出现在午夜时分;(2)所有林分的汞交换通量均为白天高于夜间;(3)四种林分春夏秋冬四季在一天中均表现为土壤向大气释汞,仅冬季的个别时间发生了汞沉降而出现负值:其中缙云山楠竹林在冬季午夜时分表现出最大的汞沉降量,为-4.34ng·(m2·h)-1;(4)据四季汞通量统计结果可知,四种不同林地均在夏季土/气界面释汞通量值较高,缙云山针阔混交林、缙云山灌木林、缙云山楠竹林和四面山落叶阔叶林的平均通量分别达到49.06±12.52ng-(m2-h)-1、67.52±15.49ng·(m2-h)-1、58.34±16.03ng·(m2-h)-1和46.73±12.64ng·(m2·h)-1。(5)缙云山灌木林夏季汞交换通量在一天中变化幅度最大,趋势最明显,最大值达67.52ng·(m2·h)-1,最小值为7.10ng·(m2·h)-1。(6)四种林地均在冬季土/气界面汞交换通量值达到最低,平均通量仅为-3.36ng-(m2·h)-1。四种林地冬季汞通量在一天中的变化幅度较小,趋势较弱,其中汞交换通量的最大值和最小值均出现在缙云山楠竹林,最大值为28.7ng·(m2·h)-1,最小值为-4.34ng-(m2-h)-1.缙云山针阔混交林、灌木林、楠竹林和四面山落叶阔叶林四种林分汞交换通量与环境因子的相关性趋势相似,均表现为与气温、土温和光照强度呈现出正相关关系,与相对湿度呈现出负相关关系。
     缙云山针阔混交林和四面山落叶阔叶林林外降雨总汞的VMW浓度分别为23.40ng·L-1和24.89ng·L-1,林内降雨总汞的平均体积加权浓度VMW浓度分别为32.13ng·L-1和35.64ng·L-1;缙云山针阔混交林和四面山落叶阔叶林林外降雨甲基汞的平均体积加权浓度VMW分别为0.32ng·L-1、0.29ng·L-1,林内降雨甲基汞浓度分别为0.29ng·L-1、0.43ng·L-1o研究期间总汞变化趋势与降雨量的趋势相反,当降雨量多时,总汞浓度较低,当降雨量少的时候,总汞浓度相对较高。降水中甲基汞的浓度随降雨量变化情况,除了个别雨水样中,甲基汞浓度变化波动不大;两个监测点林内VMW浓度均高于林外降雨,林内降雨中的汞浓度范围为5.4~125.52ng·L-1;缙云山监测点林外降雨汞浓度的体积加权平均值为23.40ng·L-1,林内降雨汞浓度的体积加权平均值为32.12ng·L-1:四面山林外降雨汞浓度的体积加权平均值为24.89ng·L-1,林内降雨汞浓度的体积加权平均值为35.64ng·L-1.缙云山自然保护区林外降雨12个月内总汞平均湿沉降量为23.40μg·m-2;甲基汞平均湿沉降量为0.32μg·m-2.四面山风景名胜区林外降雨12个月内总汞平均湿沉降量为24.89μg·m-2;甲基汞平均湿沉降量为0.32μg·m-2。监测期间,12月的总汞和甲基汞沉降量大于美国大部分地区(除了美国北卡罗莱纳州)的年湿沉降量,但是小于中国北京、长春的总汞年湿沉降量。监测期间,缙云山针阔混交林和四面山落叶阔叶林两种林分林内降雨中的累积总汞通量值为48.19和53.46μg·m-2·yr-1,两种林分林外降雨中的累积总汞通量值为38.03和38.44μg·m-2·yr-1,比林外降雨中的累积汞通量值分别高了21%和28%。
     研究期间,落叶阔叶林和针叶林树叶枯落物中的总汞浓度和质量均呈现增加的趋势。落叶阔叶林中汞的平均浓度从初始值46.3ng·g-1增加到57.88ng·g-1针阔混交林枯落物中汞的平均浓度从初始值42.40ng·g-1增加到50.88ng·g-1年之后,树叶枯落物中的总汞平均含量增加到其在落叶阔叶林枯落物中初始质量的125%,针叶林枯落物初始质量的120%。在分解过程中甲基汞的变化幅度较小,但较初始甲基汞含量来讲都呈现出了略微增加的趋势。根据指数衰减模型,枯落物质量的半衰期估算为:落叶阔叶林3.1年和针叶林3.7年,这与前人研究的结果是相当的。总体来说,汞质量增加,而枯落物质量会下降。研究期间,在树木生长季节汞不断累积,而枯落物质量却以一个相对一致的速率下降。分段回归模型分析表明汞的累积具有季节差异,在休眠季会出现不显著的下降,在成长季节出现清晰地增加,表明汞季节性累积是一种连续的现象,落叶阔叶林和针叶林层的成长季节均会出现。
Mercury (Hg) is a hazardous heavy metal pollutant, which is easily to be bioaccumulated through food chain, leading considerous hazard to human health. Mercury emitted to the atmosphere from natural and anthropogenic sources exists mainly as gaseous elemental mercury (GEM, Hg0), accounting for over90%of the available ambient total gaseous mercury (TGM). The atmospheric residence time of GEM is as long as one year, so Hg0is involved in long range transport through atmospheric circulation, traveling far from the emission sources, being regarded as a global pollutant.Therefore, researches on the sources of gaseous mercury are key to understanding the biogeochemical cycle of mercury. Terrestrial ecological system is the main place for biogeochemical cycle of mercury, whereas forest ecosystem is the largest one and always be seen as an active sink of mercury. Forest soil is the main place for mercury accumulation, emissing a large amount of mercury to the atmosphere every year through dissusion effect. Meanwhile, mercury input to the forest soil includes dry and wet deposition. Therefore, mercury inputs, outputs, cycles and sources in the forest ecosystem are the important parts of the biogeochemical cycle of mercury.
     Southwest has the second largest forest coverage rate in China, with subtropical forest area accounting for three fourth, being the most representative forest ecosystem in China. Considerable work had been done on possible mercury pollution in different ecosystems previously; however, studies on mercury inputs, outputs of subtropical forest ecosystem are reported far less. In this research, national nature reserves of Mts. Jinyun and Simian were selected as study areas, with coniferous and deciduous forests selected as forest types. The characteristics of mercury of typical subtropical forest ecosystem was studied by field monitoring to investigate soil/air mecury exchange mechanism and influcing factors, results of which has significant meanings in elucidating forest soil/air mecury exchange laws under different atomospheres, evaluating global emission of natural mercury, protecting mercury pollution, researching on biogeochemical cycling of mercury, as well as forcasting environmental risks of mercury.
     Results of this research indicated that the highest TGM concentration of Mt. Jinyun was observed in summer, followed by winter and spring, and the lowest was in fall. TGM concentrations of Mt. Jinyun in the whole year were relatively stable, with little fluctuation. The highest average concentration of Mt. Jinyun in summer was4.99ng·m-3, which indicated that it was affected more by human activites in summer. As for Mt. Simian, the highest TGM concentration was observed in winter, followed by summer and spring, and the lowest was also in fall.The largest average concentration of Mt. Simian in winter was3.68ng·m-3. TGM concentrations of Mt. Jinyun were only lower than those in Guiyang, Beijing, Guangzhou, and Yangtze Delta, and higher than those in Shanghai, Seoul (Korean), Chicago(the United States), Mts. Changbai, Leigong, Gongga, Okinawan (Japan), Great Mountain Forest(USA), Adirondacks (New York, USA). TGM concentrations of Mt. Simian were lower than those in Guiyang, Beijing, Guanghzou, Yangtze Delta and Mt. Gongga, higher than Shanghai, Seoul (Korean), Chicago (the United States), Mts. Changbai, Leigong, Gongga, Okinawan (Japan), Great Mountain Forest(the United States), Adirondacks (New York, USA). In addition, TGM concentrations of Mts. Jinyun and Simian were both positively correlated with meteorological parameters, with obviously seasonal difference. TGM concentrations of Mts. Jinyun and Simian had remarkably positive correlation with atomospheric temperature, solar radiation, and relative humidity, but no significant correlations were found in air pressure.
     Cluster analysis results of TGM of Mts. Jinyun and Simian with72h back-trajectories by Hysplit identified Chongqing, Guizhou, Sichuan and Mideast areas of China as likely Hg sources. And there were both four types of72h trajectories arriving at Mts. Jinyun and Simian from March2012to Febrary2013, with cluster3making up for52%(Mt. Jinyun) and54%(Mt. Simian) in the four types of air masses. Cluster3correlated with the highest value of TGM concentrations, with4.99ng·m-3and3.68ng·m-3for Mts. Jinyun and Simian respectively. Cluster3air mass was from urban areas of Chongqing which had the most serious mercury pollution.
     The mercury exchange flux between forest soil and atmosphere was bidirectional, with soil mercury release as the main type. The variation of mercury exchange flux observed in four different forest floors in different seasons found that:(1) the mercury exchange flux of all the forest floors started to increase at6:00am in the morning, with the maximum value appearing at noon and the minimum values appearing at midnight;(2) the mercury exchange flux of the four forest floors were all higher by day than those by night;(3) the soil mercury released into the atmosphere was observed almost everyday of the four seasons in the four kinds of forest floors, with only individual winter time occouring mercury deposition (negative values);the bamboo forest of Mt. Jinyun in the winter midnight showed maximum mercury deposition,-4.34ng-(m2·h)-1.(4) According to the statistical results of mercury flux in the soil/air interface of the four seasons, the mercury exchange flux of the four forests were all highest in the summer, with averages of49.06±12.52,67.52±15.49,58.34±16.03and46.73±12.64ng-(m2·h)-1for coniferous and broad-leaved mixed forest, shrub forest, and bamboo forest of Mt. Jinyun, as well as coniferous and broad-leaved mixed forest of Mt. Simian.(5) the fluctuations of mercury exchange flux of shrub forest of Mt. Jinyun reached highest in the summer, having the most obvious trend. The maximum and minimum values were67.52ng·(m2·h)-1and7.10ng·(m2·h)-1individually.(6) soil/gas mercury exchange flux reached the lowest value in the winter for the four forest floors, with average flux of only-3.36ng·(m2·h)-1. The fluctuations of mercury exchange flux of the four forest floors were all smallest in one single day, having the weakest trend. Maximum and minimum values of mercury exchange flux both occurred in the shrub forest of Mt. Jinyun,67.52ng (m2·h)-1and7.10ng-(m2-h)-1individually. The conifer, shrubs, bamboo forest of Mt. Jinyun and the conifer of Mt. Simian had similar relationship with environmental factors, with positive relationship with air temperature, soil temperature and solar radiation, and negative relationship with relative humidity.
     The VMW concentrations of total mercury in the precipitation of coniferous and broad-leaved mixed forests of Mt.Jinyun and deciduous forests of Mt. Simian were23.40ng·L-1and24.89ng·L-1, and average VMW concentrations of total mercury in the throughfall were32.13ng·L-1and35.64ng·L-1. For the concentrations of MeHg, the VMW concentrations of MeHg in the precipitation and throughfall of coniferous and broad-leaved mixed forests of Mt.Jinyun and deciduous forests of Mt. Simian were0.32ng·L-1and0.29ng·L-1(precipitation) and0.29ng·L-1and0.43ng·L-1(throughfall). During the monitoring period, the total mercury concentration in precipitation was significantly higher than those in the rural and urban of Europe, the United States, as well as Japan, being slightly lower than those in Guiyang and Wujiang, being obviously lower than those in other cities in China, such as Beijing and Changchun. MeHg content was about7times of that in Carolina, the United States, and over twice of that in several areas of the United States. The trend of total mercury reversed with that of rainfall during the study period. When rainfall for a long time, the total mercury concentration was low, whereas when rainfall was less, the total mercury concentration was relatively high. The concentration of MeHg in precipitation varied with rainfall, with little fluctuations except individual samples. VMW concentrations in the two monitoring sites were both higher than that in precipitation. Ranges for the the mercury concentration in the throughfall was5.4-125.52ng·L-1. The volume weighted value of precipitation in Mt. Jinyun was23.40ng·L-1, and32.12ng·L-1for throughfall. For Mt. Simian, the volume weighted value of precipitation in Mt. Simian was24.89ng·L-1, and35.64ng-L'1for throughfall. The average wet deposition of total mercury in the precipitation within the12months in Mt. Jinyun was23.40μg·m-2, and0.32μg·m-2for MeHg. For Mt. Simian, the average wet deposition of total mercury in the precipitation within the12months in Mt. Jinyun was24.89μg·m-2, and0.32μg·m-2for MeHg.
     During the monitoring period,12-month wet deposition of total mercury and MeHg were larger than those in most areas of the USA (except North Carolina), but were lower than those in Beijing and Changchun, China. During the monitoring period, the cumulative total mercury flux in throughfall in the coniferous and broad-leaved mixed forests of Mt.Jinyun and deciduous forests of Mt. Simian were48.19and53.46μg m-2·yr-1repectively. While for precipitation, the accumulative total mercury flux in the coniferous and broad-leaved mixed forests of Mt.Jinyun and deciduous forests of Mt. Simian were38.03and38.44μg m-2·yr-1, which were higher than those in precipitation by21%and28%respectively.
     During the study period, both the concentration and mass of total mercury in leaf litter of deciduous and coniferous and broad-leaved mixed forests increased. The mean concentration of mercury in deciduous forests increased from46.3ng·g-1to57.88ng·g-1. And for coniferous and broad-leaved mixed forests, it increased from42.40ng·g-1to50.88ng·g-1. One year later, the average concentration of total mercury in the leaf litter of deciduous as wellas coniferous and broad-leaved mixed forests increased to125%and120%respectively. During the process of decomposition, the concentration of MeHg varied slightly, but comparing with the initial values, the concentration of MeHg increased slightly. According to the exponential attenuation model, the half-life of the mass of litter estimated as3.1and3.7years for deciduous as well as coniferous and broad-leaved mixed forests individually,which were similar with previous research results. In general, the mercury mass increased, but the mass of litter declined. During the study period, growing season mercury content accumulated gradually, while the mass of litter dropped by a relatively consistent rate. Piecewise regression model analysis showed that the accumulation of mercury varied with the season, with not significant decrease in non-growing season and clear increase in growing seasons. This indicated that seasonal accumulation of mercury was continuous, occouring in both deciduous and coniferous and broad-leaved mixed forests.
引文
[1]Akagi H. Methylmercury pollution in Minamata Bay after Minamata disease outbreak and the problems in the foreign countries (in Japanese) [J]. Byoutai Seiri,1995,14(8),597-604.
    [2]Allan C J, Heyes A. A Preliminary assessment of wet deposition and episodic transport of total and methyl mercury from low order Blue Ridge watersheds, S.E. USA [J]. Water, Air and Soil Pollution,1998,105(3-4):573-592.
    [3]Anderson A. Mercury in Soils. In:The Biogeochemistry of Mercury in Environment: Amsterdam:Elsevier,1979,79-112.
    [4]Anderson M R, Scruton D A, Williams U P, Payne J F. Mercury in fish in the smallwood reservoir, Labrador, twenty one years after impoundment [J]. Water, Air and Soil Pollution, 1995,80:927-931.
    [5]Ariya P A, Dastoor A P, Amyot M, et al. The Arctic:a sink for mercury [J]. Tellus B,2004, 56:397-403.
    [6]Axenfeld F, Munch J, Pacyna J. Europaische Test-Emissionsdatenbasis von Quecksilberver-bindungen fur Modellrechnungen. In Umweltforschungsplan des Bundesministers fur Umwelt, Naturschutz und Reaktorsicherheit. Forschungsvorhaben 10402726. Umweltbundesamt, Berlin, 1991.
    [7]Baeyens W, Leermark M, et al. Modelization of the mercury fluxes at the air-sea interface [J]. Water, Air and Soil pollution.1991,56(6):731-744.
    [8]Bahlmann E R, Ebinghaus R, Ruck W. Influence of solar radiation on mercury emission fluxes from soils [J]. RMZ Materials and Geoenvironment,2004,51:787-790.
    [9]Benoit J M, Gilmour C C, et al. Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems. In:Cai Y, Braids O C. (Eds.),2003
    [10]Bergan T, Rodhe H. Oxidation of elemental mercury in the atmosphere:Constraints imposed by global scale modeling [J]. Journal of Atmospheric Chemistry,2001,40,191-212
    [11]Bishop K H, Lee Y H, Munthe J, et al. Xylem Sap as a pathway for total mercury and methylmercury transport from soil to tree canopy in the boreal forest [J]. Biogeochemistry, 1998,40:101-113.
    [12]Bjornberg K A, Vahter M, Grawe K P, et al. Methyl mercury exposure in Swedish women with high fish consumption [J]. Science of the Total Environment,2005,341(1-3):45-52.
    [13]Blanchard P, Froude F A, Martin J B, et al. Four years of continuous total gaseous mercury (TGM) measurements at sites in Ontario, Canada [J]. Atmospheric Environment,2002,36, 3735-3743.
    [14]Bloom, N.S. Determination of Picogram Levels of Methylmercury by Aqueous Phase Ethylation, Followed by Cryogenic Gas Chromatography with Cold Vapor Atomic Fluorescence [J]. Can. J. Fish.Aquat. Sci.,1989,46,1131-1140.
    [15]Bloom N S, Prestbo E, et al. Distribution and origins of mercury species in the Pacific Northwest atmosphere. Paper presented at 4th International Conference on Mercury as a Global Pollutant, Hamburg, Germany,1996.
    [16]Branfireun B A, Bisho P K. Mercury cycling in boreal ecosystems:the long-term effect of acid rain constituents on Peatland Pore water methymereury concentration [J]. Geophysical Resource,2001,28(7):1227-1230.
    [17]Brosset C. Total airborne mercury and its possible origin [J]. Water, Air and Soil Pollution, 1982,17,37-50.
    [18]Brosset C, Lord E. Mercury in Precipitation and ambient air:a new scenario [J]. Water, Air and Soil Pollution,1991,56(1):493-506.
    [19]Bubb J M, William, T P, Lester J N. The behavior of mercury with a contaminated tidal river system [J]. Water Scicece and Technology,1993,28:329-323.
    [20]Burke J, Hoyer M, Keeler G, et al. Wet deposition of mercury and ambient mercury concentrations at a site in the Lake Champlain basin [J]. Water Air and Soil Pollution,1995,80, 353-362.
    [21]Bushey J T, Mallana A G, Montesdeoca M R, et al. Mercury dynamics increases of a northern hardwood canopy [J]. Atmospheric Environment,2008,42:6905-6914.
    [22]Carpi A, Lindberg S. Sunlight-mediated emission of elemental mercury from soil amended with municipal sewage sludge [J]. Environmental Science and Technology,1997,31:2085-2091.
    [23]Chand D, Jaffe D, Prestbo E, et al. Reactive and particulate mercury in the Asian marine boundary layer[J]. Atmospheric Environment,2008,42(34):7988-7996.
    [24]Choi H D. Mercury Inputs, Outputs, Cycling, andAmbient Concentrations under the Forest Canopy in the Adirondacks of New York [D]. Clarkson University,2007.
    [25]Choi H D, Holsen T M. Gaseous mercury fluxes from the forest flooT of the Adirondacks [J]. Environmental Pollution,2009,157(2):592-600.
    [26]Clarkson T W. The toxicology of mercury and its compounds. In:Watras C J, Huckabee J W (ed) Mercury pollution:Integration and synthesis. Lewis Publishers, Boca Raton, Florida, USA, 1994,631-640.
    [27]Cobos D R, Baker J M, et al. Conditional sampling for measuring mercury vapor fluxes [J]. Atmospheric Environment,2002,36:4309-4321.
    [28]Dill C, Kuiken T, Zhang H, Ensor M. Diurnal variation of dissolved gaseous mercury (DGM) levels in a sout ern reservoir lake (Tennessee, USA) in relation to solar radiation [J].The Science of the Total Environment,2006,357(1-3):176-193.
    [29]Downs S G, MacLeod C L, et al. Mercury in precipitation and its relation to bioaccumulation in fish:a literature review [J]. Water, Air, and Soil Pollution,1998,108:149-187.
    [30]Engle M A, Gustin M S, Zhang H. Quantifying natural source mercury emissions from the Ivanhoe Mining Distriet, north-central Nevada, USA [J]. Atmospheric Environment,2001,35: 3987-3997.
    [31]Engle M A, Gustin M S, et al. The influence of ozone on atmospheric emissions of gaseous elemental mercury and reactive gaseous mercury from substrates [J]. Atmospheric Environment, 2005,39:7506-7517.
    [32]Envgle M A, Gustin M S, Zhang H. Quantifying natural source mercury emissions from the Ivanhoe Mining District, north-central Nevada,USA [J]. Atmospheric Environment,2001,35: 3987-3997.
    [33]Ericksen J A, Gustin M S. Foliar exchange of mercury as a function of soil and air mercury concentrations [J]. Science of Total Environment,2004,324:271-279.
    [34]Ericksen J A. Gustln M S, Schorran D E, et al. Accumulation of atmospheric mercury in forest foliar [J]. Atmospheric Environment,2003,37:1613-1622.
    [35]Fang F, Wang Q, Li J. Urban environmental mercury in Changchun, a metropolitan city in Northeastern China:source, cycle, and fate [J]. Sci Total Environ 2004,330:159-170.
    [36]Feng X, Yan H, Wang S, et al. Seasonal variation of gaseous mercuey exchange rate between air and water surface over Baihua reservoir, Guizhou, China [J]. Atmospheric Environment,2004a, 38(28):4721-4732.
    [37]Feng X, Wang S, Qiu G, et al. Total gaseous mercury in the atmosphere of Guiyang, PR China [J]. The science of Total Environment,2003,304:61-72.
    [38]Feng X, Jiang H, Qiu G, et al. Mercury mass balance study in Wujiangdu and Dongfeng reservoirs, GuiZhou, China [J]. Environmental Pollution,2009,157:2594-2603.
    [39]Feng X, Shang L, Wang S, et al. Temporal variation of total gaseous mercury in the air of Guiyang, China [J]. Journal of Geophysical Research,2004b,109(D3).
    [40]Ferrari C P, Pierre A G, Katrine A, et al. Snow-to-air exchanges of mercury in an Arctic seasonal snow pack in Ny-Alesund, Svalbard [J]. Atmospheric Environment,2005,39:7633-7645.
    [41]Ferrara R, Maserti B E, Andersson M, et al. Mercury degassing rate from mineralized areas in the Mediterranean Basin [J]. Water Air and Soil Pollution,1997,93(1-4):59-66.
    [42]Ferrara R, Mazzolai B. A dynamic flux chamber to measure mercury emission from aquatic systems [J]. The Science of the Total Environment,1998,215:51-57.
    [43]Fitzgerald W F, Manson R P, et al. Atmosphere cycling and air-water exchange of Hg over mid-continental lacustrine regions [J]. Water Air Soil Pollution,1991,56:745-767.
    [44]Fleck J A, Grigal D F, Keeler G J. Mercury uptake by trees:An observational experiment [J]. Water, Air and Soil Pollution,1999,115:513-523.
    [45]Fleming E J, Mack E E, et al. Mercury methylation from unexpected sources: molybdateinhibited freshwater sediments and an iron-reducing bacterium [J]. Applied and Environmental Microbiology,2006,72:457-464.
    [46]Frescholtz T F, Gustin M S, Schorran D E, et al. Assessing the source of mercury in foliar tissue of quaking aspen [J]. Environmental Toxicology and Chemistry,2003,22(9):2114-2119.
    [47]Friedli H R, Arellano A F J, Geng F, et al. Measurements of atmospheric mercury in Shanghai during September 2009 [J].Atmospheric Chemistry and Physics,2011,11(8):3781-3788.
    [48]Friedli H R, Radke L F, Lu J Y, et al. Mercury emission from burning of biomass from the temperate North American forests:laboratory and airborne measurement [J]. Atmoospheric Environment,2003,37(2):253-267.
    [49]Fu X, Feng X, Zhu W, et al. Total gaseous mercury concentrations in ambient air in the eastern slope of Mt. Gongga, South-Eastem fringe of the Tibetan plateau, China [J].Atmospheric Environment,2008,42(5):970-979.
    [50]Fu X, Feng X, Dong Z, et al. Atmospheric gaseous elemental mercury (GEM) concentrations and mercury depositions at a high-altitude mountain peak in south China [J]. Atmospheric Chemistry and Physics,2010,10(5):2425-2437.
    [51]Fulkerson M, Nnadi F N. Predicting mercury wet deposition in Florida:A simple approach [J]. Atmospheric Environment,2006,40:3962-3968.
    [52]Galloway M E, Branfireun B A. Mercury dynamics of a temperate forested wetland [J]. Science of the Total Environment,2004,325:239-254.
    [53]Girdfeldt K, Munthe J, et al. A kinetic study on the abiotic methylation of divalent mercury in the aqueous phase [J]. The Science of the Total Environment,2003,304:127-136
    [54]Gabriel M C, Williamson D G, Brooks S. Atmospheric speciation of mercury in two contrasting Southeastern US airsheds [J]. Atmospheric Environment,2005,39:4947-4958.
    [55]Gabriel M C, Williamson D G, Zhang H, et al. Diurnal and seasonal trends in total gaseous mercury flux from three urban ground surfaces [J]. Atmospheric Environment,2006,40, 4269-4284.
    [56]Gaggi C, Chemello G, Bacci E. Mercury-vapor accumulation in azalea leaves [J]. Chemosphere, 1991,22:869-872.
    [57]Gillis A, Miller D R. Some local environmental effects on mercury emission and absorption at a soil surface [J]. The Science of Total Environment,2000a,260:191-200.
    [58]Gillis A, Miller D R. Some potential errors in the measurement of mercury gas exchange at the soil surface using a dynamic flux chamber [J]. The Science of the Total Environment,2000b, 260:181-189.
    [59]Glass G E, Sorensen J A. Six-year trend (1990-1995) of wet mercury deposition in the Upper Midwest. USA [J]. Environmental Science and Technology,1999,33(19),3303-3312.
    [60]Gosz J R, Likens G E, Bormann F H. Nutrient release from decomposing leaf and branch litter in Hubbard Brook Forest, New Hampshire [J]. Ecological Monographs,1973,43:173-191.
    [61]Grennfelt P, Larsson S, Leyton P, et al. Atmospheric deposition in the Lake Gardsjon area, SW Sweden[J]. Ecol. Bull. (Stockholm) 1985,37:101-108.
    [62]Grieb T M, Driseoll C T, Gloss S P, et al. Factors affecting mercury accumulation in fish in the upper Michigan Peninsula[J]. Environment Contaminate Toxicology,1990,9:919-930.
    [63]Grigal D. F. Inputs and outputs of mercury from terrestrial watersheds:a review [J]. Environ. Rev.2002,10:1-39.
    [64]Guentzel J L, Landing W M, et al. Processes influencing rainfall deposition of mercury in Florida [J].Environ. Sci. Technol.,2001,35:863.
    [65]Guo Y, Feng X, Li Z, et al. Distribution and wet deposition fluxes of total and methyl mercury in Wujiang River Basin, Guizhou, China [J]. Atmospheric Environment,2008,42(30): 7096-7103.
    [66]Gustin MC, Albertyn J, Alexander M, et al. MAP kinase pathways in the yeast Saccharomyces cerevisiae [J]. Microbiol. Mol. Biol. Rev.1998,62,1264-1300.
    [67]Gustin M S, Biester H, Kim C S. Investigation of the light-enhanced emission of mercury from naturally enriched substrates [J]. Atmospheric Environment,2002,36:3241-3254.
    [68]Gustin M S, Lindberg S E, Austin K, et al. Assessing the contribution of natural sources to regional atmospheric mercury budgets [J]. The Science of the Total Environment,2000,259: 61-71.
    [69]Gustin M S, Stamenkovic J. Effect of watering and soil moisture on mercury emissions from soils [J]. Biogeochemistry,2005,76:215-232.
    [70]Gustin M S, Coolbaugh M, Engle M, et al. Atmospheric mercury emissions from mine wastes and surrounding geologically enriched terrains [J]. Environmental Geology,2003,43:339-351.
    [71]Gustin M S, Lindberg S, Marsik F, et al. The Nevada STORMS project:measurement of mercury emissions from naturally enriched landscapes [J]. Journal of Geophysical Research, 1999a,104(17):21831-21844.
    [72]Gustin M S, Rasmussen P, Edwards G, et al. Application of a laboratory gas exchange chamber for assessment of in situ mercury emissions [J]. Geophys. Res.,1999b,104:21873-21879.
    [73]Gustin M S. Are mercury emissions from geologic sources significant? A status report [J]. The Science of the Total Environment,2003,304:153-167.
    [74]Gustin M S, Maxy R A, Rasmussen P, et al. Mechanisms influencing the volatile loss of mercury from soil. Symposium Volume of the Air and Waste Management Association on the Measurement of Toxic and Related Air Pollutants, September 1998 Cary, NC, USA:224-235.
    [75]Guzzi G, Pigatto P D. More on methyl mercury [J]. Toxicology and Applied Pharmacology, 2005,206(1):94.
    [76]Hall B, Bloom N S, Munthe J. An experimental study of two potential methylation agents of mercury in the atmosphere:CH3I and DMS [J]. Water, Air, Soil Pollution,1995,80:337-341.
    [77]Hall B D, Louis V L S. Methyl mercury and total mercury in plant litter decomposing in upland forests and flooded landscapes. Environmental Science and Technology,2004,38:5010-5021.
    [78]Han F X, Su Y, David L M, Xia Y. Interaction of mercury contaminated soils with iron oxides and potential remediation of river/runoff/storm water by an aquatic plant.2010 19th. World Congress of Soil Science, Soil Solutions for a Changing World.1-6 August 2010, Brisbane, Australia. Published on DVD.
    [79]Hanson P J, Lindberg S E, Tabberer T A, et al. Foliar exchange of mercury vapor:evidence for a compensation point [J]. Water, Air and Soil pollution,1995,80:373-382.
    [80]Hanson P J, Tabberer T A, Lindberg S E. Emissions of mercury vapor from tree bark [J]. Atmospheric Environment,1997,31(5):777-780.
    [81]Hintelmann H, Harris R, et al. The reactivity and mobility of new and old mercury deposition in a Boreal forest ecosystem during the first year of the METAALICUS study [J]. Environ. Sci. Technol.,2002,36:5034-5040.
    [82]Horvat M, Nolde N, Fajon V, et al. Total mercury and methylmercury and selenium in mercury polluted areas in Guizhou Province, China [J]. Science of Total Environment,2003, 304:231-254.
    [83]Hultberg H. Hg Pollution:Integration and Synthesis, Lewis Pub. Boca Raton, FL,1994,313.
    [84]Hultberg H, Munthe J, Iverfelft A. Effects on soils and leaching after application of dolomite to an acidified forested catchment in the Lake Gardsjon watershed, south-west Sweden[J]. Water, Air, and Soil Pollution,1995,80,415.
    [85]Iverfeldt A. Occurrence and turnover of atmospheric mercury over the Nordic countries [J].Water Air and Soil Pollution,1991,56,251-265.
    [86]Iverfeldt A, Lingdqvist O. Atmospheric oxidation of elemental mercury by ozone in the aqueous phase [J], Atmospheric Environment,1986,20(8):1567-1573.
    [87]Jensen A, Iverfeldt A. Atmospheric bulk deposition of mercury to the southern Baltic sea area [A]. In:Watras C.J., Huckabee J.W. (Eds.), Mercury Pollution:Integration and Synthesis[C]. Lewis Publishers, Ann Arbor, Michigan,1994,221-229.
    [88]Kelka C A, Rudd W M, Holoka M H. Effect of PH on mercury uptake by aquatic bacterium implications for Hg cycling [J]. Environ. Sci. Technol.,2003,37(13):284-294.
    [89]Keeler G J, Gratz L E, et al. Long-term atmospheric mercury wet deposition at Underhill, Vermont [J]. Ecotoxicology,2005,14,71.
    [90]Keeler G J, Landis M S, Norris G A, Christianson E M, Dvonch J T. Sources of mercury wet deposition in Eastern Ohio, USA [J]. Environmental Science and Technology,2006,40, 5874-5881.
    [91]Kellerhals M, Beauchamp St, et al. Temporal and spatial variability of total gaseous mercury in Canada:results from the Canadian atmospheric mercury network (CAMNet) [J]. Atmospheric Environment,2003,37,1003-1011.
    [92]Kim K H, Kim M Y. The exchange of gaseous mercury across soil-air interface in a residential area of Seoul, Korea [J]. Atmospheric Environment,1999,33,3153-3165.
    [93]Kim K H, Kim M Y. The effects of anthropogenic sources on temporal distribution characteristics of total gaseous mercury in Korea [J]. Atmospheric Environment,2000,34: 3337-3347.
    [94]Kim K H, Kim M Y. Some insights into short-term variability of total gaseous mercury in urban air [J]. Atmospheric Environment,2001,35,49-59.
    [95]Kim K H, Lindberg S E. Design and initial tests of a dynamic enclosure chamber for measurements of vapor phase mercury fluxes over soils [J]. Water, Air and Soil Pollution, 1995a,80:1059-1068.
    [96]Kim K H, Lindberg S E. Micrometeorological measurements of mercury vapor fluxes over background forest soils in easten Tennessee [J]. Atmospheric Environment,1995b, 29(2):267-282.
    [97]Kim K H, Lindberg S E, Meyers T P. Micrometeorological measurements of mercury vapor fluxes over background forest soils in eastern Tennessee [J]. Atmospheric Environment,1995, 29:267-282.
    [98]Kim S H, Han Y J, Holsen T M, et al. Characteristics of atmospheric speciated mercury concentrations [TGM, Hg(Ⅱ) and Hg(p)) in Seoul,Korea [J]. Atmospheric Environment,2009, 43(20):3267-3274.
    [99]Kock H H, Bieber E, et al. Comparison of long-term trends and seasonal variations of atmospheric mercury concentrations at the two European coastal monitoring stations Mace Head, Ireland, and Zingst, Germany [J]. Atmospheric Environment,2005,39,7549-7556.
    [100]Kvietkus K, Sakalys J. Diurnal variations in mercury concentrations in the ground layer atmosphere [A]. In:Watras C J, Huckabee J W (Eds.), Mercury Pollution:Integration and Synthesis【C]. Lewis Publishers, Boca Raton, FL, USA,1994,243-250.
    [101]Lai S, Holsen T M, Hopke P K, Liu P. Wet deposition of mercury at a New York state rural site: Concentrations, fluxes, and source areas [J]. Atmospheric Environment,2007,41,4337-4348.
    [102]Lamborg D H, Fitzgerald W F, et al. Atmospheric mercury in northern Wisconsin:sources and species [J]. Water, Air and Soil Pollution,1995,80:189-198.
    [103]Lamborg D H, Fitzgerald W F, et al. A non-steady state compartmental model of global-scale mercury biogeochemistry with interhemispheric atmospheric gradients [J]. Geochim. Cosmochim. Acta,2002,66:1105-1118.
    [104]Landis M S, Keeler G J. Atmospheric mercury deposition to Lake Michigan during the Lake Michigan mass balance study [J]. Environmental Science and Technology,2002,36: 4518-4524.
    [105]Landis M S, Keeler G J. Critical Evaluation of a Modified Automatic Wet Only Precipitation Collector for Mercury and Trace Element Determinations [J]. Environmental Science and Technology,1997,31,2610-2615.
    [106]Landis M S, Vette A F, Keeler G J. Atmospheric mercury in the Lake Michigan basin: Influence of the Chicago/Gary urban area [J]. Environmental Science & Technology,2002,36 (21):4508-4517.
    [107]Lee Y H, Iverfeldt A. Measurement of methylmercury and mercury in runoff, lake and rain waters [J]. Wat.Air Soil Poll,1991,56:259-268.
    [108]Lee D S, Dollard G J, Pepler S. Gas-phase mercury in the atmosphere of the United Kingdom[J]. Atmspheric Environment,1998,32(5):855-864.
    [109]Leonard T L, Taylor G E, Gustin M S, et al. Mercury and plants in contaminated soil:I uptake, partitioning and emission to the atmosphere [J]. Environmental Toxicol. Chem.,1998,17: 2063-2071.
    [110]Lindberg S E, Austin K. Assessing the contribution of natural sources to regional atmospheric mercury budgets [J]. The Science of the Total Environment,2000,259:61-71
    [111]Lindberg S E, Brooks S, et al. Formation of reactive gaseous mercury in the Arctic:evidence of oxidation of HgO to gas-phase Hg-15 compounds after arctic sunrise [J]. Water, Air, and Soil Pollution:Focus 1,2001,295-302
    [112]Lindberg S E, Dong W, et al. Transpiration of gaseous mercury through vegetation in a subtropical wetland in Florida [J]. Atmos.Environ.2002,36,5200-5219
    [113]Lindberg S E, Hanson P J, Meyers T P, et al. Air/surfaces exchange of mercury vapor over forests-The need for a re-assessement of continental biogenic mercury emissions [J]. Atmospheric Environment,1998,32(5):895-908.
    [114]Lindberg S E, Kim Y, Meyers T, et al. A micrometeorological gradient approach for quantifying air-surface exchange of mercury vapor:tests over contaminated soils [J]. Environmental Science and Technology,1995,29:126-135.
    [115]Lindberg S E, Meyers T P, et al. Atmospheric/surface exchange of mercury in a forest:Results of modeling and gradient approaches [J]. Geophy.Res,1992,97:2519.
    [116]Lindberg S E, Stratton W J. Atmospheric mercury speciation:concentrations and behavior of reactive gaseous mercury in ambient air [J]. Environmental Science and Technology,1998, 32(1):49-57.
    [117]Lindqvist O, Johansson K, Aastrup M, et al. Mercury in the Swedish environment [J]. Water Air and Soil Pollution,1991,55:1-261.
    [118]Liu J, Wang W, Peng A. Study on mercury species of Beijing surface soils and sediments [J]. Environmental Chemistry,1997,16(2):172-177.
    [119]Lodenius M. Mereury in terrestrial ecosystem:A review [A]. Watras C J, Huekabee J W, eds. Mercury pollution:Integration and synthesis, Chelsea, Ml:Lewis,1994,343-354.
    [120]Lodenius M, Tulisalo E, Gargari A S. Exchange of mercury between atmosphere and vegetation under contaminated conditions [J]. The Science of the Total Environment,2003, 304(1-3):169-174.
    [121]Louis V L S, Rudd J W M, et al. Wet deposition of methylmercury in northwestern Ontario compared to other geographic location [JJ.Water Air and soil Pollution,1995,80:405-414.
    [122]Louis V L S, Sharp M J, et al. Some sources and sinks of monomethyl and inorganic mercury on Ellesmere Island in the Canadian High Arctic [J]. Environmental Science & Technology, 2005,39(8),2686-2701.
    [123]Louis V L S, Rudd J W M, Kelly CA et al. Importance of the forest canopy to fluxes of methyl mercury and total mercury to boreal ecosystems [J]. Environmental Science & Technology, 2001,35(15):3089-3098.
    [124]Lovett G M, Lindberg S E. Mixed oak forest as determined by analysis of throughfall.Journal of Applied Ecology,1984,21,1013-1027.
    [125]Magarelli, Fostier A H. Influence of deforestation on the mercury air/soil exchange in the Negro River Basin, Amazon [J]. Atmospheric Environment,2005,39(39):7518-7528.
    [126]Mailman M, Stepnuk L, Cicek N, et al. Strategies to lower methyl mercury concentrations in hydroelectric reservoirs and lakes:A review [J]. Science of the Total Environment, Science of the Total Environment,2006,68(1):224-235.
    [127]Mason R, Fitzgerald W F, Morel M M. The biogeochemical cycling of elemental mercury: anthropogenic influences [J]. Geochim. Cosmochim. Acta,1994,58:3191-3198.
    [128]Mason R P, Lawson N M, Sheu G R. Annual and seasonal trends in mercury deposition in Maryland [J]. Atmospheric Environment,2000,34:1691-1701.
    [129]Mason R P, Sullivan K A. Mercury in Lake Michigan [J]. Environ. Sci. Technol,1997,31: 942-947.
    [130]Mason R P, Sheu G P. Role of the ocean in the global mercury cycle [J]. Global Biogeochemical cycles,2002,16:1093-1106.
    [131]McElroy W J, Munthe J. Kinetic Studies of Some Aqueous Reactions of Potential Importance in the Atmospheric Chemistry of Mercury, NPTC Report ESTD/L/0129/R90,1990.
    [132]Mester Z, Sturgeon R E. Detection of volatile organometal chloride species in model atmosphere above seawater and sediment [J]. Environmental Science & Technology,2002, 36:1198-1201.
    [133]Melillo J M, Aber J D, Muratore J F. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology,1982,63:621-626.
    [134]Moore C, Carpi A. Mechanisms of the emission of mercury from soil:The Role of UV radiation [J]. J. Geophys. Res.,2005,110(24):D24302.
    [135]Morel F M M, Kraepiel A M L, Amyot M. The chemical cycle and bioaccumulation of mercury[J]. Annual Review of Ecology and Systematics,1998,29:543-566.
    [136]Munthe J, Wangberg I, Iverfeldt A, et al. Distribution of atmospheric mercury species in Northern Europe:final results from the MOE project [J]. Atmospheric Environment,2003,37, 9-20.
    [137]Munthe J, Hultberg H, Iverfeldt A. Mechanisms of deposition of methylmercury and mercury to coniferous forests [J].Water Air Soil Poll.,1995a,80,363-371.
    [138]Munthe J, Hultberg H, Lee Y H, et al. Trends of mercury and methyl-mercury in deposition, run-off water and sediments in relation to experimental manipulations and acidification [J]. Water Air Soil Poll.,1995b,85,43-48.
    [139]Murray M. and Hlolmes S A. Assessment of mercury emissions inventories for the Great Lakes states [J]. Environmental Research,2004,95(3):282-297.
    [140]Nadim F, Perkins C, et al. Long-term investigation of atmospheric mercury contamination in Connecticut [J]. Chemosphere,2001,45,1033-1043.
    [141]Neal A, Hines, Patrick L B. Mercury dynamics in a small Northern Minnesota lake:water to air exchange and photoreactions of mercury [J]. Marine Chemistry,2004,90:137-149.
    [142]Nguyen H L, Leermakers M, et al. Mercury distribution and speciation in Lake Balaton, Hungary [J].Science of the Total Environment,2005,340:231-246.
    [143]Nriagu J O. A global assessment of natural sources of atmospheric trace metals. Nature,1989, 338:47-49.
    [144]Nriagu J O, Pacyna J M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals [J]. Nature,1998,333,134-139.
    [145]Obrist D, Gustin M S, Arnone J A, et al. Measurements of gaseous elemental mercury fluxes over intact tallgrass prairie monoliths during one full year Atmos. Environ.,2005(39), 957-965.
    [146]O'Driscoll N J, Poissant L, Canario J, et al. Continuous analysis of dissolved gaseous mercury and mercury volatilization in the upper St. Lawrence River; Exploring temporal trends and UV attenuation [J]. Environmental Science and Technology,2007,41:5342-5348.
    [147]Pacyna E G, Pacyna J M, Pirrone N. European emissions of atmospheric mercury from anthropogenic sources in 1995[J]. Atmospheric Environment,2001,35,2987-2996.
    [148]Pacyna E G, Pacyna J M. Global emission of mercury from anthropogenic sources in 1995[J].Water, Air and Soil Pollution,2002,137:149-165.
    [149]Pacyna J M, Ottar B. Control and Fate of the Atmospheric Trace Metals [M]. eds.1995,3-13.
    [150]Patra M. Sharma A. Mercury toxicity in plants [J]. Botanical Review,2000,66(3):379-422.
    [151]Rinklebe J, During A, Overesch M, et al. Dynamics of mercury fluxes and their controlling factors in large Hg-polluted floodplain areas [J]. Environ. Pollut.,2010,158:308-318.
    [152]Pirrone N, Costa P, et al. Mercury emission to the atmosphere from natural and anthropogenic sources in the Mediterranean region [J]. Atmospheric Environment,2001,35:2997-3006.
    [153]Pirrone N, Keeler G J, Nriagu J O. Regional differences in Worldwide Emissions of Mercury to the atmosphere [J]. Atmospheric Environment,1996,30(17):2981-2987.
    [154]Poissant L, Casimir A. Water-air and soil-air exchange rate of total gaseous mercury measured at background sites [J]. Atmospheric Environment,1998,32:883-893.
    [155]Poissant L, Polote M, et al. Mercury gas exchanges over selected bare soil and flooded sites in the bay St.Francois wetlands [J]. Atmos.Environ,2004,38:4205.
    [156]Porcella D B, Chu P, Allan M A. Inventory of North American Hg emission to the atmosphere: relationship to the global mercury cycle[A]. In Regional and Global Mercury Cycles:Sources, Fluxes and Mass Balances, ed. Baeyens W, Ebinghaus R, Vasiliev O,1996,179-190. Kluwer Dordrecht, Netherlands.
    [157]Porvari P, Verta M, Munthe J, Haapanen M. Forestry practices increase mercury and methyl mercury output from boreal forest catchments. Environ Sci Technol,2003,37:2389-2393.
    [158]Prestbo E M, Bloom N S. Mercury speciation in coal combustion flue gas:methodology, intercomparsion, Artifacts and Atmospheric Implications. The 3rd international mercury conference, Whistler B C., Canda,1994,7,10-14.
    [159]Pyle D M, Mather T A. The importance of volcanic emissions for the global atmosphere Mercury cycle [J]. Atmosphere. Environment,2003,37:5115-5124.
    [160]Quemerais B, Cossa D, Rondeau B, et al. Mercury distribution in relation to iron and manganese in the waters of the St. La, Lawrenee River. Science of Total Environment,1998, 213:193-201.
    [161]Rea A W, Lindberg S E, Keeler G J. Assessment of dry deposition and foliar leaching of mercury and selected trace elements based on washed foliar and surrogate surfaces [J]. Environ. Sci. Technol.,2000,34,2418-2425.
    [162]Rea A W, Lindberg S E, Keeler G J. Dry deposition and foliar leaching of mercury and selected trace elements in deciduous forest throughfall [J]. Atmospheric Environment,2001, 35,20:3453-3462.
    [163]Rea A W, Keeler G J, Scherbatskoy T. The deposition of mercury in throughfall and litterfall in the Lake Champlain watershed:A short-team study. Atmospheric Environment,1996,30(19): 3257-3263.
    [164]Rea A W, Lindberg S E, Scherbatskoy T, et al. Mercury Accumulation in Foliage over Time in Two Northern Mixed-Hardwood Forests. Water, Air, and Soil Pollution,2004,133:49-67.
    [165]Risch M R, Prestbo E M, et al. Measurement of atmospheric mercury species with manual-collection and analysis methods [J]. Water, Air and Soil Pollution,2006,184: 285-297.
    [166]Rogers R D, Mcfarlane J C. Impact factors of mercury volatile from soils.Joural of Enviroment Quality,1979,8:255-260.
    [167]Rosa D A, Velasco A, Rosas A, et al. Total gaseous mercury and volatile organic compounds measurements at five municipal solid waste disposal sites surrounding the Mexico City Metropolitan Area [J]. Atmospheric Environment,2006,40(12):2079-2088.
    [168]Rosa D A, Volke-Sepulveda T, SoIorzano G, et al. Survey of atmospheric total gaseous mercury in Mexieo[J].Atmospheric Environment,2004,38:4839-4846
    [169]Ross H B, Vermette S L. Precipitation [A]. Trace Elements in Natural Waters[C]. Anr Arbor, MI:CRC Press,1995,99-116.
    [170]Rudd J W M. Sources of methyl mercury to freshwater ecosystems:A review. Water Air Soil Pollut,1995,80:697-713.
    [171]Rustad L E. Element dynamics along a decay continuum in a red spruce ecosystem in Maine, USA [J]. Ecology,1994,75:867-879.
    [172]Sakata M, Marumoto K. Wet and dry deposition fluxes of mercury in Japan [J]. Atmos. Environ.2005,39,3139-3146.
    [173]Schroeder W H, Ebinghaus R, Shoeib M, et al. Atmospheric mercury measure- ments in the northern hemisphere from 56 to 82.5 N latitude [J]. Water, Air and Soil Pollution,1995,80, 1227-1236.
    [174]Schroeder W H, Munthe J. Atmospheric mercury-an overview [J]. Atmospheric Environment, 1998,32(5):809-822.
    [175]Schroeder W H, Yarwood G, Nike H. Transformation processes involving mercury species in the atmosphere-results from a literature survey [J]. Water, Air and Soil Pollution,1991, 56:653-666.
    [176]Schwesig D, Krebs O. The role of groud vegetation in the uptake of mercury and methylmercury in a forest ecosystem [J]. Plant and Soil,2003,253:445-455.
    [177]Schwesig D, Matzner E. Pools and fluxes of mercury and methylmercury in two forested catchments in Germany. Sci. Total Environment,2000,260,213-223.
    [178]Seehan K D, Fernandez I J. Litter fall mercury in two forested watersheds at Aeadia National Park Maine. USA [J]. Water Air and soil Pollution,2006,170:249-265
    [179]Seigneur C, Wrobel J, Constantinou E. A chemical kinetic mechanism for atmospheric inorganic mercury [J]. Environmental Science and Technology,1994,28,1589-1597.
    [180]Sellers P, Kelly C A, Rudd J W M, et al. Photodegradation of Methylmercury in Lakes. Nature, 1996,380:694-697.
    [181]Shia R L, Seignuer C, et al. Global simulation of atmospheric mercury concentrations and deposition fluxes [J]. J. Geophys. Res,1999,104:747-760.
    [182]Sigler J M, Lee X. Recent trends in anthropogenic mercury emission in the northeast United States [J]. Journal of Geophysical Research,2006,111(D14),316, doi:10.1029 /2005JD006814.
    [183]Skov H, Goodsite M E, et al. Fluxes of reactive gaseous mercury measured with a newly developed method using relaxed eddy accumulation [J]. Atmos. Envion.,2006,40:5452-5463.
    [184]Slemr F, Langer E. Increase in global atmospheric concentrations of mercury inferred from measurements over the Atlantic-Ocean [J]. Nature,1992,355(6359):434-437.
    [185]Slemr F., Scheel H.E. Trends in atmospheric mercury concentrations at the summit of the Wank Mountain, southern Germany [J]. Atmospheric Environment,1998,32,845-853.
    [186]Sorensen J A, Glass G E, Schmidt K W. Regional Patterns of wet mercury deposition [J]. Environmental Science and Technology,1994,28(12):2025-2032.
    [187]Stamenkovic J, Lyman S, Gustin M S. Seasonal and diel variation of atmospheric mercury concentrations in the Reno (Nevada, USA) airshed [J]. Atmospheric Environment,2007,41: 6662-6672.
    [188]Stephen D W S, Rivers S L, Jamieson D J. The role of the YAP1 and YAP2 genes in the regulation of the adaptive oxidative stress responses of Saccharomyces erevisiae. Mol Microbiol,1995,16:415-423.
    [189]Temme C, Blanchard P, Steffen A, et al. Trend, seasonal and multivariate analysis study of total gaseous mercury data from the Canadian atmospheric mercury measurement network (CAMNet) [J]. Atmos. Environ.,2007,41(26),5423-5441.
    [190]Tessier A, Campbell PG, Bisson M. Sequential extraction procedures for the specification of particulate trace metals [J]. Anal. Chem.,1979,5:844-855.
    [191]UNEP.2004. UNEP 2003 Annual Report.http://www.unep.org/annualreport/2003/
    [192]UNEP.2006. UNEP 2005 Annual Report.http://www.unep.org/annualreport/2005/
    [193]U.S. Environmental Protection Agency. Mercury Study Report to Congress,1997, EPA-452/R-97-003.
    [194]Vanarsdale A, Weiss J, Keeler G, et al. Patterns of mercury deposition and concentration in northeastern North America (1996-2002) [J]. Ecotoxicology.2005,14(1-2):37-52.
    [195]Vandal G M, Mason R P, Fitzgerald W F. Cycling of volatile mercury in temperate lakes [J]. Water, Air and Soil pollution,1991,56(6):791-803.
    [196]Vincent L, Louis S T, John W M, et al. Importance of the forest canopy to flux of methylmercury and total mercury to boreal ecosystems [J]. Environmental Science and Technology,2001,35:3089-3098.
    [197]Wallschlager D, Turner R R, London J, et al. Factors affecting the measurement of mercury emissions from soils with flux chambers [J]. J Geophys Res,1999,104(D17):21859-21871.
    [198]Wan Q, Feng X, Lu J, et al. Atmospheric mercury in Changbai Mountain area, northeastern China II. The distribution of reactive gaseous mercury and particulate mercury and mercury deposition fluxes [J].Environmental Research,2009,109(6):721-727.
    [199]Wang D, He L, Shi X, et al. Release flux of mercury from different environmental surfaces in Chongqing, China [J]. Chemosphere,2006,64(11):1845-1854.
    [200]Wang S, Feng X, Qiu G, et al. Characteristics of mercury exchange flux between soil and air in the heavily air-polluted area, eastern Guizhou, China [J]. Atmospheric Environment,2007a, 41(27):5584-5594.
    [201]Wang Z, Chen Z, Duan N, et al. Gaseous elemental mercury concentration in atmosphere at urban and remote sites in China[J] Journal of Environmental Sciences,2007b,19 (2):176-180.
    [202]Wang D, Shi X, Wei S. Accumulation and transformation of atmospheric mercury in soil [J]. The Science of the Total Environment,2003,304:209-214.
    [203]Wang D, Qing C, Guo T, et al. Effects of humic acid on transport and transformation of mercury in soil-plant systems [J]. Water, Air, and Soil Pollution.1997,95:35-43.
    [204]Wang S, Feng X, Qiu G., et al. Mercury emission to atmosphere from Lanmuchang Hg-T1 mining area, Southwestern Guizhou, China [J]. Atmospheric Environment,2005,39(39): 7459-7473.
    [205]Wangberg I, Schmolke S, Schager P, Munthe J, Ebinghaus R, Iverfeldt A. Estimantes of air-sea exchange of mercury in Baltic Sea [J]. Atmospheric Environment,2001,35(32):5477-5484.
    [206]Watras C J, Morrison K A, Hudson R J M, Frost T M, Kratz T K. Decreasing mercury in Northern Wisconsin:Temporal patterns in bulk precipitation and a precipitation-dominated lake[J]. Environmental Science and Technology,2000,34:4051-4057.
    [207]Weiner B. History of motivational research in education [J]. Journal of Educational Psychology,1990,82(4),616-622.
    [208]Xiao Z. Munthe J, Schroeder W H, Lindqvist O.Vertical fluxes of volatile mercury over forest soil and lake surfaces in Sweden [J].Tellus.1991,43(3):267-279.
    [209]Xiao Z, Sommar J, lindqvist O. et al. Atmopheric mercury deposition to grass in south Sweden[J].. Science of Total Environment,1998,213:85-294.
    [210]Xu X, Yang X, Miller D R, et al. Formulation of bio-directional atmosphere surface exchanges of elemental mercury [J]. Atmosphere Environment,1999,33:4345-4355.
    [211]Zhang H, Lindberg S E, Barnett M O, et al. Dynamic flux chamber measurement of gaseous mercury emission fluxes over soils. Part 1:simulation of gaseous mercury emissions from soils using a two-resistance exchange interface model [J]. Atmospheric Environment,2002,36: 835-846
    [212]Zhang H, Lindberg S E. Processes influencing the emission of mercury from soils:A conceptual model [J]. Journal of Geophysical Research,1999,104(17):21889-21896.
    [213]Zhang H, Lindberg S E. Sunlight and iron (Ⅲ)-induced photochemical production of dissolved gaseous mercury in fresh water [J]. Environ. Sci. Technol.,2001,35:928-935.
    [214]Zhang H, Poissant L, Xu X, et al. Explorative and innovative dynamic flux bag method development and testing for mercury air-vegetation gas exchange fluxes [J]. Atmospheric Environment,2005,39(39):7481-7493.
    [215]陈乐恬,刘俊华,佟玉芹等.北京地区大气中汞污染状况的初步调查[J].环境化学,2000,19(4):357-361.
    [216]戴树桂.环境化学[M].北京:高等教育出版社,2004,47-51.
    [217]范力.南京市不同功能区干湿沉降物污染特征研究[D].河海大学硕士学位论文,2008.
    [218]方凤满,王起超.城市地表汞释放通量时空特征分析[J].环境化学,2004,23(1):109-110.
    [219]方凤满,王起超,尹金虎.城市地表汞含量及释放通量影响因素分析[J].生态环境,2003,12(3):260-262.
    [220]冯新斌,陈业材,朱卫国,土壤中汞存在形式的研究[J].矿物学报,1996a,16(2):218-22.
    [221]冯新斌,陈业材,朱卫国.土壤挥发性汞释放通量的研究[J].环境科学,1996b,17(2):20-22.
    [222]冯新斌,Jonas S, Katarilla G,等.夏季自然水体与大气界面间气态总汞的交换通量[J].中国科学,2002,32(7):609-615.
    [223]冯新斌,付学吾,Sommar Jonas,等.地表自然过程排汞研究进展及展望[J].生态学杂志,2011,30(5):845-856.
    [224]冯新斌,汤顺林,李仲根等.生活垃圾填埋场是大气汞的重要来源[J].科学通报,2004,49(23):2475-2479.
    [225]郭艳娜,冯新斌,何天容,等.乌江流域大气降雨中不同形态汞的时空分布[J].环境科学学报.2008,28(7):1441-1446
    [226]何帆,王得祥,雷瑞德.秦岭火地塘四种主要树种凋落叶分解速率[J].生态学杂志,2011,30(3):521-526
    [227]李仲根,冯新斌,汤顺林等.贵阳市生活垃圾卫生填埋场汞的地气交换特征初步研究[J].地球与环境,2004,32(2):1-5.
    [228]李仲根,冯新斌,王少锋等.封闭垃圾填埋场通过地表向大气释放汞的测定[J].生态环境,2005a,14(3):313-315.
    [229]李仲根,冯新斌,何天容,等.王水水浴消解一冷原子荧光法测定土壤和沉积物中的总汞[J].矿物岩石地球化学通报,2005b,24(2):140-43.
    [230]李仲根,冯新斌,汤顺林等.封闭式城市生活垃圾填埋场向大气释放汞的途径[J].环境科学,2006,27(1):19-23.
    [231]林陶.汞在水早轮作系统的释放特征及其影响因素[D].西南大学,2007年
    [232]林陶,张成,石孝均,等.不同类型紫色土土/气界面汞释放通量及其影响因素[J].环境科学学报,2008,28(10):1955-1960.
    [233]林秀武.20年来第二松花江甲基汞污染危害渔民健康的研究进展[J].环境与健康杂志,1995,12(5):238-240.
    [234]刘德绍,青长乐,杨水平.近地面大气汞的垂直分布[J].西南农业大学学报,2001,23(1):39-41.
    [235]刘娜,仇广乐,冯新斌.大气汞源解析受体模型研究进展[J].生态学杂志,2010,29(4):798-804.
    [236]刘潇,张成,朱金山,等.土壤湿度和浇水对紫色土土/气界面汞释放通量的影响[J].环 境化学,2011,30(8):1509-1513.
    [237]欧阳柬,刘德绍,青长乐.山地士壤-植物系统中汞污染问题的初步调查[J].四川环境,1998,17(3):59-62.
    [238]仇广乐,冯新斌,王少峰,等.贵州汞矿矿区不同位置土壤中总汞和甲基汞污染特征的研究[J].环境科学,2006,27(3):550-555.
    [239]屈文军,张小曳,王亚强,等.云南迪庆地区大气本底碳气溶胶的理化特征[J].中国环境科学,2006,26(3),266-270.
    [240]申源源.西南典型亚热带森林生态系统土壤-大气界面汞交换通量[D].重庆:西南大学,2013.
    [241]孙艳红.重庆缙云山不同植被类型坡面土壤水分及地表径流特性[D].北京林业大学,2007.
    [242]王定勇.汞在酸沉降地区陆地生态系统中的分布与行为[D].重庆:西南农业大学,2001.
    [243]王定勇,李孝华,吴成.重庆大气汞初步调查[J].重庆环境科学,1996,18(4):58-61.
    [244]王定勇,牟树森.酸沉降地区大气汞对土壤-植物系统汞富集影响的调查研究[J].生态学报,1999,19(1):140-144.
    [245]王定勇,石孝洪,杨学春.大气汞在土壤中转化及其与土壤汞富集的相关性[J].重庆环境科学,1998,20:22-25.
    [246]王起超,沈文国,麻壮伟.中国燃煤汞排放量估算[J].中国环境科学,1999,19(4):318-321.
    [247]王平安.干湿交替环境土壤汞赋存形态及其动态变化[D].重庆:西南大学,2007.
    [248]王少锋,冯新斌,仇广乐等.贵州红枫湖地区冷暖两季土壤/大气界面间汞交换通量的对比[J].环境科学,2004a,25(1):123-127.
    [249]王少锋,冯新斌,仇广乐等.贵州滥木厂汞矿区土壤汞的释放通量及影响因素研究[J].地球化学.2004b,33(4):405-413.
    [250]王少锋,冯新斌,仇广乐,等.万山汞矿区地表与大气界面间汞交换通量研究[J].环境科学,2006,27(8):1487-1494.
    [251]王永敏.重庆主城区降水中的汞及其沉降量研究[D].重庆:西南大学,2011.
    [252]王周平,李旭光,石胜友,等.重庆缙云山针阔混交林林隙树木更替规律研究[J].植物生态学报,2001,25(4):399-404.
    [253]万奇,冯新斌,郑伟,等.长白山地区大气气态总汞含量的季节性特征研究[J].环境科学,2008,29(2):296-299.
    [254]韦武思;曾冯合子;王定勇.可溶性有机物对土壤汞向大气释放的影响[J].环境化学,2010,24(6):678-681.
    [255]杨昕,李兴生.近地面O3变化化学反应机理的数值研究[J].大气科学,1999,23(4):427-438.
    [256]杨学春,牟树森.酸雨和降尘对植物产量及汞含量的研究[J].1998,20(2):165-169.
    [257]杨永奎.重庆主城区大气汞时空分布特征及人为排放研究[D].重庆:西南大学,2008.
    [258]余建英,何旭红.数据统计分析与SPSS应用[M].北京:人民邮电出版社,2003.
    [259]张成,何磊,王定勇,等.重庆几种地表类型土/气界面汞交换通量[J].环境科学学报,2005,25(8):1085-1090.
    [260]曾冯合子.溶解性有机质对土/气界面汞释放的影响[D].重庆:西南大学,2008.
    [261]周玳,龙满金.汞在土壤中的吸附与释放的初步研究[J].环境化学,1983,4(2):30-33.
    [262]朱金山.三峡库区消落带汞的形态转化与释放特征[D].重庆:西南大学,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700