生物样品的数字全息显微相衬成像技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数字全息是传统光学全息术、计算机技术及光电探测技术相结合的产物,具有快速、实时、全视场、非接触和定量相衬成像的优势,尤其适合活体状态下的生物组织成像和测量。随着商品化的数字全息显微镜的面世,数字全息研究工作的重心开始由基础理论向发掘其潜在应用价值方面转移。目前无论是基础理论和算法的突破,还是应用领域的拓展,国内外对数字全息方法的研究工作都很活跃。
     本文主要研究了数字全息显微相衬成像方法在生物组织成像方面的应用,在相衬成像关键算法、相干噪声抑制方法、数字全息显微系统光路结构和对生物组织成像中,得到了一系列理论和实验成果,主要完成了以下几个方面的工作:
     1、研究了数字全息数值再现算法。在数字全息数值再现过程中,三种传统的数值传播算法分别是角谱算法、卷积算法和菲涅耳算法。用传统的数值传播算法,得到的再现像的像素大小、像素个数都是固定的,使其不适合应用于一些场合,如彩色数字全息、粒子场测量等,并有可能因此降低分辨率。针对该问题,我们提出了菲涅耳直接积分算法和瑞利-索末菲直接积分算法,使得再现平面的像素大小、像素数量和中心位置均可以调节,使数值再现过程更加灵活。应用所述的两种改进算法,我们实现了再现过程中人为设定再现像的像素大小、像素个数和中心位置,并在此基础上实现了分步再现后拼接。
     2、研究了相位解包裹算法。在数字全息中,相位解包裹算法的优劣,直接决定了能否得到准确的相位图。我们结合一个统一的数学模型,对常用的相位解包裹算法进行了比较研究。随后结合离轴菲涅耳数字全息实验,提出了适合数字全息的相位解包裹算法,是基于最小二乘拟合的相位解包裹算法。
     3、研究了相位畸变校正算法。在数字全息显微相衬成像过程中,总是存在相位畸变,而影响了正确物体相位信息的提取。现有的相位畸变校正方法,有的需要人工干预,有的需要精确测量系统参数。针对数字全息生物组织相衬显微成像,我们提出了一种基于改进数学模型的曲面拟合算法,可以自动去除主要相位畸变。该改进的数学模型,既包含一次项和二次项,又包含多个交叉项,可以更精确地对相位畸变规律进行拟合,并且可以用一个非迭代的算法进行计算。该计算方法大大简化了曲面拟合的计算过程,节省了再现过程中占用的计算资源。
     4、研究了一种基于多步平均的倾斜照明相干噪声抑制方法。用多角度照明的方法,理论上能够通过多步平均抑制相干噪声,得到高质量再现像,然而其照明光路往往较复杂,且在相衬成像中对照明光斑大小和均匀度要求较高。我们提出了一种改进的多角度照明的相干噪声去除方法,克服了传统方法对照明光斑的大小和均匀度的要求。随后基于该方法搭建了一套结构紧凑的光纤无透镜傅里叶变换数字全息光路,能够自动获得多幅不同照明角度的数字全息图,经过平均再现算法后实现对相干噪声的抑制。
     5、研究了一种透过高散射介质的成像方法。用可见光透过高散射或浑浊介质成像一直是一个重要的研究领域,在活体组织观测方面有潜在的应用价值。我们分析了光子穿过高散射介质的特性,提出一种基于短相干数字全息的成像方法,并利用多步散斑照明的方法抑制相干噪声。用一个低功率短相干激光二极管作为光源,搭建了光路,实验中实现了穿透3mm厚的鸡脯肉成像。
     6、基于预放大离轴菲涅耳数字全息光路,搭建了一套小型化的光纤耦合倒置式数字全息显微镜系统。结合我们对数值再现算法、相位解包裹算法和相位畸变校正算法的研究,成功实现了对培养皿中贴壁生长的生物活细胞样品的相衬成像。
     7、研究了数字全息显微成像中相位畸变的直接物理补偿方法。在数字全息显微相衬成像中,要进行频谱滤波、衍射传播、相位畸变校正和相位解包裹等一系列数据处理过程,影响了计算速度,需要尽可能较少计算负担,以利于长时间实时成像和观测。理论分析发现,通过合理的光路结构,可以在光路中直接补偿掉球面相位畸变,而不需要用专门的相位畸变校正算法。结合该理论分析,我们搭建了畸变实时去除数字全息显微系统,成功实现了对生物活细胞的长时间高精度观测。
Digital holography is the technology of the combination of the traditional opticalholography, computer technology and photoelectric detection technology withadvantages of fast, real-time, full field, non-contact and quantitative phase-contrastimaging. It is especially suitable for the imaging and measurement of biologicaltissues in vivo state. With the development of commercial digital holographicmicroscope, the research of digital holography began to move from basic theory toexploring its potential applications. At present, the research work in digitalholography is active at home and abroad both in basic theory and algorithm and theexpansion of application fields.
     In this thesis, the topic is mainly about the application of digital holographicmicroscopy phase contrast imaging method in the imaging of biological samples. Inthe fields of key algorithms, coherent noise suppression methods, optical setups andimaging of biological samples in digital holographic microscopy, a series oftheoretical analysis and experimental results are given. They are depicted one by oneas follows:
     1. The numerical reconstruction algorithms in digital holography are studied. Inthe numerical reconstruction of digital holography, there are three traditionalnumerical propagation algorithms: the angular spectrum algorithm, the convolutionalgorithm and the Fresnel algorithm. Using the traditional numerical propagationalgorithms, the pixel size, the number of pixels and the position of the reconstructedimage are fixed. So that it is not suitable for a number of occasions, such as colordigital holography, particle field measurements. To solve this problem, we proposeddirect integration Fresnel algorithm and direct integration Rayleigh-Sommerfeldalgorithm, with which the pixel size, the number of pixels, and the position of thereconstructed images are adjustable. It makes the numerical reconstruction moreflexible. Using the proposed algorithms, we adjusted the pixel size, the number ofpixels and the center position of the reconstructed experimental results. Based on this,we achieved a step-by-step reconstruction.
     2. The phase unwrapping algorithms are studied. In digital holography, thequality of the reconstructed phase map depends on the phase unwrapping algorithm.With a unified mathematical model, a comparative study on the phase unwrappingalgorithms was done. On the basis of an off-axis Fresnel digital holographicexperiment, we concluded that the phase unwrapping algorithm based on least squaresfitting is appropriate in digital holography.
     3. The phase aberration compensation algorithms are studied. In the phasecontrast imaging of digital holographic microscopy, phase aberrations always exist, which prevent to obtain the correct phase information. Some phase aberrationcompensation methods require manual intervention, while some others requireaccurate system parameters. In digital holographic biological phase-contrast imaging,we proposed a surface fitting algorithm based on an improved mathematical modelthat can remove the main phase aberrations automatically. The improvedmathematical model contains not only the first order and quadratic items, but alsosome cross ones, which can fit the phase aberration more accurately. It can beresolved by a non-iterative algorithm, which greatly simplifies the surface fittingprocess and eases the computational load.
     4. A coherent noise suppression method based on the multiple obliqueilluminations is studied. The method based on the multiple oblique illuminations cansuppress the coherent noise and obtain high-quality image. However, the systems arealways complicated. We proposed an improved coherent noise suppression methodbased on the multiple oblique illuminations, which doesn’t demand a large anduniform light spot. Based on the proposed method we built up a compactfiber-coupled lensless Fourier transform digital holographic system. Multiple digitalholograms with different illumination angles can be obtained automatically, whichleads to suppression of the coherent noise by averaging.
     5. A method for imaging through scattering media is studied. It is an importantarea of research to image through scattering or turbid media with visible light, and haspotential application values in biological imaging. Based on the analysis of thecharacteristic of photon passing though scattering media, we propose ashort-coherence digital holographic imaging method which utilize multi-step speckleillumination method to suppress the coherent noise. With a low-power shortcoherence laser diode, we achieved to image through3mm thick fresh chicken breast.
     6. Based on the off-axis Fresnel digital holography with pre-magnification, acompact fiber-coupled inverted digital holographic microscopy system is built.Combined with our study on algorithms, we obtained phase-contrast imaging of livingcells adherent growing in the culture dish.
     7. The physical compensation of phase aberrations in digital holographicmicroscopy is studied. In digital holography, it is necessary to ease computationalload as far as possible for long term real-time imaging and observation. Theoreticalanalysis shows that the spherical phase aberration could be compensated physicallywith proper optical setups. Subsequently, we built a phase aberration free digitalholographic microscope, and achieve long term observation of living cells with a highprecision.
引文
1August Ruthmann. Methods in cell research. G. Bell and Sons Ltd, London,1970.赵新生译,研究细胞的方法.
    2M. K. Kim. Applications of digital holography in biomedical microscopy. J. Opt. Soc.Korea,2010,14(2):77-89.
    3U.Schnar and W.Jüptner, Digital recording and numerical reconstruction ofholograms, Meas. Sci. Technol.,2002,13:R85-R101
    4J.W.Goodman, R.W.Lawrence. Digital image formulation from electronically detectedhologram. Appl. Phys. Lett.,1967,11(3):77~79
    5M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii. Reconstruction of a hologramwith a computer, Sov. Phys.Tech. Phys.,1972,17(2):329~332
    6U. Schnars and W. Juptner. Direct Recording of Holograms by a CCD Target andNumerical Reconstruction. Appl. Opt..1994,(33):179~181
    7W. S. Haddad, D. Cullen, J. C. Solem,et al. Fourier-transform holographic microscope.Appl. Opt.31,4973~4980(1992).
    8Gabor, A New Microscopic Principle, Nature,1948,161:777-778
    9E. Leith and Juris Upatnieks, Reconstructed Wavefronts and CommunicationTheory, J. Opt. Soc. Am.1962,52:1123–1130
    10H. Jin, H. Wan, Y. Zhang, Y. Li, P. Qiu. The influence of structural parameters of CCD onthe reconstruction image of digital holograms. Journal of Modern Optics,2008,55(18):2989~3000.
    11D. P. Kelly, B. M. Hennelly, N. Pandey, T. J. Naughton, W. T. Rhodes. Resolution limitsin practical digital holographic systems. Opt. Eng.,2009,48(9):095801
    12D. P. Kelly, B. M. Hennelly, C. McElhinney, T. J. Naughton. A practical guide to digitalholography and generalized sampling. Proc. SPIE.2008,7072:707215
    13L. Xu, X. Peng, Z. Guo, J.Miao, A. Anundi. Imaging analysis of digital holography. Opt.Express,2005,13(7):2444-2452
    14A. Macovski. Hologram information capacity. J. Opt. Soc. Am.1970,60(1):21-29
    15A. Stern, B. Javidi. Improved-resolution digital holography using the generalizedsampling theorem for locally band-limited fields. J. Opt. Soc. Am. A,2006,23(5):1227-1235
    16A. Stern, B. Javidi. Space-bandwidth conditions for efficient phase-shifting digitalholographic microscopy. J. Opt. Soc. Am. A,2008,25(3):736-741
    17P. Picart, J. Leval. General theoretical formulation of image formation in digital Fresnelholography. J. Opt. Soc. Am. A,2008,25(7):1744-1761
    18C. Fournier, L. Denis, T. Fournel. On the single point resolution of on-axis digitalholography. J. Opt. Soc. Am. A,2010,27(8):1856-1862
    19T. M. Kreis. Frequency analysis of digital holography. Opt. Eng.2002.41:771-778
    20H. Yan, A. Asundi. Resolution analysis of a digital holography system. Appl. Opt.2011,50:183-193
    21钟丽云.数字全息的基本问题分析及实现方法研究.博士学位论文,天津大学,2004.
    22范琦,赵建林,向强,徐莹,陆红强,李继锋.改善数字全息显微术分辨率的几种方法.光电子·激光.2005.16(2):226-230
    23王华英,王广俊,赵洁,谢建军,王大勇.数字全息显微系统的成像分辨率分析.光子学报,2007.34(12):1670-1675
    24吕且妮,葛宝臻,张以谟.数字全息再现像质的影响因素分析.光电子·激光.2005.16(1):83-88
    25D. Claus, D. Iliescu, P. Bryanston-Cross. Quantitative space-bandwidth product analysisin digital holography. Appl. Opt.2011.50(34): H116-H127
    26J. H. Massig. Digital off-axis holography with a synthetic aperture. Opt. Lett.,2002,27(24):2179~2181
    27Vicente Mico, Zeev Zalevsky, Pascuala García-Martínez, and Javier García.Superresolved imaging in digital holography by superposition of tilted wavefronts. Appl.Opt.,2006,45(5):822~828
    28V Mico, Z Zalevsky, J García. Synthetic aperture microscopy using off-axis illuminationand polarization coding.-Optics Communications,2007,276(2):209~217
    29C. Yuan, H. Zhai and H. Liu, Angular multiplexing in pulsed digital holography foraperture synthesis, Opt. Lett.33,2356-2358(2008)
    30A. A. Sergey, R. H. Timothy, G. Thomas, and D. S. David,―Synthetic aperture Fourierholographic optical microscopy,‖Phys. Rev. Lett.,2006,97(16),168102-168105.
    31L. Granero, Z. Zalevsky, V. Micó, Single-exposure two-dimensional superresolution indigital holography using a vertical cavity surface-emitting laser source array, Opt. Lett.,2011,36(7):1149-1151
    32C. Yuan, G. Situ, G. Pedrini, J. Ma, W. Osten. Resolution improvement in digitalholography by angular and polarization multiplexing. Appl. Opt.,2011,50(7): B6-B11
    33H. J, J. Zhao, J. Di, C. Qin. Numerically correcting the joint misplacement of thesub-holograms in spatial synthetic aperture digital Fresnel holography. Opt. Express.2009.17(21):18836-18842
    34姜宏振,赵建林,邸江磊,秦川,闫晓博,孙伟伟.合成孔径数字无透镜傅里叶变换全息图的分幅再现.光学学报,2009.29(12):3304-3309
    35A. Faridian, D. Hopp, G. Pedrini, U. Eigenthaler, M. Hirscher, W. Osten. Nanoscaleimaging using deep ultraviolet digital holographic microscopy. Opt. Express.2010.18(13):14159-14164
    36Cheng Liu, Zhigang Liu, Feng Bo, Yong Wang, et al. Super-resolution digitalholographic imaging method.Appl. Phy. Lett.,2002;81(17):3143~314
    37M. Patruzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, P. Ferraro. Super-resolutionin digital holography by a two-dimensional dynamic phase grating. Opt. Express,2008,16(21):17107-17118
    38M. Paturzo, P. Ferraro. Correct self-assembling of spatial frequencies in super-resolutionsynthetic aperture digital holography. Opt. Lett.,2009.34(23):3650-3652
    39V Mico, O. Limon, A. Gur, Z Zalevsky, J García. Transverse resolution improvementusing rotating-grating time-multiplexing approach. J. Opt. Soc. Am. A,2008,25(5):1115-1129
    40M. J. Hytch, F. Houdellier, F. Hue, E. Snoeck. Dark-field electron holography for themeasurement of geometric phase. Ultramicroscopy.2011.111:1328-1337
    41P. Ferraro, S. D. Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, Controllingimages parameters in the reconstruction process of digital holograms, IEEE J. Sel. Top.,2004,10(4):829-839(2004).
    42F. Zhang, I.Yamaguchi, and L.P.Yaroslavsky, Algorithm for reconstruction of digitalholograms with adjustable magnification, Opt. Lett.,2004,29(14),1668-1670
    43Lingfeng Yu and Myung K. Kim, Pixel resolution control in numerical reconstruction ofdigital holography, Opt.Lett.,2006,31(7),897-899
    44Dayong Wang, Jie Zhao,Fucai Zhang,Giancarlo Pedrini,and Wolfgang Osten,High-fidelity numerical realization of multiple-step Fresnel propagation for thereconstruction of digital holograms, Appl. Opt.,2008,47(19),D12-D20
    45J.Li, P. Tankam, Z.Peng and P. Picart, Digital holgraphic reconstruction of large objectsusing a convolution approach and adjustable magnification, Opt. Lett.,2009,34(5):572-574
    46L. Yu, Y. An, L. Cai. Numerical reconstruction of digital holograms with variable viewingangles. Opt. Express.2002.10(22):1250-1257
    47L.Cavallini, G. Bolognesi, R. D. Leonardo. Real-time digital holographic microscopy ofmultiple and arbitrarily oriented planes. Opt. Lett..2011.36(17):3491-3493
    48S. E. Nicola, A. Finizio, G. Pierattini, P. Ferraro, D. Alfieri. Angular spectrum methodwith correction of anamorphism for numerical reconstruction of digital holograms o tiltedplanes. Opt. Express.2005.13(24):9935-9940
    49Thomas M. Kreis and Werner P.O.Juptner, Suppression of the DC Term in DigitalHolography, Opt. Eng.,1997,36(8):2357-2360
    50国承山,王伟田,李健等.全息数字再现中零级衍射斑的消除,光学学报,1998,18:1074-476
    51E.Cuche, P.Marquet, and C.Depeursinge, Spatial filtering for zero-order and twin-imageelimination in digital off-axis holography, Appl. Opt.,2000,39(28):4070-4075
    52刘诚,李良钰,李银柱.无直透光和共轭像的数字全息.光学学报,2002,22:427-431
    53刘诚,李银柱,李良钰等.数字全息测量技术中消除零级衍射像的方法.中国激光,2001,28(11):1025-1026
    54Cheng Liu, Yinzhu Li, Xiaotian Chen,et al., Elimination of zero-order diffraction indigital holography,Opt. Eng.,2002,41(10):2435-2437
    55Yimo Zhang,Qieni Lv and Baozhen Ge, Elimination of zero-order diffraction indigitaloff-axis holography, Opt. Comm.,2004,240:261–267
    56Guliang Chen, Chingyang Lin, Mingkuei Kuo, et al., Numerical suppression ofzero-order image in digital holography, Opt. Exp.,2007,15(14):8851-8856
    57David S. Monaghan, Damien P. Kelly and Nitesh Pandey, Twin removal in digitalholography using diffuse illumination, Opt. Lett.,2009,34(23):3610-3612
    58Ichirou Yamaguchi and TongZhang, Phase-Shifting Digital Holography,Opt. Lett.,1997,22:1268-1270
    59Tong Zhang and Ichirou Yamaguchi, Three-Dimensional Microscopy with Phase-ShiftingDigital Holography, Opt. Lett.,1998,23(115):1221-1223
    60Yasuhiro Takaki, Hiroki Kawai and Hitoshi Ohzu, Hybrid holographic microscopy freeof conjugate and zero-order images, Appl. Opt.,1999,38(23):4990-4996
    61Guohai Situ, James P. Ryle, Unnikrishnan Gopinathan,et al., Generalized in-line digitalholographic technique based on intensity measurements at two different planes, Appl.Opt.,2008,47(5):711-718
    62Guliang Chen, Chingyang Lin, Hon Fai Yau, et al., Wavefront reconstruction withouttwin-image blurring by two arbitrary step digital holograms, Opt. Exp.,2007,15(18):11601-11608
    63Tatiana Latychevskaia and Hans-Werner Fink, Solution to the Twin Image Problem inHolography, Phys. Rev. Lett.,2007,98:2339011-2339014
    64F. Charriére, B. Rappaz, J. Kühn, T. Colomb, P. Marquet, and C. Depeursinge,―Influence of shot noise on phase measurement accuracy in digital holographicmicroscopy,‖Opt. Express,2007,15:8818–8831
    65Florian Charrière, T. Colomb, F. Montfort, E. Cuche, P. Marquet, C. Depeursinge.Shot-noise influence on the reconstructed phase image signal-to-noise ratio in digitalholographic microscopy. Appl. Opt..2006.45:7667-7673
    66B. Kemper, A. Hoink, D. Carl, G. Bally. Algorithm for fringe independent quantificationof noise in wrapped phase distributions obtained by digital holography and speckleinterferometry. Proc. of SPIE.2006.6341:634125
    67J. Maycock, C. P. McElhinney, J. B. McDonald, T. J. Nauhton, B. M. Hennelly, B. Javidi.Speckle reduction in digital holography using independent component analysis. Proc. ofSPIE.2006.6187:618716
    68X. Cai and H. Wang, The in fluence of hologram aperture on speckle noise in thereconstructed image of digital holography and its reduction, Opt. Commun.281,232-237(2008)
    69J. Maycock, B. M. Hennelly, J. B. McDonald, Y. Frauel, A. Castro, B. Javidi, T. J.Naughton. Reduction of speckle in digital holography by discrete Fourier filtering.2007.J. Opt. Soc. Am. A.24:1617-1622
    70D. G. Abdelsalam, D. Kim. Coherent noise suppression in digital holography based onflat fielding with apodized apertures.2011.19(19):17951-17959
    71L. Rong, W. Xiao, F. Pan, S. Liu, and R. Li, Speckle noise reduction in digital holographyby use of multiple polarization holograms, Chin. Opt. Lett.8,653(2010).
    72W. Xiao, J. Zhang, L. Rong, F. Pan, S. Liu, F. Wang and A. He, Improvement of specklenoise suppression in digital holography by rotating linear polarization state, Chin. Opt.Lett.9,060901(2011).
    73F. Pan, W. Xiao and R. Lu, Long-working-distance synthetic aperture Fresnel off-axisdigital holography, Opt. Express17,5473-5480(2009)
    74F. Pan, W. Xiao and S. Liu, F. Wang, R. Lu, R. Li. Coherent noise reduction in digitalholographic phase contrast microscopy by slightly shifting object, Opt. Express19,3862-3869(2011)
    75Y. K. Park, W. Choi, Z. Yaqoob, R. Dasari, K. Badizadegan and M. S. Feld, Speckle-fielddigital holographic microscopy, Opt. Express17,12285-12292(2009)
    76F. Monroy, O. Rincon, Y. M. Torres, J. G. Sucerquia, Quantitative assessment of lateralresolution improvement in digital holography, Opt. Commun.281,3454-3460(2008)
    77X. Kang, An effective method for reducing speckle noise in digital holography, Chin. Opt.Lett.6,100-103(2008)
    78T. Nomura, M. Okamura, E. Nitanai, T. Numata. Image quality improvement of digitalholography by superposition of reconstructed images obtained by multiple wavelengths.Appl. Opt.2008.47(19):D38-D43
    79S. T. Thurman and J. R. Fienup, Correction of anisoplanatic phase errors in digitalholography, J. Opt. Soc. Am. A25,995-999(2008)
    80Z. Zalevsky, O. Margalit, E. Vexberg, R. Pearl and J. Garcia, Suppression of phaseambiguity in digital holography by using partial coherence or specimen rotation, Appl.Opt.47, D154-D163(2008)
    81F. Dubois, L. Joannes and J. C. Legros, Improved three-dimensional imaging with adigital holography microscope with a source of partial spatial coherence, Appl. Opt.38,7085-7094(1999)
    82G. Pedrini and H. J. Tiziani, Short-coherence digital microscopy by use of a lenslessholographic imaging system, Appl. Opt.41,4489-4496(2002)
    83M. C. Potcoava, M.K.Kim. Fingerprint biometry applications of digital holography andlow-coherence interferography. Appl. Opt.,2009,48(34):H9-H15
    84B. Kemper, S. Stuerwald, C. Remmersmann, P. Langehanenberg, G. Bally.Characterisation of light emitting diodes(LEDs) for application in digital holographicmicroscopy for inspection of micro and nanostructured surfaces. Optcs and Lasers inEngineering46(2008)499-507
    85秦怡,钟金刚.基于发光二极管的弱相干光数字全息理论与实验研究.光学学报.2010.30(8):2236-2241
    86A. Shortt, T. J. Naughton, B. Javidi. Compression of digital holograms ofthree-dimensional objects using wavelets. Opt. Express.2006.14:2625-2630
    87N. Pandey, B. Hennelly. Quantization noise and its reduction in lensless Fourier digitalholography. Appl. Opt.2011.50(7): B58-B70
    88Pietro Ferraro,Giuseppe Coppola, Sergo De Nicola,et al.,Digital holographic microscopewith automatic focus tracking by detecting sample displacement in real time.Opt.Lett.,2003,28(14):1257-1259
    89Michael Liebling and Michael Unser, Autofocus for digtial Fresnel holograms by use of aFresnelet-sparsity criterion, J. Opt. Soc. Am.A,2004,21(12):2425-2430
    90Frank Dubois, Cedric Schockaert and Natacha Callens, Focus plane detection in digitalholography microscopy by amplitude analysis.Opt. Exp,2006,14(13):5895-5908
    91P. Langehanenberg, B. Kemper and G. von Bally. Autofocus Algorithms for DigitalHolographic Microscopy, SPIE OSA,2007,6633:0E1-0E9
    92P.Langehanenberg, B.Kemper and G.von Bally.Autofocus algorithms for digitalholographic phase constrast microscopy on pure phase objects for lives cell imaging,Appl. Opt.,2008,47(19):D176-D182
    93L. Xu, M. Mater, J. Ni. Focus detection criterion for refocusing in multi-wavelengthdigital holography. Opt. Express.2011.19(16):14779-14793
    94P. Memmolo, C. Distante, M. Paturzo, A. Finizio, P. Ferraro and B. Javidi,―Automaticfocusing in digital holography and its application to stretched holograms‖. Opt. Lett.36,1945-1947(2011)
    95A. E. Memmolo and F. Dubois,―Dependency and precision of the refocusing criterionbased on amplitude analysis in digital holographic microscopy‖, Opt. Express2011.
    96崔华坤,王大勇,王云新,等.无透镜傅里叶变换数字全息术中非共面误差的自动补偿算法.物理学报.2011,60(4):044201-1~8
    97E. Cuche, P. Marquet and C. Depeursinge. Simultaneous Amplitude-contrast andQuantitative Phase-contrast Microscopy by Numerical Reconstruction of Fresnel Off-axisHolograms. Appl. Opt..1999,38(34):6994~7001
    98P. Ferraro, S. D. Nicola, A. Finizio, et al. Compensation of the Inherent Wave FrontCurvature in Digital Holographic Coherent Microscopy for Quantitative Phase-contrastImaging. Appl. Opt..2003,42(11):1938~1946
    99周文静,徐强胜,于瀛洁,数字显微全息中二次项相位误差的补偿,光子学报.2009.38(8):1972-1976
    100W. J. Zhou, Y. J. Yu, A. Asundi. Study on Aberration Suppressing Methods in DigitalMicro-holography. Optics and Lasers in Engineering.2009,47:264~270
    101T. Colomb, E. Cuche, F. Charrière, et al. Automatic Procedure for AberrationCompensation in Digital Holographic Microscopy and Applications to Specimen ShapeCompensation. Appl. Opt..2006,45(5):851~863
    102L. Miccio, D. Alfieri, S. Grilli, et al. Direct Full Compensation of the Aberration inQuantitative Phase Microscopy of Thin Objects by a Single Digital Hologram. Appl.Phys. Lett..2007,(90):041104-1~3
    103J. L. Di, J. L. Zhao, W. W. Sun, et al. Phase Aberration Compensation of DigitalHolographic Microscopy based on Least Squares Surface Fitting. Opt. Commun..2009,(282):3873~3877
    104Huakun Cui, Dayong Wang, Yunxin Wang, Jie Zhao, Yizhuo Zhang. Phase aberrationcompensation by spectrum centering in digital holographic microscopy. OpticsCommunications.2011,284(18):4152~4155.
    105C.J.Mann, M.K.Kim. Quantitative phase-contrast microscopy by angular spectrum digitalholography. Proc. of SPIE6090:60900B
    106W. J. Qu, C. Q. Choo, V. R. Singh, et al. Quasi-physical Phase Compensation in DigitalHolographic Microscopy. J. Opt. Soc. Am. A.2009,26(9):2005~2011
    107W. J. Qu, C. Q. Choo, Y. J. Yu, et al. Microlens Characterization by Digital HolographicMicroscopy with Physical Spherical Phase Compensation. Appl. Opt.,2010,49(33):6448~6454
    108W. J. Qu, C. Q. Choo, L. T. Rongwei, Q. X, Z. Wang, Z. Xiao, A. Asundi. Physicalspherical phase compensation in reflection digital holographic microscopy. Opt. Las. Eng.2012,50(4):563-567
    109E. Sanchez-Ortiga, P. Ferraro, M. Martinez-Corral, G. Saavedra and A. Doblas, Digitalholographic microscopy with pure-optical spherical phase compensation, J. Opt. Soc. Am.A,2011,28:1410-1417
    110A.Khmaladze, M. K. Kim, C. M. Lo. Phase imaging of cells by simultaneousdual-wavelength reflection digital holography. Opt. Express.2008.16(15):10900-10911
    111A. Khmaladze, T. Epstein and Z. Chen, Phase unwrapping by varying the reconstructiondistance in digital holographic microscopy, Opt. Lett.35,1040-1042(2010)
    112J. Gass, A. Dakoff and M. K. Kim, Phase imaging without2π ambiguity bymultiwavelength digital holography. Opt. Lett.28,1141-1143(2003)
    113S. Liu, W. Xiao, F. Pan, F. Wang, L. Cong. Complex-amplitude-based phase unwrappingmethod for digital holographic microscopy, Optics and Lasers in Engineering,2012,50(3):322-327
    114L. Wang, J. Zhao, J. Di and H. Jiang. Fast extended focused imaging in digitalholography using a graphics processing unit. Opt. Lett.36,1620-1622(2011)
    115T.Colomb, N. Pavillon, J. Kuhn, E. Cuche, C. Depeursinge and Y. Emery,―Extendeddepth-of-focus by digital holographic microscopy‖, Opt. Lett.35,1840-1842(2010)
    116P. Ferraro, S. Grilli, G. Coppola, B. Javidi, S. D. Nicola. How to extend depth of focus in3D digital holography. Proc. of SPIE.2005.6016:60160I
    117P. Ferraro, S. Grilli, D. Alfieri, S. D. Nicola, A. Finizio, G. Pierattini, B. Javidi. Extendedfocused image in microscopy by digital holography. Opt. Express.2005.13(18):6738-6749
    118C. M. Do, B. Javidi. Multi-focus holographic3D image fusion using independentcomponent analysis. Proc. of SPIE.2007.6778:67780P
    119C. Yuan, H. Zhai, X. Wang, L. Wu. Lensless digital holography with short-coherencelight source for three-dimensional surface contouring of reflecting micro-object.
    120T. W. Su, S. O. Isikman, W. Bishara, D. Tseng, A. Erlinger, A. Ozcan. Multi-anglelensless digital holography for depth resolved imaging on a chip. Opt. Express.2010.18(9):9690-9711
    121S. J. Jeong, C. K. Hong. Illumination-angle-scanning digital interference holography foroptical section imaging. Opt. Lett..2008.33(20):2392-2394
    122L. Yu, Z. Chen. Digital holographic tomography based on spectral interferometry. Opt.Lett.2007.32(20):3005-3007
    123周文静,徐强胜,于瀛洁.基于三投影方向的层析重建分析.光子学报.2010.39(7):1257-1262
    124周文静,胡文涛,郭路,徐强胜,于瀛洁.少量投影数字全息层析重建实验研究.物理学报.2010.59(12):8499-8511
    125G. Bolognesi, S. Bianchi, R. D. Leonardo. Digital holographic tracking of microprobesfor multipoint viscosity measurements. Opt. Express.2011.19(20):19245-19254
    126K.Dev, V.R.Singh, A. Asundi. Full-field phase modulation characterization ofliquid-crystal spatial light modulator using digital holography. Appl. Opt..2011.50(11):1593-1600
    127H.H.Wahba, T. Kreis. Characterization of graded index optical fibers by digitalholographic interferometry. Appl. Opt.48(8):1573-1582
    128T. Colomb, F. Durr, E. Cuche, P. Marquet, H. G. Limberger, R.P. Salathe, C. Depeursinge.Polarization microscopy by use of digital holography: application to optical-fiberbirefringence measurements. Appl. Opt.44(21):4461-4469
    129C. Liu, M. K. Kim. Digital holographic adaptive optics for ocular imaging: proof ofprinciple.2011. Opt. Lett.36(14):2710-2712
    130Y. Li, D. Wang, G. Wang. Measurement of temperature field in the region near to theradiator by using digital holography. Proc. of Spie,2008,7382:738240
    131D. Lebrun, D. Allano, L. Mees, F. Walle, F. Corbin, B. Boucheron, D. Frechou. Sizemeasurement of bubbles in a cavitation tunnel by digital in-line holography. Appl. Opt.2011.50(34): H1-H9
    132吕且妮,数字全息技术及其在粒子场中的应用研究,天津大学博士论文,2003。
    133L. Li, X. Wang, H. Zhai. Single-shot diagnostic for the three-dimensional fielddistribution of a terahertz pulse based on pulsed digital holography. Opt. Lett.,2011,36(14):2737-2739
    134F. Wang, W. Xiao, F. Pan, S. Liu, L. Cong, L. Rong, A. He. Curvature measurement ofoptical surface using digital holography. Opt. Las. Eng.2011.49:903-906
    135J. Min, B. Yao, P. Gao, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, T. Duan, Y.Yang, T. Ye. Dual-wavelength slightly off-axis digital holographic microscopy. Appl. Opt.51(2):191-196
    136L. Ma, H. Wang, Y. Li, H, Jin. Partition calculation for zero-order and conjugate imageremoval in digital in-line holography. Opt. Express,2012,20(2):1805-1815
    137C. Guo, L. Zhang, H. Wang, J. Liao, Y. Zhu. Phase-shifting error and its elimination inphase-shifting digital holography. Opt. Lett.2002.27(19):1687-1689
    138张燕,数字全息成像及其自动聚焦的理论与实验研究,山东师范大学,硕士学位论文,2007,18-27
    139C. Liu, D. Wang, Y. Zhang, Comparison and verification of numerical reconstructionmethods in digital holography, Opt. Eng.,2009,48(10):105802
    140刘长庚,王大勇,张亦卓,赵洁,万玉红,江竹青.数字全息中基于导数的自动对焦算法.中国激光,2009,36(11):2989~2996.
    141赵洁,微结构相衬成像的数字全息方法研究,北京工业大学,博士学位论文,2011
    142王华英,数字全息显微成像的理论和实验研究,北京工业大学,博士学位论文,2008
    143张亦卓,王大勇,赵洁,万玉红,江竹青,陶世荃.数字全息中实用相位解包裹算法研究.光学学报,2009,29(12):3323~3327.(EI检索号:20100312641020)
    144王云新,王大勇,赵洁等.基于数字全息显微成像的微光学元件三维面形检测.光学学报,2011,31(4):0412003
    145罗婷,王大勇,张亦卓,王云新,赵洁,孟璞辉.指纹采集的数字全息成像方法研究.光电子激光. In press.
    146J. C. Li, Z. J. Peng, P. Tankam, et al. Design of the Spatial Filter Window for DigitalHolographic Convolution Reconstruction of Object Beam Field. Opt. Commum..2010,283:4166~4170
    147P. Marquet, B. Rappaz, P. J. Magistretti, et al. Digital Holography Microscopy: aNoninvasive Contrast Imaging Technique Allowing Quantitative Visualization of LivingCells with Subwavelength Axial Accuracy. Opt. Lett..2005,30(5):468~470
    148T. Colomb, E. Cuche, F. Charrière, et al. Automatic Procedure for AberrationCompensation in Digital Holographic Microscopy and Applications to Specimen ShapeCompensation. Appl. Opt..2006,45(5):851~863
    149B. Rappaz, P. Marquet, E. Cuche, et al. Measurement of the Integral Refractive Index andDynamic Cell Morphometry of Living Cells with Digital Holographic Microscopy. Opt.Exp..2005,13(23):9361~9373
    150D. Carl, B. Kemper, G. Wernicke, et al. Parameter-optimized Digital HolographicMicroscope for High Resolution Living-cell Analysis. Appl. Opt..2004,43(36):6536~6544
    151B. Kemper and Gert von Bally. Digital Holographic Microscopy for Live CellApplications and Technical Inspection. Appl. Opt..2008,47(4):A52~A61
    152B. Kemper, S. Kosmeier, P. Langehanenberg, et al. Integral Refractive IndexDetermination of Living Suspension Cells by Multifocus Digital Holographic PhaseContrast Microscopy. J. Biomed Opt..2007,12(5):054009-1~5
    153P. Langehanenberg, B. Kemper, D. Dirksen, et al. Autofocusing in Digital HolographicPhase Contrast Microscopy on Pure Phase Objects for Live Cell Imaging. Appl. Opt..2008,47(19):D176~D182
    154P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, et al. AutomatedThree-dimensional Tracking of Living Cells by Digital Holographic Microscopy. J.Biomed. Opt..2009,14(1):014018-1~7
    155B.Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, G. Bally. Simplified approachfor quantitative digital holographic phase contrast imaging of living cells. J. Biomed.Opt..2011,16(2):026014
    156B. Kemper, A. Bauwens, A. Vollmer,S. Ketelhut, P. Langehanenberg, J. Muething, H.Karch, G. Bally. Label-free quantitative cell division monitoring of endothelial cells bydigital holographic microscopy. J. Biomed. Opt..2010,15(3):036009
    157C. J. Mann, L. F. Yu, C. M. Lo et al. High-resolution Quantitative Phase-contrastMicroscopy by Digital Holography. Opt. Exp..2005,13(22):8693~8698
    158L. Yu, S. Mohanty, J. zhang, et al. Digital Holographic Microscopy for Quantitative CellDynamic Evaluation during Laser Microsurgery.2009,17(14):12031~12038
    159X.Yu, M. Cross, C. Liu, D. C. Clark, D. T. Haynie, M. K. Kim. Measurement of thetraction force of biological cells by digital holography. Opt. Express.2012.3(1):153-159
    160P. Ferraro, D. Alferi, S. D. Nicola, et al. Quantitative Phase-contrast Microscopy by aLateral Shear Approach to Digital Holographic Image Reconstruction. Opt. Lett..2006,31(10):1405~1407
    161L. Miccio, A. Finizio, S. D. Nicola, et al. Lipid Particle Detection by means DigitalHolography and Lateral Shear Interferometry. Proc. of SPIE-OSA Biomedical Optics.2007,6631:66310G-1~7
    162G. Coppola, G. D. Caprio, M. Cioffre, et al. Digital Self-referencing Quantitative PhaseMicroscopy by Wavefront Folding in Holographic Image Reconstruction. Opt. Lett..2010,35(20):3390~3392
    163F. Merola, L. Miccio, M. Patruzo, A. Finizio, S. Grilli, P. Ferraro. Driving and analysis ofmicro-objects by digital holographic microscope in microfluidics. Opt. Lett.,2011,36(16):3079-3081
    164I. Moon, M. Daneshpanah, B. Javidi, A. Stern. Automated three-dimensionalidentification and tracking of Micro/Nanobiological organisms by computationalholographic microscopy. Proc. of IEEE,2009,97(6):990-1010.
    165T. Nomura, B. Javidi. Object recognition by use of polarimetric phase-shifting digitalholography. Opt. Lett.,2007,32(15):2146-2148
    166R. Liu, D. K. Dey, D. Boss, P. Marquet, B. Javidi. Recognition and classification of redblood cells using digital holographic microscopy and data clustering with discriminantanalysis. J. Opt. Soc. Am. A,2011.28(6):1204-1210
    167董可平,钱晓凡,张磊,张永安.数字全息显微术对细胞的研究.光子学报.2007.36(11):2013-2016
    168S. Liu, F. Pan, Z. Wang, et al. Long-term Quantitative Phase-contrast Imaging of LivingCells by Digital Holographic Microscopy. Laser Physics.2011,21(4):740~745
    169赵洁,王大勇,李艳,王云新,张亦卓.数字全息显微术应用于生物样品相衬成像的实验研究.中国激光,2010,37(11):2906—2911
    170Yunxin Wang, Dayong Wang, Jie Zhao, et al. Non-invasive monitoring of living cellculture by lensless digital holography imaging. Chinese Optics Letters,9(3):030901
    171Zhang Yizhuo, Wang Dayong, Wang Yunxin, Tao Shiquan. Automatic Compensation ofTotal Phase Aberrations in Digital Holographic Biological Imaging. Chinese PhysicsLetters,2011,28(11):114209
    172光学信息技术原理及应用(第2版),陈家璧、苏显渝主编,高等教育出版社,2009年。
    173G. C. Sherman, Application of the convolution theorem to Rayleigh's integral formula, J.Opt.Soc.Am.,1967,57:546-547
    174F. Jia, Study on the principle and applications of digital holography, Northwest University,China, Master’s dissertation,2008, Chap.3.
    175刘长庚,数字全息成像中数值再现与自动对焦的研究,北京工业大学,硕士学位论文,2010
    176P. Chavel, Optical noise and temporal coherence. J. Opt. Soc. Am.,1980.70(8):935-943
    177光学中的散斑现象:理论与应用. Joseph W. Goodman.曹其智,陈家璧译.科学出版社.
    178L. Wang, P. P. Ho, C. Liu, G. Zhang and R. R. Alfano,―Ballistic2-D imaging throughscattering walls using an ultrafast optical Kerr gate‖, Science253,769-771(1991).
    179E. N. Leith, C. Chen, H. Chen, Y. Chen, D. Dilworth, J. Lopez, J. Rudd, P. C. Sun, J.Valdmanis and G. Vossler,―Imaging through scattering media with holography‖, J. Opt.Soc. Am. A9,1148-1153(1992)
    180E. N. Leith, C. Chen, H. Chen, Y. Chen, J. Lopez, O. C. Sun, and D. Dilworth, Imagingthrough scattering media using spatial incoherence techniques. Opt. Lett.,16,1820-1822(1991)
    181M. Tziraki, T. Jones, P. M. W. French, K. M. Kwolek and D. D. Nolte, Photorefractiveholography for imaging through turbid media using low coherence light. Appl. Phys. B70,151-154(2000)
    182M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte and M. R. Melloch,―Short-coherencephotorefractive holography in multiple-quantum-well devices using light-emittingdiodes‖, Appl. Phy. Lett.75,1363-1365(1999)
    183G. Indebetouw and P. Klysubun, Imaging through scattering media with depth resolutionby use of low-coherence gating in spatiotemporal digital holography. Opt. Lett.,25,212-214(2000)
    184P. Dean, M. R. Dickinson and D. P. West,―Full-field coherence-gated holographicimaging through scattering media using a photorefractive polymer composite device‖,Appl. Opt. Lett.85,363-365(2004)
    185K. Jeong, J. J. Turek, M. R. Melloch and D. D. Nolte, Multiple-scattering speckle inholographic optical coherence imging. Appl. Phys. B95,617-625(2009)
    186Z. Yaqoob, D. Psaltis, M. S. Feld and C. Yang,―Optical Phase conjugation for turbiditysuppression in biological samples‖, Nature Photonics2,110-115(2008)
    187M. Salvador, J. Prauzner, S. Koeber, K. Meerholz, K. Jeong and D. D. Nolte,―Depth-resolved holographic optical coherence imaging using a high-sensitivityphotorefractive polymer device‖, Appl. Phys. Lett.93,231114(2008)
    188J. G. Fujimoto, Optical coherence tomography for ultrahigh resolution in vivo imaging.Nat. Biotechnol.21,1361-1397(2003)
    189L. Vabre, A. Dubois, and A. C. Boccara, Thermal-light full-field optical coherencetomography. Opt. Lett.,27,530-532(2002)
    190E. N. Leith, B. G. Hoover, S. M. Grannell, K. D. Mills, H. S. Chen, and D. S. Dilworth,―Realization of time gating by use of spatial filtering,‖Appl. Opt.38,1370-1376(1999)
    191Q. Z. Wang, X. Liang, L. Wang, P. P. Ho and R. R. Alfano,―Fourier spatial filter acts as atemporal gate for light propagation through a turbid medium,‖Opt. Lett.,20,1498-1500(1995)
    192D. C. Ghiglia and M. D. Pritt, Two-dimensional phase unwrapping: theory, algorithms,and software[M]. Published by John Wiley and Sons,Inc. New York1998.
    193L. Aiello, D. Riccio, P. Ferraro et al. Green’s formulation for robust phase unwrapping indigital holography [J]. Optics and Lasers in Engineering,2007,45(2007):750-755.
    194D. C. Ghiglia, L. A. Romero,Minimum Lp-norm Two-dimensional PhaseUnwrapping[J]Opt. Soc. Am.,1996,13(10):1999-2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700