卟啉酞菁类化合物的设计合成与自组装纳米结构及有机半导体性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机半导体材料在低成本、柔性、大面积、低能耗和微/纳米级的电子器件中存在巨大的潜在应用价值,近年来已经引起科研工作者们广泛的研究兴趣。卟啉、酞菁及其衍生物由于其独一无二的电学、光学、磁学特性和其它的与分子内部大环之间的π-π相互作用有关的物理性质,使其成为具有很好的应用前景的有机半导体材料,引起了人们广泛的关注。本论文的研究工作主要集中:结构新颖的分子的设计、合成以及其物理化学性质的研究,化合物自组装聚集体的研究及其在功能材料方面的应用的探索等。
     1、不对称八取代酞菁自组装纳米结构及其有机半导体性质的研究
     自组装是分子在基于非共价键的相互作用下自发形成有序结构的一种技术。自组装的过程是一种整体的复杂的协同作用,除了受配体自身的性质影响外,还受各种外界的物理和化学因素的影响。不同的纳米结构可以应用于不同的领域,例如:纳米空心结构可以应用于药物传输,纳米带可以作为有机半导体。近年来,有机功能分子的超分子聚集体和纳米尺度组装的研究成为了广大科研工作者研究的热点,在纳米科学与技术中获得广泛的应用。我们采取相转移的方法在甲醇中将不对称取代的自由酞菁2,3,9,10,16,17,23-heptakis(butyloxy)-24-mono(dimethylaminoethyloxy)phthalocyanine H2{Pc(OC4H9)7[OC2H4N(CH3)2]}(1)和锌酞菁Zn{Pc(OC4H9)7[OC2H4N(CH3)2]}(2)自组装成有机纳米聚集体。并且利用扫描电镜(SEM)、X-射线衍射(XRD)、红外(FT-IR)、紫外(UV)等手段表征了化合物1和2以及它们相应的聚集体的性质。由于酞菁分子的一条侧链是二甲基氨基乙氧基取代基,侧链上的氮原子会与酞菁分子1中心的氢原子或酞菁分子2中心的锌原子作用,在分子间的氢键/Zn-N配位键与相邻酞菁分子间的π-π相互作用的协同作用下,化合物1自组装为几种不同形貌聚集体混杂的纳米结构,包括左旋和右旋的螺旋带和空心的纳米管,而化合物2则自组装为多根纳米线组成的纳米束。电子吸收光谱表明化合物1和2的纳米结构都是H聚集,表明在酞菁分子中π-π相互作用起了主导作用。红外和X-射线衍射结果表明在氢键或配位键的作用下,分子形成了二聚体,这个二聚体在氢键或配位键以及π-π相互作用的协同作用下进一步构筑成目标聚集体。值得注意的是,化合物1从螺旋的带到纳米管的形貌转移被明确的观测到了。另外,由于有效的被氢键/金属配位键增强了的一维π-π堆积作用,化合物1和2的纳米结构具有优秀的有机半导体性质,电导率在2.04×10-5到1.28×10-4 S m-1范围内,碘掺杂后,可以达到2.41×10-2-2.74×10-2S m-1
     2、卟啉分子自组装纳米管及其有机半导体性质的研究
     在二氧化硅或石英基底上沉积的自由卟啉meso-5,10,15,20-tetra-n-decylporphyrin H2T(C10H21)4P的薄膜,在溶剂气氛中可以自组装成排列有序的聚集体。在正己烷和氯仿气氛中形成的聚集体通过扫描电镜(SEM)、X-射线衍射(XRD)、红外(FT-IR)、紫外(UV)等手段进行了表征。在分子间的π-π相互作用和范德华力以及溶剂-溶质相互作用的协同作用下,卟啉分子在正己烷气氛中形成了微米级的叶片状聚集体,在氯仿气氛中则形成了树枝状的微米管结构。电子吸收光谱数据表明在叶片和管中分子都是J聚集。然而,两种组装体的Soret带和Q带位移的不同表明溶剂分子-卟啉分子之间作用不同,这平衡了分子间的相互作用,尤其是侧链的疏水作用。红外和X-射线衍射结果表明,管的内部分子排列比叶片的更有序,进一步证明了调节分子间相互作用和分子排列模式的溶剂效应。我们首次报道了用自组装的方法将卟啉分子制备成有序的微米级的树枝状的管,为合成复杂的纳米管提供了一个新颖有效的方法。另外,微米级的叶片和管都具有优秀的有机半导体性质。
     3、两亲性三层卟啉酞菁化合物的设计合成及有机场效应晶体管性质研究
     卟啉酞菁作为一种共轭大环体系非常稳定,其衍生物与其它有机半导体材料相比,具有良好的化学稳定性和热稳定性。三明治型卟啉酞菁稀土配合物具有特殊的结构,分子内大环之间存在着强烈的π-π相互作用,与相应的单层卟啉或酞菁相比,共轭程度有所增加。同时,由于其在有机溶剂中具有良好的溶解性以及成膜性,这类分子材料作为本征的半导体有望在有机场效应晶体管(OFET)领域起到更重要的作用。我们采取一步法设计合成了以15冠5取代的酞菁为亲水端,烷基链和苯烷氧链取代的卟啉为疏水端,具有两亲性的三层三明治型卟啉酞菁配合物Eu2[Pc(15C5)4]2[T(C10H21)4P](1)和Eu2[Pc(15C5)4]2[TPOPP] (2)。用一系列的谱学和电化学方法对这两个新颖的三明治型三层化合物进行了表征。通过Langmuir-Blodgett (LB)膜技术制备了其有序薄膜,然后将薄膜制成有机场效应晶体管(OFET)器件。这些器件显示了优异的OFET性能,迁移率高达0.03-0.78 cm2 V-1s-1。而且,器件的开启电压很很低,在-1.19到-4.34 V范围内。其中化合物1的迁移率高达0.78 cm2 V-1 s-1,是目前已知的LB膜器件中最高的,此结果与这个化合物较窄的能级(1.04 eV)有关。
     4、卟啉单晶有机场效应晶体管性质的研究
     将甲醇扩散到自由卟啉5,10,15,20-tetrakis (4-pentyloxyphenyl)porphyrin H2TPOPP的氯仿溶液中,可以得到长和宽都可达1.5毫米的单晶,可以用来制备单晶有机场效应晶体管。测试结果表明,器件的迁移率可达0.0018 cm2 V-1 s-1,开关比为104,是非常优异的半导体材料。在单晶中,自由卟啉分子之间通过氧原子和吡咯上的β位的氢原子之间的C-H...O相互作用以及相邻卟啉meso位上的酚氧基团之间的p(O)-π(phenyl)相互作用使得分子沿b轴以头对尾(head-to-tail)的排列方式,形成一个二维的平面超分子结构。这个结果表明分子间存在有效的相互作用,密度泛函理论(DFT)模拟表明苯氧基团参与了卟啉环的HOMO,导致在平行于卟啉环的方向可以测得优异的有机场效应晶体管性质。密度泛函理论计算得到的迁移率结果与实验值基本吻合。本章的研究工作有助于理解分子结构、晶体堆积和有机半导体材料的场效应晶体管性能等方面的关系,为四芳基取代卟啉化合物在有机场效应晶体管方面的应用提供了基础。
Organic semiconductors have attracted significant research interest for several decades due to these materials can potentially be fabricated very low cost, flexible and large-area organic electronic devices. Recently, owing to the unique electrical, optical and magnetic properties, associated with the intriguing intramolecularπ-πinteractions, porphyrin, phthalocyanine and their derivatives have been the focus of the most intensively studied small molecule organic semiconductor. Our research work is focused on design and synthesis of novel molecules, physical and chemisty properties, the Self-assembly of the materials, the applications of electronics functionality.
     1. Helical nano-structures self-assembled from dimethylaminoethyloxy-containing unsymmetrical octakis-substituted phthalocyanine derivatives
     The self-assembling properties of metal free unsymmetrical 2,3,9,10,16,17,23-heptakis(butyloxy)-24-mono(dimethylaminoethyloxy)phthalocyanine H2{Pc(OC4H9)7[OC2H4N(CH3)2]} (1) and its zinc complex counterpart Zn{Pc(OC4H9)7[OC2H4N(CH3)2]} (2) in MeOH have been comparatively investigated by scanning electronic microscopy (SEM), X-ray diffraction (XRD) technique, and IR and UV-vis spectroscopy. Cooperation of the intermolecular hydrogen bonding/Zn-N coordination bonding withπ-πinteraction between neighboring phthalocyanine molecules due to the presence of one peripheral dimethylaminoethyloxy side chain for 1 and 2 results in nanostructures with different morphology including left- and right-handed helical ribbons as well as hollow nanotubes for 1 and nanowire bundles for 2. Electronic absorption spectroscopic results reveal the H-aggregate nature in all the nanostructures formed from both compounds 1 and 2, indicating the dominantπ-πinter-molecular interaction between phthalocyanine molecules. The IR and X-ray diffraction (XRD) results reveal a dimeric supramolecular structure formed through the intermolecular hydrogen bonding or Zn-N coordination bonding interaction between two molecules, which as the building block further packs into the target nanostructures depending onπ-πinteraction with the help of hydrogen bonding/Zn-N coordination bonding interaction between the dimeric supramolecular building blocks for 1 and 2. In particular, the morphological evolution of the nanostructures from helical ribbons to nanotubes has been clearly revealed during the self-assembly process of unsymmetrical phthalocyanine compound 1. In addition, the nanostructures self-assembled from both 1 and 2 were revealed to show good semiconducting properties with the conductivity in the range from 2.04 x 10-5 to 1.28 x 10-4 S m-1 in air due to the ordered one-dimensionalπ-πstacking enhanced by hydrogen bonding/metal-ligand coordination bonding interaction, which increases to 2.41×10-2-2.74×10-2 S m-1 after chemical doping with iodine.
     2. Morphology Controlled Surface-assisted Self-assembled Micro-tube Junctions and Dendrites of Metal Free Porphyrin-Based Semiconductor
     Solution-vapor annealing of drop-casting thin films of meso-5,10,15,20-tetra-n-decylporphyrin H2T(C10H21)4P deposited on SiO2 substrate and quartz lead to formation of well-defined self-assemblies. Their self-assembling properties in n-hexane vapor and chloroform vapor were comparatively investigated by scanning electronic microscopy (SEM), X-ray diffraction (XRD) technique, and IR and UV-vis spectroscopy. Inter-molecularπ-πinteraction in cooperation with the van der Waals interaction of metal free porphyrin and solvent-solute interaction lead to the formation of micro-leaves and micro-tube dendrites in n-hexane vapor and chloroform vapor, respectively. Electronic absorption spectroscopic data on the self-assembled microstructures reveal the J-aggregate nature in both the micro-leaves and micro-tube dendrites. However, the difference in the shift of the Soret and Q bands for the two kinds of aggregates relative to corresponding solution absorption bands indicates the dependence of the solvent-porphyrin molecular interaction during the annealing self-assembly process, which counterbalances the intermolecular interactions particularly the hydrophobic interaction between side chains. IR and XRD results clearly reveal the higher molecular ordering nature of micro-tube dendrites than micro-leaves, further confirming the effect of the solvent on tuning the inter-molecular interaction and in turn the molecular packing mode in aggregates of porphryin compound. The present result appears to represent the first example of orderly micrometer-sized tube junctions and dendrites of porphyrin prepared through a self-assembly process, providing an effective and new method towards the synthesis of complicated nano-tubular structures. In addition, micrometer-sized leaves and tube dendrites were revealed to show good semiconductor feature.
     3. Synthesis, Characterization, and OFET Properties of Amphiphilic Mixed (Phthalocyaninato)(Porphyrinato) Europium(Ⅲ) Complexes
     Amphiphilic mixed (phthalocyaninato)(porphyrinato) europium(III) triple-decker complexes Eu2[Pc(15C5)4]2[T(C10H21)4P] (1) and Eu2[Pc(15C5)4]2[TPOPP] (2) [H2Pc(15C5)4=2,3,9,10,16,17,23,24-tetrakis(15-crown-5)phthalocyanine; H2T(C10H21)4P=/meso-5,10,15,20-tetra-n-decylporphyrin, H2TPOPP= mes0-5,10,15,20-tetrakis(4-pentyloxyphenyl)porphyrin] were designed and synthesized by the raise-by-one-story method. These novel sandwich triple-decker complexes have been characterized by a wide range of spectroscopic methods and electrochemically studied. Highly ordered films were fabricated by the Langmuir-Blodgett technique into organic field effect transistors (OFETs). The devices display good OFET performance with the carrier mobility in the range of 0.03-0.78 cm2 V-1 s-1. As expected, the devices show a low threshold voltage range from-1.19 to-4.34 V. The mobility of compound 1 reaches 0.78 cm2 V-1 s-1, which amounts the highest one achieved so far for LB film-based OFETs due to the narrow energy gap (1.04 eV) of this compound.
     4. Organic Field Effect Transistors Based on 5,10,15,20-Tetrakis (4-pentyloxyphenyl)porphyrin Single Crystal
     Diffusion of methanol into the chloroform solution of metal free 5,10,15,20-tetrakis (4-pentyloxyphenyl)porphyrin H2TPOPP yields large single crystals with length as long as 1.5 mm, which allow the fabrication of single crystal-based organic field effect transistors (OFET). These single crystal-based devices were revealed to exhibit relatively good OFET performance with the carrier mobility for hole of 0.0018 cm2 V-1 s-1 and current modulation of 104. In addition to confirming the tetrappyrole nature, single crystal X-ray diffraction analysis also reveals the planar two-dimensional supramolecular structures formed via porphyrin molecules in the head-to-tail manner through C-H…O interaction between oxygen atom and pyrrole hydrogen atom as well as p(O)-π(phenyl) interaction between the meso-attached phenyloxy groups of neighboring porphyrin molecules in the single crystal. This results in effective intermolecular interaction due to the significant participation of phenyloxy groups to the HOMO of the central porphyrin core as revealed by density functional theory (DFT) analysis and in turn is responsible for the relatively good OFET performance in terms of carrier mobility for hole in the direction parallel to the aromatic porphyrin ring. Density functional theory (DFT) calculation also reproduces the experimentally revealed carrier mobility for hole in the single crystal of H2TPOPP. The present work, representing our continuous efforts in understanding the relationship between molecular structure, crystal packing, and OFET performance of tetrapyrrole organic semiconductors, will be helpful for attracting further research interest over the semiconducting properties of tetra(aryl)porphyrin compounds for OFET applications.
引文
[1]Ficsher, H. Die Chemie des pyrrols. [M] Vol 2, part 1, Akademic Verlagsegesllschft, Liepzig,1937,158.
    [2]Zelaski, J. Untersuchungen uber das Mesoporphyrin. [J] Z. Physiol. Chem.1902, 37,54-74.
    [3]Wong, C.-P.; Venteicher, R. F.; HorrocksJr., W. D. Lanthanide Porphyrin Complexes. Potential New Class of Nuclear Magnetic Resonance Dipolar Probe. [J] J. Am. Chem. Soc.1974,96,7149-7150.
    [4]Wong, C.-P.; HorrocksJr, W. D. New Metalloporphyrins. Thorium and Yttrium Complexes of Tetraphenylporphin. [J] Tetrahydron Lett.1975,31,2637-2640.
    [5](a) Uyeda, N.; Kobayashi, T.; Suito, E.; Harada, Y.; Watanabe. M. Molecular image resolution in electron microscopy. [J] J. Appl. Phys.1972,43,5181. (b) Kobayashi, T.; Isoda. S. Lattice Images and Molecular Images of Organic Materials. [J] J. Mater. Chem.1993,3,1.
    [6]Eley, D. D. Phthalocyanines as semiconductors. [J] Nature 1948,162,819.
    [7](a) Schramm, C. J.; Stojakovic, D. R.; Hoffman, B. M.; Marks, T. J. New low-dimensional molecular metals:single-crystal electrical conductivity of nickel phthalocyanine iodide. [J] Science 1978,200,47. (b) Marks, T. J. Electrically conductive metallomacrocyclic assemblies. [J] Science 1985,227, 881.
    [8](a) Bott, B.; Jones, T. A. A highly sensitive NO2 sensor based on electrical conductivity changes in phthalocyanine films. [J] Sensors&Actuators 1984,5,43. (b) Wright, J. D. Gas adsorption on phthalocyanines and its effects on electrical properties. [J] Prog. Surf. Sci.1989,31,1.
    [9]Vartanyan, A. T. Poluprovodnikovye Svoistva Organicheskikh Krasitel. [J] Zh. Fiz Khim.948,22,769-774.
    [10]Law, K.-Y. Organic photoconductive materials:recent trends and developments. [J] Chem. Rev.1993,93,449-486.
    [11]Tang, C. W. Two-layer organic photovoltaic cell. [J] Appl. Phys. Lett.1986,48, 183-185.
    [12]Nazeeruddin, M. K. Efficient near IR sensitization of nanocrystalline TiO2 films by ruthenium phthalocyanines. [J] Chem. Commun.1998,719-720.
    [13]Wohrle, D. Microlasers based on organic dyes in nanoporous crystals. [J] Molecular Crystals&Liquid Crystals 1993,230,221.
    [14]Bennett W. E.; Broberg D. E.; Baenziger N. C. Crystal structure of stannic phthalocyanine, an eight-coordinated tin complex. [J] Inorg. Chem.1973,12, 930-936.
    [15]Kirin, I. S.; Moskalev, P. N.; Makashev, Yu. A. Formation of phthalocyanines of rare-earth elements. [J] Russ. J. Inorg. Chem.1965,10,1065.
    [16]Cian, A. De.; Moussavi, M.; Fischer, J. Synthesis, structure, and spectroscopic and magnetic properties of lutetium(III) phthalocyanine derivatives. [J] Inorg. Chem.1985,24,3162-3167.
    [17](a) Lux, F.; Dempf, D.; Graw, D. Diphthalocyaninato-thorium(IV) and-uranium (IV). [J] Angew. Chem. Int. Ed. Eng. 1968,7,819-820. (b) Lux, F.; Brwon, D.; Dempf, D. Synthesis of 1-Adamantanecarbaldehydes. [J] Angew. Chem. Int. Ed. Eng.1969,7,894.
    [18]Silver, J.; Lukes, P. J.; Hey, P. K. The electrochromic behaviour of zirconium diphthalocyanine and molybdenum phthalocyanine oxide. [J] Polyhedron 1989,8, 1631.
    [19]Janczak, J.; Kubiak, R.; Jezierski, A. Synthesis, Crystal Structure and Magnetic Properties of Indium(III) Diphthalocyanine. [J] Inorg. Chem.1995,34,3505.
    [20]Poon, K. W.; Liu, W.; Chan, P. K. Synthesis, Crystal Structure and Magnetic Properties of Indium(III) Diphthalocyanine Tetrapyrrole Derivatives Substituted with Ferrocenylethynyl Moieties. Synthesis and Electrochemical Studies. [J] J. Org.Chem.2001,66,1553.
    [21](a) Girolami, G. S.; Milam, S. N.; Suslick, K. S. Synthesis and characterization of actinide mono and bis porphyrin complexes. [J] Inorg. Chem.1987,26,343. (b) Girolami, G. S.; Milam, S. N.; Suslick, K. S. Actinide bis(porphyrinate).pi.-radical cations and dications, including the x-ray crystal structure of [(TPP)2Th][SbC16]. [J] J. Am. Chem. Soc.1988,110,2011-2012.
    [22]Girolami, G S.; Lee, W. S.; Kim, H. J.; Cho, S. H.; Girolami, G. S.; Gorlin, P. A.; Suslick, K. S. Synthesis and structure of transition-metal bis(porphyrinato) complexes. Characterization of Zr(TPP)2 and Zr(OEP)2. [J] Inorg. Chem.1991,30, 2652-2656.
    [23]Jiang, J. Z.; Machida, K.; Adachi, G. Synthesis and characterization of water-soluble rare earth porphyrins Ce(tpyp)2 and Ce(tmpyp)2. [J] J. of Alloys, and Compounds.1993,192,296-299.
    [24](a) Duchowski, J. K.; Bocian, D. F. Spectroscopic characterization of lanthanide octaethylporphyrin sandwich complexes. Effects of strong.pi..pi. interaction. [J] J. Am. Chem. Soc.1990,112,3312-3318. (b) Donohoe, R. J.; Duchowski, J. K.; Bocian, D. F. Contrasting one-and two-cation binding behavior in syn-and anti-anthraquinone bibracchial podand (BiP) mono-and dianions assessed by cyclic voltammetry and electron paramagnetic resonance spectroscopy. [J]J. Am. Chem. Soc.1988,110,119-6124. (c) Duchowski, J. K.; Bocian, D. F. Spectroscopic characterization of triple-decker lanthanide porphyrin sandwich complexes. Effects of strong.pi..pi. interactions in extended assemblies. [J] J. Am. Chem. Soc.1990,112,8807-8811; (d) Duchowski, J. K.; Bocian, D. F. Effects of.pi..pi. interaction on the electronic properties of asymmetrical lanthanide porphyrin sandwich complexes. [J] Inorg. Chem.1990,29,4158-4160. (e) Perng, J.-H.; Duchowski, J. K.; Bocian, D. F. Effects of steric and electronic interactions on.pi..pi. overlap in lanthanide porphyrin sandwich complexes. [J] J. Phys. Chem. 1990,94,6684-6691. (f) Perng, J.-H.; Duchowski, J. K.; Bocian, D. F. Absorption and resonance Raman spectra of bis(porphyrin)europium(1+) complexes: oxidation-induced enhancement of porphyrin-porphyrin.pi..pi. interaction. [J] J. Phys. Chem.1991,95,1319-1323.
    [25](a) Yan, X.; Holten, D. Photophysics of a cerium(IV)-porphyrin sandwich complex: picosecond deactivation via neutral exciton or charge-transfer excited states. [J] J. Phys. Chem.1988,92,409-414. (b) Bilsel, O.; Rodriguez, J.; Holten, D. Picosecond relaxation of strongly coupled porphyrin dimmers. [J] J. Phys. Chem. 1990,94,3508-3512.
    [26]Chabach, D.; De Cian, A.; Fischer, J.; Weiss, R. Mixed-Metal Triple-Decker Sandwich Complexes with the Porphyrin/Phthalocyanine/Porphyrin Ligand System. [J] Angew. Chem. Int. Ed. Engl.1996,35,898-899.
    [27]Jiang, J.; Liu, R. C. W.; Mak, T. C. W.; Chan, T. D. W.; Ng, D. K. P. Synthesis, spectroscopic and electrochemical properties of substituted bis(phthalocyaninato)lanthanide(Ⅲ) complexes. [J] Polyhedron 1997,16,515-520.
    [28](a) Lehn, J. M. Supramolecular Chemistry-Concepts and Perspectives. [M] Weinheim:VCH Publishers,1995. (b) Vogtle F著.张希,林志宏,高倩译,超分子化学.[M]长春:吉林大学出版社,1995.(c) Ringsdorf, H.; Schlarb, B.; Venzmer J. Molecular Architecture and Function in Polymeric Oriented Systems: Models for the Study of Organization, Surface Recognition, and Dynamics in Biomembranes. [J] Angew. Chem. Int. Ed.1998,27,113-158. (d) Zhang, X.; Shen, J. C. Self-Assembled Ultrathin Films:from Layered Nanoarchitectures to Functional Assemblies. [J]Adv. Mater.,1999,11,1139-1143.
    [29]Vogtle, F. Supramolekulare Chemie. [M] Teubner:Stuttgart,1991.
    [30](a) Lehn, J.-M. Perspectives in Supramolecular Chemistry-From Molecular Recognition towards Molecular Information Processing and Self-Organization. [J] Angew. Chem. Int. Ed.1990,29,1304-1319. (b) Lehn, J.-M. Supramolecular Chemistry:Concepts and Perspectives; [M] VHC:Weinheim,1995.
    [31]Oshovsky, G. V.; Reinhoudt, D. N.; Verboom, W. Supramolecular Chemistry in Water. [J] Angew. Chem. Int. Ed.2007,46,2366-2393.
    [32](a) Cram, D. J. The Design of Molecular Hosts, Guests, and Their Complexes. [J] Angew. Chem. Int. Ed.1988,27,1009-1020. (b) Lehn, J.-M. Supramolecular Chemistry-Scope and Perspectives Molecules, Supermolecules, and Molecular Devices. [J] Angew. Chem. Int. Ed.1988,27,89-112.
    [33]Lehn, J. M. Programmed Chemical Systems:Multiple Subprograms and Multiple Processing/Expression of Molecular Information. [J] Chem. Eur. J. 2000,6,2097-2102.
    [34]Balzani, V.; Credi, A.; Raymo, F. M.; Stoddart, J. F. Artificial Molecular Machines. [J] Angew. Chem. Int. Ed.2000,39,3348-3391.
    [35](a) Hassan, M. H. A. Small Things and Big Changes in the Developing World. [J] Science 2005,309,65-66. (b) Service R. F.; Szuromi, P.; Uppenbrink, J. Strength in Numbers. [J] Science 2002,295,2395-2395.
    [36]Hill, D. J.; Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S. A Field Guide to Foldamers. [J] Chem. Rev.2001,101,3893-4012.
    [37]Lehn, J.-M. Supramolecular Chemistry-Concepts and Perspectives. [M] Weinheim:VCH Publishers,1995.
    [38]Elemans, J. A. A. W.; van Hameren, R.; Nolte, R. J. M.; Rowan, A. E. Molecular Materials by Self-Assembly of Porphyrins, Phthalocyanines, and Perylenes. [J] Adv. Mater.2006,18,1251-1226.
    [39](a) Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Self-Assembly and Mineralization of Peptide-Amphiphile Nanofibers I. [J] Science 2001,294,1684-1688. (b) Kitamura, T.; Nakaso, S.; Mizoshita, N.; Tochigi, Y.; Shimomura, T.; Moriyama, M.; Ito, K.; Kato, T. Electroactive Supramolecular Self-Assembled Fibers Comprised of Doped Tetrathiafulvalene-Based Gelators. [J] J. Am. Chem. Soc. 2005,127,14769-14775.
    [40]Schwab, A. D.; Smith, D. E.; Bond-Watts, B.; Johnston, D. E.; Hone, J.; Johnson, A. T.; de Paula, J. C.; Smith, W. F. Photoconductivity of Self-Assembled Porphyrin Nanorods. [J] Nano. Lett.2004,4,1261-1265.
    [41]Wang, Z.; Li, Z.; Medforth, C. J.; Shelnutt, J. A. Self-Assembly and Self-Metallization of Porphyrin Nanosheets. [J] J. Am. Chem. Soc.2007,129, 2440-2441.
    [42](a) Yan, D. Y.; Zhou, Y. F.; Hou, J. Supramolecular Self-Assembly of Macroscopic Tubes. [J] Science 2004,303,65-67. (b) Hu, J. S.; Guo, Y. G.; Liang, H. P.; Wan, L. J.; Jiang, L. Three-Dimensional Self-Organization of Supramolecular Self-Assembled Porphyrin Hollow Hexagonal Nanoprisms [J] J. Am. Chem. Soc.2005,127,17090-17095.
    [43](a) Xiao, S.; Li, Y.; Fang, H.; Li, H.; Liu, H.; Shi, Z.; Jiang, L.; Zhu, D. Synthesis and Characterization of Three Novel [60]Fullerene Derivatives toward Self-Assembled Nanoparticles through Interaction of Hydrogen Bonding. [J] Org. Lett.2002,4,3063-3066. (b) Li, Y.; Wang, N.; Gan, H.; Liu, H.; Li, H.; Li, Y. He, X.; Huang, C.; Cui, S.; Wang, S.; Zhu, D. Synthesis and Characterization of 3,5-Bis(2-hydroxyphenyl)-1,2,4-triazole Functionalized Tetraaryloxy Perylene Bisimide and Metal-Directed Self-Assembly. [J] J. Org. Chem.2005,70, 9686-9692. (c) Liu, Y.; Li, Y.; Jiang, L.; Gan, H.; Liu, H.; Li, Y.; Zhuang, J.; Lu, F.; Zhu, D. Assembly and Characterization of Novel Hydrogen-Bond-Induced Nanoscale Rods. [J] J. Org. Chem.2004,69,9049-9054.
    [44]Liu, R.; Holman, M. W.; Zang, L.; Adams, D. M. Single-Molecule Spectroscopy of Intramolecular Electron Transfer in Donor-Bridge-Acceptor Systems. [J] J. Phys. Chem. A.2003,107,6522-6526.
    [45]Holman, M. W.; Liu, R.; Zang, L.; Yan, P.; DiBenedetto, S. A.; Bowers, R. D.; Adams, D. M. Studying and Switching Electron Transfer:From the Ensemble to the Single Molecule. [J] J. Am. Chem. Soc.2004,126,16126-16133.
    [46]Sauer, M. Single-Molecule-Sensitive Fluorescent Sensors Based on Photoinduced Intramolecular Charge Transfer. [J] Angew. Chem,. Int. Ed.2003, 42,1790-1793.
    [47]Grimsdale Andrew, C.; Mullen, K. The Chemistry of Organic Nanomaterials. [J] Angew. Chem,. Int. Ed.2005,44,5592-5629.
    [48]Xu, B. Q.; Xiao, X.; Yang, X.; Zang, L.; Tao, N. J. Large Gate Modulation in the Current of a Room Temperature Single Molecule Transistor. [J] J. Am. Chem. Soc.2005,127,2386-2387.
    [49]Li, X.; Xu, B. Q.; Xiao, X.; Yang, X.; Zang, L.; Tao, N. J. Controlling Charge Transport in Single Molecules Using Electrochemical Gate. [J] Faraday Discuss. 2006,131,111-120.
    [50](a) Jiang, J.; Ng, D. K. P. A Decade Journey in the Chemistry of Sandwich-Type Tetrapyrrolato-Rare Earth Complexes. [J] Acc. Chem. Res.2009,42,79-88. (b) Chen, Y.; Su, W.; Bai, M.; Jiang, J.; Li, X.; Liu, Y.; Wang, L.; Wang, S. High Performance Organic Field-Effect Transistors Based on Amphiphilic Tris(phthalocyaninato) Rare Earth Triple-Decker Complexes. [J] J. Am. Chem. Soc.2005,127,15700-15701. (c) Li, R.; Ma, P.; Dong, S.; Zhang, X.; Chen, Y.; Li, X.; Jiang, J. Synthesis, Characterization, and OFET Properties of Amphiphilic Heteroleptic Tris(phthalocyaninato) Europium(III) Complexes with Hydrophilic Poly(oxyethylene) Substituents. [J] Inorg. Chem.2007,46, 11397-11404.
    [51]Schmidt-Mende, L.; Fechtenkotter, A.; Mullen, K.; Moons, E.; Friend, R.H.; MacKenzie, J. D. Self-Organized Discotic Liquid Crystals for High-Efficiency Organic Photovoltaics. [J] Science 2001,293,1119-1122.
    [52]Gregg, B. A. Excitonic Solar Cells. [J] J. Phys. Chem. B.2003,107,4688-4698.
    [53]Gregg, B. A. Evolution of Photophysical and Photovoltaic Properties of Perylene Bis(phenethylimide) Films upon Solvent Vapor Annealing. [J] J. Phys. Chem. 1996,100,852-859.
    [54]Tamizhmani, G.; Dodelet, J. P.; Cote, R.; Gravel, D. Photoelectrochemical Characterization of Thin Films of Perylenetetracarboxylic Acid Derivatives. [J] Chem. Mater.1991,3,1046-1053.
    [55]Liu, Y.; Xiao, S.; Li, H.; Li, Y; Liu, H.; Lu, F.; Zhuang, J.; Zhu, D. Self-Assembly and Characterization of a Novel Hydrogen-Bonded Nanostructure. [J] J. Phys. Chem. B.2004,108,6256-6260.
    [56]Peeters, E.; Van Hal, P. A.; Meskers, S. C. J.; Janssen, R. A. J.; Meijer, E.W. Photoinduced Electron Transfer in a Mesogenic Donor-Acceptor-Donor System. [J] Chem. Eur. J.2002,8,4470-4474.
    [57]Lever, A. B. P.; Leznoff, C. C. Phthalocyanine:Properties and Applications. [M] VCH:New York,1989-1996; Vols.1-4. (b) Kadish, K. M.; Smith, K. M.; Guilard, R. The Porphyrin Handbook. [M] Academic Press:San Diego,2000-2003; Vols. 1-20.
    [58](a) Parra, V.; Bouvet, M.; Brunet, J.; Rodriguez-Mendez, M. L.; de Saja J. A. On the Effect of Ammonia and Wet Atmospheres on the Conducting Properties of Different Lutetium Bisphthalocyanine Thin Films. [J] Thin Solid Films 2008,516,9012-9019. (b) Parra, V.; Brunet, J.; Pauly, A. Bouvet M Molecular Semiconductor-Doped Insulator (MSDI) Heterojunctions: an Alternative Transducer for Gas Chemosensing. [J] Analyst 2009,1776-1778.
    [59](a) Jiang, J.; Liu, W.; Arnold, D. P. Sandwich Complexes of Naphthalocyanine with the Rare Earth Metals. [J] J. Porphyrins Phthalocyanines 2003,7,459-473. (b) Jiang, J.; Kasuga, K.; Arnold, D. P. In Supramolecular Photo-sensitive and Electro-active Materials (Ed.:H. S. Nalwa) [M] Academic Press:New York, 2001, pp.113-210.
    [60](a) Gao, Y.; Ma, P.; Chen, Y.; Zhang, Y.; Bian, Y.; Li, X.; Jiang, J.; Ma, C. Design, Synthesis, Characterization, and OFET Properties of Amphiphilic Heteroleptic Tris(phthalocyaninato) Europium(III) Complexes. The Effect of Crown Ether Hydrophilic Substituents. [J] Inorg. Chem.2009,48,45-54. (b) Chen, Y.; Li, R.; Wang, R.; Ma, P.; Dong, S.; Gao, Y.; Li, X.; Jiang, J. Effect of Peripheral Hydrophobic Alkoxy Substitution on the Organic Field Effect Transistor Performance of Amphiphilic Tris(phthalcoyaninato) Europium Triple-Decker Complexes. [J] Langmuir 2007,23,12549-12554.
    [61]Liu, Z.; Yasseri, A. A.; Lindsey, J. S.; Bocian, D. F. Molecular Memories That Survive Silicon Device Processing and Real-World Operation. [J] Science 2003, 302,1543-1545.
    [62](a) Ishikawa, N.; Sugita, M.; Wernsdorfer, W. Quantum Tunneling of Magnetization in Lanthanide Single-Molecule Magnets: Bis(phthalocyaninato)terbium and Bis(phthalocyaninato)dysprosium Anions. [J] Angew. Chem., Int. Ed.2005,44,2931-2935. (b) Ishikawa, N.; Sugita, M.; Wernsdorfer, W. Nuclear Spin Driven Quantum Tunneling of Magnetization in a New Lanthanide Single-Molecule Magnet:Bis(Phthalocyaninato)holmium Anion. [J] J. Am. Chem. Soc.2005,127,3650-3651. (c) Ishikawa, N.; Sugita, M.; Ishikawa, T.; Koshihara, S.-y.; Kaizu, Y. Lanthanide Double-Decker Complexes Functioning as Magnets at the Single-Molecular Level. [J] J. Am. Chem. Soc. 2003,125,8694-8695.
    [63]刘海洋,胡希明,应晓,刘义,黄锦汪,计亮年,金属卟啉配合物超分子弹自组装.[J]无机化学学报,1998,14,371-387.
    [64]Lehn, J. M. Supramolecular Chemistry. [M] Verlag Chimie:Weinheim, Germany,1995.
    [65]Tong, W. Y.; Djurii, A. B.; Xie, M. H.; Ng, A. C. M.; Cheung, K. Y.; Chan, W. K.; Leung, Y H.; Lin, H. W.; Gwo, S. Metal Phthalocyanine Nanoribbons and Nanowires. [J] J. Phys. Chem. B.2006,110,17406-17413.
    [66]Duzhko, V.; Singer, K. D. Self-Assembled Fibers of a Discotic Phthalocyanine Derivative:Internal Structure, Tailoring of Geometry, and Alignment by a Direct Current Electric Field. [J] J. Phys. Chem. B.2007,111,27-31.
    [67]van Nostrum, C. F.; Picken, S. J.; Schouten, A.-J.; Nolte, R. J. M. Synthesis and Supramolecular Chemistry of Novel Liquid Crystalline Crown Ether-Substituted Phthalocyanines:Toward Molecular Wires and Molecular Ionoelectronics. [J] J. Am. Chem. Soc.1995,117,9957-9965.
    [68]Drain, C. M.; Lehn, J. M. [J] J. Chem. Soc. Chem. Commun.1994,2313-2314.
    [69]Drain, C. M.; Nifiatis, F.; Vasenko, A.; Batteas, J. D. Porphyrin Tessellation by Design:Metal-Mediated Self-Assembly of Large Arrays and Tapes. [J] Angew. Chem. Int. Ed.1998,37,2344-2347.
    [70]Engelkamp, H.; Middelbeek, S.; Nolte, R. J. M. Self-Assembly of Disk-Shaped Molecules to Coiled-Coil Aggregates with Tunable Helicity. [J] Science 1999, 284,785-788
    [71](a) Shirakawa, M.; Fujita, N.; Shinkai, S. A Stable Single Piece of Unimolecularly π-Stacked Porphyrin Aggregate in a Thixotropic Low Molecular Weight Gel:A One-Dimensional Molecular Template for Polydiacetylene Wiring up to Several Tens of Micrometers in Length. [J] J. Am. Chem. Soc.2005, 127,4164-4165. (b) Kishida, T.; Fujita, N.; Sada, K.; Shinkai, S. Sol-Gel Reaction of Porphyrin-Based Superstructures in the Organogel Phase:Creation of Mechanically Reinforced Porphyrin Hybrids. [J] J. Am. Chem. Soc.2005,127, 7298-7299. (c) Shirakawa, M.; Fujita, N.; Shinkai, S. [60]Fullerene-Motivated Organogel Formation in a Porphyrin Derivative Bearing Programmed Hydrogen-Bonding Sites. [J] J. Am. Chem. Soc.2003,125,9902-9903. (d) Sano, M.; Kamino, A.; Okamura, J.; Shinkai, S. Self-Organization of PEO-graft-Single-Walled Carbon Nanotubes in Solutions and Langmuir-Blodgett Films. [J] Langmuir 2001,17,5125-5128.
    [72]Tamaru, S. I.; Nakamuira, M.; Takeuchi, M.; Shinkai, S. Rational Design of a Sugar-Appended Porphyrin Gelator That Is Forced To Assemble into a One-Dimensional Aggregate. [J] Org. Lett.2001,3,3631-3634.
    [73]Ayabe, M.; Yamashita, K.; Shinkai, S.; Ikeda, A.; Sakamoto, S.; Yamaguchi, K. Construction of Monomeric and Polymeric Porphyrin Compartments by a Pd(Ⅱ)-Pyridine Interaction and Their Chiral Twisting by a BINAP Ligand. [J] J. Org. Chem.2003,68,1059-1066.
    [74]Huang, C.; Wen, L.; Liu, H.; Li, Y.; Liu, X.; Yuan, M.; Zhai, J.; Jiang, L.; Zhu, D. Controllable Growth of 0D to Multidimensional Nanostructures of a Novel Porphyrin Molecule. [J] Adv. Mater.2009,21,1721-1725.
    [75]Tong, W. Y.; Xie, M. H.; Ng, A. C. M.; Cheung, K. Y.; Chan, W. K.; Leung, Y H.; Lin, H. W.; Gwo, S. Metal Phthalocyanine Nanoribbons and Nanowires. [J] J. Phys. Chem. B 2006,110,17406-17413.
    [76]Kimura, M.; Muto, T.; Takimoto, H.; Wada, K.; Ohta, K.; Hanabusa, K.; Shirai. H.; Kobayashi, N. Fibrous Assemblies Made of Amphiphilic Metallophthalocyanines. [J] Langmuir 2000,16,2078-2082.
    [77](a) Wang, Z.; Medforth, C. J.; Shelnutt, J. A. Porphyrin Nanotubes by Ionic Self-Assembly. [J] J. Am. Chem. Soc.2004,126,15954-15955. (b) Wang, Z.; Medforth, C. J.; Shelnutt, J. A. Self-Metallization of Photocatalytic Porphyrin Nanotubes. [J] J. Am. Chem. Soc.2004,126,16720-16721.
    [78]Lu, G.; Chen, Y.; Zhang, Y.; Bao, M.; Bian, Y.; Li, X.; Jiang, J. Morphology Controlled Self-assembled Nanostructures of Sandwich Mixed (Phthalocyaninato)(porphyrinato) Europium Triple-deckers. Effect of Hydrogen Bonding on Tuning the Inter-molecular Interaction. [J] J. Am. Chem. Soc.2008, 130,11623-11630.
    [79]Madru, M.; Guillaud, G.; Sadoun, M.; Maitrot, M.; Clarisse, C.; Contellec, M.; Le Andre, J.-J.; Simon, J. The first field effect transistor based on an intrinsic molecular semiconductor. [J] Chem. Phys. Lett.1987,142,103-105.
    [80]Schouten, P. G.; Warman, J. M.; Haas, M. P. De; Fox, M. A.; Pan, H. L. Charge migration in supramolecular stacks of peripherally substituted porphyrins [J] Nature 1991,353,736-737.
    [81]Noh, Y. Y.; Kim, J. J.; Yoshida, Y.; Yase, K. Effect of Molecular Orientation of Epitaxially Grown Platinum(II) Octaethyl Porphyrin Films on the Performance of Field-Effect Transistors. [J] Adv. Mater.2003,15,699-702.
    [82]Minari, T.; Seto, M.; Nemoto, T.; Isoda, S.; Tsukagoshi, K.; Aoyagi, Y Molecular-packing-enhanced charge transport in organic field-effect transistors based on semiconducting porphyrin crystals. [J] Appl. Phys. Lett.2007,91, 123501.
    [83]Aramaki, S.; Sakai, Y.; Ono, N. Solution-processible organic semiconductor for transistor applications:Tetrabenzoporphyrin. [J] Appl. Phys. Lett.2004,84, 2085-2087.
    [84]Shea, P. B.; Kanicki, J.; Ono, N. Field-effect mobility of polycrystalline tetrabenzoporphyrin thin-film transistors. [J] J. Appl. Phys.2005,98,014503.
    [85]Shea, P.; Johnson, A. R.; Ono, N.; Kanicki, J. Electrical properties of staggered electrode, solution-processed, polycrystalline tetrabenzoporphyrin field-effect transistors. [J] IEEE T Electron Dev 2005,52,1497-1503.
    [86]Shea, P. B.; Chen, C.; Kanicki, J.; Pattison, L. R.; Petroff, P.; Yamada, H.; Ono, N. Polycrystalline tetrabenzoporphyrin organic field-effect transistors with nanostructured channels. [J] Appl. Phys. Lett.2007,90,233107.
    [87]Shea, P. B.; Kanicki, J.; Pattison, L. R.; Petroff, P.; Kawano, M.; Yamada, H.; Ono, N. Solution-processed nickel tetrabenzoporphyrin thin-film transistors. [J] J. Appl. Phys.2006,100,034502.
    [88]Shea, P. B.; Pattison, L. R.; Kawano, M.; Chen, C.; Chen, J.; Petroff, P.; Martin, D. C.; Yamada, H.; Ono, N.; Kanicki, J. Solution-processed polycrystalline copper tetrabenzoporphyrin thin-film transistors. [J] Synth. Met.2007,157, 190-197.
    [89]Dhoot, A. S.; Aramaki, S.; Moses, D.; Heeger, A. Metal-Insulator Transition in Solution-Processible Porphyrinic Field-Effect Transistors. [J] Adv. Mater.2007, 19,2914-2917.
    [90]Che, C.; Xiang, H.; Chui, S. S.; Xu, Z. X.; Roy, V. A. L.; Yan, J. J.; Fu, W. F.; Lai, P. T.; Willianms, I. D. A High-Performance Organic Field-Effect Transistor Based on Platinum(II) Porphyrin:Peripheral Substituents on Porphyrin Ligand Significantly Affect Film Structure and Charge Mobility. [J] Chem. Asian. J. 2008,3,1092-1103.
    [91]Checcoli, P.; Conte, G.; Salvatori, S.; Paolesse, R.; Bolognesi, A.; Berliocchi, A. Brunetti, F.; D'Amico, A.; Di Carlo, A.; Lugli, P. Tetra-phenyl porphyrin based thin film transistors. [J] Synth. Met.2003,138,261-266.
    [92]Guillaud, G.; Simon, J. Transient properties of nickel phthalocyanine thin film transistors. [J] Chem Phys Lett.1994,219,123-126.
    [93]Guillaud, G.; Chaabane, R.; Jouve, C. Transient behaviour of thin film transistors based on nickel phthalocyanine. [J] Thin Solid Films 1995,258,279-282.
    [94]Bao, Zh.; Lovinger, A. J.; Dodabalapur, A. Organic field-effect transistors with high mobility based on copper phthalocyanine. [J] Appl. Phys. Lett.1996,69, 3066.
    [95]Kudo, K.; Iizuka, M.; Kuniyoshi, S. Device characteristics of lateral and vertical type organic field effect transistors. [J] Thin Solid Films 2001,393,362-367.
    [96]Yuan, J.; Zhang, J.; Wang, J. Bottom-contact organic field-effect transistors having low-dielectric layer under source and drain electrodes. [J] Appl. Phys. Lett.2003,82,3967.
    [97]Wang, J.; Yan, X.; Xu, Y.; Zhang, J.; Yan, D. Organic thin-film transistors having inorganic/organic double gate insulators. [J] Appl. Phys. Lett.2004,85,5424.
    [98]Xiao, K.; Liu, Y.; Yu, G. Organic field-effect transistors using copper phthalocyanine thin film. [J] Synth. Met.2003,137,991-992.
    [99]Zhang, J.; Wang, J.; Wang, H. Organic thin-film transistors in sandwich configuration. [J]Appl. Phy. Lett.2004,84,142.
    [100]Wang, J.; Wang, H.; Zhang, J.; Yan, X.; Yan, D. Organic thin-film transistors with improved characteristics using lutetium bisphthalocyanine as a buffer layer. [J] J. Appl. Phys.2005,97,026106.
    [101]Zhang, J.; Wang, H.; Yan, X. Phthalocyanine Composites as High-Mobility Semiconductors for Organic Thin-Film Transistors. [J] Adv. Mater.2005,17, 1191-1193.
    [102]Zeis, R.; Siegrist, T.; Kloc, Ch. Single-crystal field-effect transistors based on copper phthalocyanine. [J] Appl. Phys. Lett.2005,86,22103.
    [103]Tang, Q.; Li, H.; He, M.; Hu, W.; Liu, C.; Chen, K.; Wang, C.; Liu Y.; Zhu, D. Low Threshold Voltage Transistors Based on Individual Single-Crystalline Submicrometer-Sized Ribbons of Copper Phthalocyanine. [J] Adv. Mater.2006, 18,65-68.
    [104]Yasuda, T.; Tsutsui, T. Organic field-effect transistors based on high electron and ambipolar carrier transport properties of copper-phthalocyanine. [J] Chem. Phys. Lett.2005,402,395-398.
    [105]Di, C.; Yu, G.; Liu, Y. Noncoplanar organic field-effect transistor based on copper phthalocyanine. [J] Appl. Phys. Lett.2006,88,121907.
    [106]Tada, H.; Touda, H.; Takada, M. Quasi-intrinsic semiconducting state of titanyl-phthalocyanine films obtained under ultrahigh vacuum conditions. [J] Appl. Phys. Lett.2000,76,873.
    [107]Yan, D.; Wang, J.; Zhang, J. China Patent No.02129458.5
    [108]Ohta, H.; Kambayashi, T.; Nomura, K.; Hirano, M.; Ishikawa, K.; Takezoe, H.; Hosono, H. Transparent Organic Thin-Film Transistor with a Laterally Grown Non-Planar Phthalocyanine Channel. [J] Adv. Mater.2004,16,312-316.
    [109]Wang, H.; Song, D.; Yang, J. High mobility vanadyl-phthalocyanine polycrystalline films for organic field-effect transistors. [J] Appl. Phys. Lett. 2007,90,253510.
    [110]Hu, W.; Liu, Y.; Xu, Y. The application of Langmuir-Blodgett films of a new asymmetrically substituted phthalocyanine, amino-tri-tert-butyl-phthalocyanine, in diodes and in all organic field-effect-transistors. [J] Synth. Met.1999,104, 19-26.
    [111]Liu, Y.; Hu, W.; Qiu, W.; Xu, Y.; Zhou, S.; Zhu, D. Organic field-effect transistors based on Langmuir-Blodgett films of substituted phthalocyanines. [J] Sensor and Actuators B:Chemical,2001,80,202-207.
    [112]Xiao, K.; Liu, Y.; Huang, X. Field-Effect Transistors Based on Langmuir-Blodgett Films of Phthalocyanine Derivatives as Semiconductor Layers. [J] J. Phys. Chem.B 2003,107,9226-9230.
    [113]Chen, S.; Liu, Y.; Xu, Y. Langmuir-Blodgett film of new phthalocyanine containing oxadiazol groups and its application in field-effect transistor. [J] Syn. Met.2006,156,1236-1240.
    [114]Locklin, J.; Shinbo, K.; Onishi, K. Ambipolar Organic Thin Film Transistor-like Behavior of Cationic and Anionic Phthalocyanines Fabricated Using Layer-by-Layer Deposition from Aqueous Solution. [J] Chem. Mater.2003,15, 1404-1412.
    [115]Madru, R.; Guillaud, G.; Sadoun, M.; Maitrot, A. M.; Andre, J.-J.; Simon, J.; Even, R. well-behaved field effect transistor based on an intrinsic molecular semiconductor. [J] Chem. Phys. Lett.1988,145,343-346.
    [116]Clarisse, C.; Riou, M.T. The operation and characteristics of diphthalocyanine field effect transistors. [J] J. Appl. Phys.1991,69,3324.
    [117]Clarisse, C.; Riou, M. T.; Gauneau, M. Field-effect transistor with diphthalocyanine thin film. [J] Electron. Lett.1988,24,674-675.
    [118]Clarisse, C.; Riou, M.-T.; Contellec, M. L. Fr. Pat.1987,8715490.
    [119]Clarisse, C.; Riou, M. T.; Robinet, S. Evidence for intrinsic and extrinsic semiconducting properties of lutetium diphthalocyanine thin films. [J] Synth. Met. 1990,38,121-126.
    [120]Guillaud, G.; Sadoun, M.; Maitrot, M.; Simon, J.; Bouvet, M. Field-effect transistors based on intrinsic molecular semiconductors. [J] Chem. Phys. Lett. 1990,167,503-506.
    [121]Su, W.; Jiang, J.; Xiao, K. Thin-Film Transistors Based on Langmuir-Blodgett Films of Heteroleptic Bis(phthalocyaninato) Rare Earth Complexes. [J] Langmuir 2005,21,6527-6531.
    [122]Chen, Y.; Su, W.; Bai, M. High Performance Organic Field-Effect Transistors Based on Amphiphilic Tris(phthalocyaninato) Rare Earth Triple-Decker Complexes. [J] J. Am. Chem. Soc.2005,127,15700-15701.
    [123]Bao, Z.; Lovinger, A.; Brown, J. New Air-Stable n-Channel Organic Thin Film Transistors. [J] J. Am. Chem. Soc.1998,120,207-208.
    [124]Ling, M.; Bao, Z. Copper hexafluorophthalocyanine field-effect transistors with enhanced mobility by soft contact lamination. [J] Organic Electronics 2006,7, 568-575.
    [125]Yoon, M.; Yan, H.; Facchetti, A. Low-Voltage Organic Field-Effect Transistors and Inverters Enabled by Ultrathin Cross-Linked Polymers as Gate Dielectrics. [J] J. Am. Chem. Soc.2005,127,10388-10395.
    [126]Tang, Q.; Li, H.; Liu, Y High-Performance Air-Stable n-Type Transistors with an Asymmetrical Device Configuration Based on Organic Single-Crystalline Submicrometer/Nanometer Ribbons. [J] J. Am. Chem. Soc.2006,128, 14634-14639.
    [127]Wang, J.; Wang, H.; Yan, X. Organic heterojunction and its application for double channel field-effect transistors. [J] Appl. Phys. Lett.2005,87,093507.
    [128]Wang, J.; Wang, H.; Yan, X.; Huang, H.; Yan, D. Air-stable ambipolar organic field-effect transistors based on phthalocyanince composites heterojunction. [J] Chem. Phys. Lett.2005,407,87-90.
    [129]Wang, J.; Wang, H.; Yan, X.; Huang, H.; Jin, D.; Shi, J.; Tang, Y.; Yan D. Heterojunction Ambipolar Organic Transistors Fabricated by a Two-Step Vacuum-Deposition Process. [J]Adv. Funct. Mater.2006,16,824-830.
    [130]Yan, X.; Wang, J.; Wang, H. Improved n-type organic transistors by introducing organic heterojunction buffer layer under source/drain electrodes. [J] Appl. Phys. Lett.2006,89,053510.
    [131]Babel, A.; Wind, J.; Jenekhe, S. Ambipolar Charge Transport in Air-Stable Polymer Blend Thin-Film Transistors. [J] Adv. Funct. Mater.2004,14,891-898.
    [132]Wang, H.; Wang, J.; Yan, X. Ambipolar organic field-effect transistors with air stability, high mobility, and balanced transport. [J] Appl. Phys. Lett.2006,88, 133508.
    [133]Opitz, A.; Bronner, M.; Brutting, W. Ambipolar charge carrier transport in mixed organic layers of phthalocyanine and fullerene. [J] J. Appl. Phys.2007,101, 063709.
    [1]Elemans, A. A. W.; Hameren, R. van; Nolte R. J. M.; Rowan, A. E. Molecular Materials by Self-Assembly of Porphyrins, Phthalocyanines, and Perylenes. [J] Adv. Mater.,2006,18,1251-1226.
    [2]Lu, G.; Chen, Y.; Zhang, Y.; Bao, M.; Bian, Y.; Li, X.; Jiang, J. Morphology Controlled Self-Assembled Nanostructures of Sandwich Mixed (Phthalocyaninato)(Porphyrinato) Europium Triple-Deckers. Effect of Hydrogen Bonding on Tuning the Intermolecular Interaction. [J] J. Am. Chem. Soc.,2008, 130,11623-11630.
    [3]Cui, S.; Liu, H.; Gan, L.; Li, Y.; Zhu, D. Fabrication of Low-Dimension Nanostructures Based on Organic Conjugated Molecules. [J] Adv. Mater.,2008, 20,2918-2925.
    [4]Huang, C.; Li, Y.; Song, Y.; Li, Y.; Liu, H.; Zhu, D. Ordered Nanosphere Alignment of Porphyrin for the Improvement of Nonlinear Optical Properties. [J] Adv. Mater.,2010,22,3532-3536.
    [5]Ishii, D.; Kinbara, K.; Ishida, Y.; Ishii, N.; Okochi, M.; Yohda, M.; Aida, T. Chaperonin-mediated stabilization and ATP-triggered release of semiconductor nanoparticles. [J] Nature,2003,423,628.
    [6]Roman A. E.; Nolte, R. J. M. Helical Molecular Programming. [J] Angew. Chem. Int. Ed.,1998,37,63-68.
    [7]Cornelissen, J. J. L. M.; Rowan, A. E.; Nolte, R. J. M.; Sommerdijk, N. A. J. M. Chiral Architectures from Macromolecular Building Blocks. [J] Chem. Rev., 2001,101,4039-4070.
    [8]Lever, A. B. P.; Leznoff, C. C. Phthalocyanine:Properties and Applications. [M] VCH:New York,1989-1996, Vols.1-4.
    [9]McKeown, N. B. Phthalocyanines Materials:Synthesis, Structure and Function. [M] Cambridge University Press:New York,1998.
    [10]Torre, G. de la; Bottari, G.; Hahn U.; Torres, T. in Structure and Bonding: Functional Phthalocyanine Molecular Materials. [M] ed. J. Jiang, Springer, Heidelberg,2010, Vol.135, pp.1-45.
    [11]Kadish, K. M.; Smith, K. M.; Guilard, R. The Porphyrin Handbook. [M] Academic Press:San Diego,2000-2003, Vols.1-20.
    [12]Kimura, M.; Narikawa, H.; Ohta, K.; Hanabusa, K. Star-Shaped Stilbenoid Phthalocyanines. [J] Chem. Mater.,2002,14,2711-2717.
    [13]Huang, X.; Zhao, F.; Li, Z.; Tang, Y.; Zhang, F.; Tung, C. Self-Assembled Nanowire Networks of Aryloxy Zinc Phthalocyanines Based on Zn-O Coordination. [J] Langmuir,2007,23,5167-5172.
    [14]Escosura, A. de la; Diaz, M. V. M.; Thordarson, P.; Rowan, A. E.; Nolte, R. J. M.; Torres, T. Donor-Acceptor Phthalocyanine Nanoaggregates. [J] J. Am. Chem. Soc.,2003,125,12300-12308.
    [15]Kimura, M.; Kuroda, T.; Ohta, K.; Hanabusa, K.; Shirai H.; Kobayashi, N. Self-Organization of Hydrogen-Bonded Optically Active Phthalocyanine Dimers. [J] Langmuir,2003,19,4825-4830.
    [16]Lv, W.; Wu, X.; Bian, Y.; Jiang, J.; Zhang, X. Helical Fibrous Nanostructures Self-Assembled from Metal-Free Phthalocyanine with Peripheral Chiral Menthol Units. [J] ChemPhysChem.,2009,10,2725-2732.
    [17]Jung, J. H.; John, G.; Yoshida, K.; Shimizu, T. Self-Assembling Structures of Long-Chain Phenyl Glucoside Influenced by the Introduction of Double Bonds. [J] J. Am. Chem. Soc.,2002,124,10674-10675.
    [18]Bai, Z.; Gao, Y.; Zhu, P.; Bian, Y.; Jiang, J. Novel Pathway to Synthesis Unsymmetrical 2,3,9,10,16,17,23-heptakis(alkoxyl)-24-mono(dimethylaminoalkoxyl) phthalocyanines. [J] Inorg. Chem.,2010,49,9005-9011.
    [19]Gao, Y.; Zhang, X.; Ma, C.; Li, X.; Jiang, J. Morphology-Controlled Self-Assembled Nanostructures of 5,15-Di[4-(5-acetylsulfanylpentyloxy)phenyl]porphyrin Derivatives. Effect of Metal-Ligand Coordination Bonding on Tuning the Intermolecular Interaction. [J] J. Am. Chem. Soc.,2008,130,17044-17052.
    [20]Sheng, N.; Li, R.; Choi, C.-F.; Su, W.; Ng, D. K. P.; Cui, X.; Yoshida, K.; Kobayashi, N.; Jiang, J. Heteroleptic Bis(Phthalocyaninato) Europium(III) Complexes Fused with Different Numbers of 15-Crown-5 Moieties. Synthesis, Spectroscopy, Electrochemistry, and Supramolecular Structure. [J] Inorg. Chem., 2006,45,3794-3802.
    [21]Zhang, Y.; Zhang, X.; Liu, Z.; Bian, Y.; Jiang, J. Structures and Properties of 1,8,15,22-Tetrasubstituted Phthalocyaninato-Lead Complexes:The Substitutional Effect Study Based on Density Functional Theory Calculations. [J] J. Phys. Chem. A,2005,109,6363-6370.
    [22]Kasha, M.; Rawls, H. R.; EI-Bayoumi, M. A. The Exciton Model in Molecular Spectroscopy. [J] Pure Appl. Chem,.1965,11,371-392.
    [23]Liu, Z.; Zhang, X.; Zhang, Y.; Li, R.; Jiang, J. The molecular, electronic structures and vibrational spectra of metal-free, N,N-dideuterio and magnesium tetra-2,3-pyridino-porphyrazines:Density functional calculations. [J] Spectrochimica Acta Part A,2006,65,467-480.
    [24]李杰,秦秀芬,马淑杰.双季铵盐杀菌剂的合成.[J]化学工程师,2005,1,59-60.
    [25]Balaban, T. S.; Linke-Schaetzel, M.; Bhise, A. D.; Vanthuyne, N.; Roussel, C.; Anson, C, E.; Buth, G.; Eichhofer, A.; Foster, K.; Garab, G.; Gliemann, H.; Goddard, R.; Javorfi, T.; Powell, A. K.; Rosner, H.; Schimmel, T. Structural Characterization of Artificial Self-Assembling Porphyrins That Mimic the Natural Chlorosomal Bacteriochlorophylls c, d, and e. [J] Chem. Eur. J.2005,11, 2267-2275.
    [26]Lu, G.; Zhang, X.; Cai, X.; Jiang. J. Tuning the Morphology of Self-Assembled Nanostructures of Amphiphilic Tetra(p-hydroxyphenyl)Porphyrins with Hydrogen Bonding and Metal-Ligand Coordination Bonding. [J] Journal of Materials Chemistry,2009,19,2417-2424.
    [27]Wurthner, F.; Thalacker, C.; Diele, S.; Tschierske, C. Fluorescent J-type Aggregates and Thermotropic Columnar Mesophsaes of Perylene Bisimide Dyes. [J] Chem. Eur. J.,2001,7,2245-2253.
    [28]Janczak, J.; Idemori, Y. M. One-Dimensional Assembling of Diiodo[phthalocyaninato(1-)] Chromate(III) Molecules through Neutral I2 Molecules. Alternating Ferro-and Antiferromagnetic Interactions in the Metal-Radical System. [J] Inorg. Chem.,2002,41,5059-5065.
    [29]Gardberg, A. S.; Yang, S.; Hoffman B. M.; Ibers, J. A. Synthesis and Structural Characterization of Integrally Oxidized, Metal-Free Phthalocyanine Compounds:[H2(pc)][IBr2] and [H2(pc)]2[IBr2]BrC10H7Br. [J] Inorg. Chem., 2002,41,1778-1781.
    [30]Kimura, M.; Muto, T.; Takimoto, H.; Wada, K.; Ohta, K.; Hanabusa, K.; Shirai. H.; Kobayash, N. Fibrous Assemblies Made of Amphiphilic Metallophthalocyanines. [J] Langmuir,2000,16,2078-2086.
    [31]Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.; Schenning, A. P. H. J. About Supramolecular Assemblies of π-Conjugated Systems. [J] Chem. Rev.,2005, 105,1491-1546.
    [32]Shimizu, T.; Masuda M.; Minamikawa, H. Supramolecular Nanotube Architectures Based on Amphiphilic Molecules. [J] Chem. Rev.,2005,105, 1401-1443.
    [33]Nakashima, N.; Asakuma, S.; Kunitake, T. Optical microscopic study of helical superstructures of chiral bilayer membranes. [J] J. Am. Chem. Soc.,1985,107, 509-510.
    [34]Fuhrhop, F. H.; Schnieder, P.; Boekema, E.; Helfrich, W. Lipid bilayer fibers from diastereomeric and enantiomeric N-octylaldonamides. [J] J. Am. Chem. Soc.,1988,110,2861-2867.
    [35]Che, Y.; Datar, A.; Balakrishnan, K.; Zang, L. Ultralong Nanobelts Self-Assembled from an Asymmetric Perylene Tetracarboxylic Diimide. [J] J. Am. Chem. Soc.,2007,129,7234-7235.
    [36]Ma, P.; Chen, Y.; Bian, Y.; Jiang, J. Morphology Controlled Surface-Assisted Self-Assembled Microtube Junctions and Dendrites of Metal Free Porphyrin-Based Semiconductor. [J] Langmuir,2010,26,3678-3684.
    [37]Liu, W.; Cui, Z. M.; Liu, Q.; Yan, D. W.; Wu, J. Y.; Yan, H. J.; Guo, Y. L.; Wang, C. R.; Song, W. G.; Liu, Y Q.; Wan, L. J. Catalytic Synthesis and Structural Characterizations of a Highly Crystalline Polyphenylacetylene Nanobelt Array. [J] J. Am. Chem. Soc.,2007,129,12922-12923.
    [38]Serway, R. A. Principles of Physics,2nd ed. [M] Saunders College:Fort Worth, TX, London,1998, p 602.
    [1]Iijima, S. Helical microtubules of graphitic carbon. [J] Nature 1991,354,56-58.
    [2]Wei, Z. X.; Zhang, L. J.; Yu, M.; Yang, Y. S.; Wan, M. X. Self-Assembling Sub-Micrometer-Sized Tube Junctions and Dendrites of Conducting Polymers. [3] Adv. Mater.2003,15,1382-1385.
    [3](a) Jerome, C.; Demoustier-Champagne, S.; Legras R.; Jerome, R. Electrochemical Synthesis of Conjugated Polymer Wires and Nanotubes. [J] Chem. Eur. J.2000,6,3089-3093. (b) Patzke, G. R.; Krumeich, F.; Nesper, R. Oxidic Nanotubes and Nanorods-Anisotropic Modules for a Future Nanotechnology. [J] Angew. Chem., Int. Ed.2002,41,2446-2461. (c) Zelenski, C. M.; Dorhout, P. K. Template Synthesis of Near-Monodisperse1 Microscale Nanofibers and Nanotubules of MoS2. [J] J. Am. Chem. Soc.1998,120,734-742.
    [4](a) Martin, C. R. Nanomaterials:A Membrane-Based Synthetic Approach. [J] Science 1994,266,1961-1966. (b) Liu, H.; Li, Y.; Jiang, L.; Luo, H.; Xiao, S.; Fang, H.; Li, H.; Zhu, D.; Yu, D.; Xu, J.; Xiang, B. Imaging As-Grown [60]Fullerene Nanotubes by Template Technique. [J] J. Am. Chem. Soc.2002, 124,13370-13371. (c) Lee, J.; Koh, W.; Chae, W.; Kim, Y. Novel synthesis of organic nanowires and their optical properties. [J] Chem. Commun.2002, 138-139. (d) Kyotani, T.; Tsai, L.; Tomita, A. Preparation of Ultrafine Carbon Tubes in Nanochannels of an Anodic Aluminum Oxide Film. [J] Chem. Mater. 1996,8,2109-2113.
    [5]Steinhart, M.; Wendorff, J. H.; Greiner, A.; Wehrspohn, R. B.; Nielsch, K.; Schilling, J.; Choi, J.; Gosele, U. Polymer Nanotubes by Wetting of Ordered Porous Templates. [J] Science 2002,296,1997.
    [6](a) Schnur, J. M. Lipid Tubules:A Paradigm for Molecularly Engineered Structures. [J] Science 1993,262,1669-1676. (b) Shimizu, T.; Masuda, M.; Minamikawa, H. Supramolecular Nanotube Architectures Based on Amphiphilic Molecules. [J] Chem. Rev.2005,105,1401-1443. (c) Hu, J.; Guo, Y.; Liang, H.; Wan, L.; Jiang, L. Three-Dimensional Self-Organization of Supramolecular Self-Assembled Porphyrin Hollow Hexagonal Nanoprisms. [J] J. Am. Chem. Soc.2005,127,17090-17095. (d) Steinhart, M.; Wehrspohn, R. B.; Gosele, U.; Wendorff, J. H. Nanotubes by Template Wetting:A Modular Assembly System. [J] Angew. Chem. Int. Ed.2004,43,1334-1344.
    [7]Mandelbrot, B. B. The Fractal Geometry of Nature, Freeman, San Francisco, CA 1982.
    [8](a) Menon, M.; Srivastava, D. Carbon Nanotube "T Junctions":Nanoscale Metal-Semiconductor-Metal Contact Devices. [J] Phys. Rev. Lett.1997,79, 4453-4456. (b) Andriotis, A. N.; Menon, M.; Srivastava, D.; Chernozatonskii, L. Rectification Properties of Carbon Nanotube "Y-Junctions". [J] Phys. Rev. Lett. 2001,87,066802.
    [9](a) Terrones, M.; Banhart, F.; Grobert, N.; Charlier, J.-C.; Terrones, H.; Ajayan, P. M. Molecular Junctions by Joining Single-Walled Carbon Nanotubes. [J] Phys. Rev. Lett.2002,89,075505. (b) Ting, J.-M.; Chang, C.-C. Multijunction carbon nanotube network. [J] Appl. Phys. Lett.2002,80,324-325. (c) Satishkumar, B. C.; Thomas, P. J.; Govindaraj, A.; Rao, C. N. R.Y-junction carbon nanotubes. [J] Appl. Phys. Lett.2002,77,2530-2532.
    [10](a) Buchler, J. W.; Ng, D. K. P. In The Porphyrin Handbook. [M] Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press:San Diego,2000; Vol.3, pp 245-294. (b) Jiang, J.; Kasuga, K.; Arnold, D. P. In Supramolecular Photo-sensitive and Electro-active Materials. [M] Nalwa, H. S., Ed.; Academic Press:New York,2001, pp 113-210.
    [11](a) Bian, Y.; Jiang, J.; Tao, Y.; Choi, M. T. M.; Li, R.; Ng, A. C. H.; Zhu, P.; Pan, N.; Sun, X.; Arnold, D. P.; Zhou, Z.-Y.; Li, H.-W.; Mak, T. C. W.; Ng, D. P. K. Tuning the Valence of the Cerium Center in (Na)phthalocyaninato and Porphyrinato Cerium Double-Deckers by Changing the Nature of the Tetrapyrrole Ligands. [J] J. Am. Chem. Soc.2003,125,12257-12267. (b) Su, W.; Jiang, J.; Xiao, K.; Chen, Y.; Zhao, Q. Thin-Film Transistors Based on Langmuir-Blodgett Films of Heteroleptic Bis(phthalocyaninato) Rare Earth Complexes. [J] Langmuir 2005,21,6527-6531. (c) Chen, Y.; Su, W.; Bai, M.; Jiang, J.; Li, X.; Liu,Y.; Wang, L.; Wang, S. High Performance Organic Field-Effect Transistors Based on Amphiphilic Tris(phthalocyaninato) Rare Earth Triple-Decker Complexes. [J] J. Am. Chem. Soc.2005,127,15700-15701.
    [12]Gong, X.; Milic, T.; Xu, C.; Batteas, J. D.; Drain, C. M. Preparation and Characterization of Porphyrin Nanoparticles. [J] J. Am. Chem. Soc.2002,124, 14290-14291.
    [13](a) Wang, Z.; Medforth, C. J.; Shelnutt, J. A. Porphyrin Nanotubes by Ionic Self-Assembly. [J] J. Am. Chem. Soc.2004,126,15954-15955. (b) Wang, Z.; Medforth, C. J.; Shelnutt, J. A. Self-Metallization of Photocatalytic Porphyrin Nanotubes. [J] J. Am. Chem. Soc.2004,126,16720-16721.
    [14](a) Nitschke, C.; Flaherty, S.; Krolll, M.; Blau, W. Material Investigations and Optical Properties of Phthalocyanine Nanoparticles. [J] J. Phys. Chem. B 2004, 108,1287-1295. (b) Jenekhe, S. A.; Yi, S. J. Highly Photoconductive Nanocomposites of Metallophthalocyanines and Conjugated Polymers. [J] Adv. Mater.2000,12,1274-1278. (c) Zhang, X.; Wang, Y.; Ma, Y.; Ye, Y.; Wang, Y.; Wu, K. Solvent-Stabilized Oxovanadium Phthalocyanine Nanoparticles and Their Application in Xerographic Photoreceptors. [J] Langmuir 2006,22, 344-348.
    [15](a) Zhi, L.; Gorelik, T.; Wu, J.; Kolb, U.; Mullen, K. Nanotubes Fabricated from Ni-Naphthalocyanine by a Template Method. [J] J. Am. Chem. Soc.2005,127, 12792-12793. (b) Zhi, L.; Wu, J.; Li, J.; Kolb, U.; Mullen, K. Carbonization of Disclike Molecules in Porous Alumina Membranes:Toward Carbon Nanotubes with Controlled Graphene-Layer Orientation. [J] Angew. Chem. Int. Ed.2005,44, 2120-2123.
    [16](a) Tang, Q.; Li, H.; He, M.; Hu, W.; Liu, C.; Chen, K.; Wang, C.; Liu, Y.; Zhu, D. Low Threshold Voltage Transistors Based on Individual Single-Crystalline Submicrometer-Sized Ribbons of Copper Phthalocyanine. [J] Adv. Mater.2006, 18,65-68. (b) Cao, L.; Chen, H.; Zhou, H.; Zhu, L.; Sun, J.; Zhang, X.; Xu, J.; Wang, M. Carbon-Nanotube-Templated Assembly of Rare-Earth Phthalocyanine Nanowires.[J]Adv. Mater.2003,15,909-913.
    [17]Liu, Q.; Li, Y.; Liu, H.; Chen, Y.; Wang, X.; Zhang, Y.; Li, X.; Jiang J. Nanotubes Fabricated from Sandwich-Type Mixed (Porphryinato)(phthalocyaninato)europium Complex by Template Technique. [J] J. Phys. Chem. C 2007,111,7298-7301.
    [18]Huang, C.; Wen, L.; Liu, H.; Li, Y.; Liu, X.; Yuan, M.; Zhai, J.; Jiang, L.; Zhu, D. Controllable Growth of 0D to Multidimensional Nanostructures of a Novel Porphyrin Molecule. [J]Adv. Mater.2009,21,1721-1725.
    [19]Ma, P.; Chen, Y.; Sheng, N.; Bian, Y.; Jiang, J. Synthesis, Characterization and OFET Properties of Amphiphilic Mixed (Phthalocyaninato)(porphyrinato)europium(III) Complexes. [J] Eur. J. Inorg. Chem.2009,954-960.
    [20]Ulman, A.; Manassen, J. Synthesis of New Tetraphenylporphyrin Molecules Containing Heteroatoms other than Nitrogen. I. Tetraphenyl-21,23-Dithiaporphyrin. [J] J. Am. Chem. Soc.1975,97, 6540-6544.
    [21]Kim,Y. H.; Jeong, D. H.; Kim, D.; Jeoung, S. C.; Cho, H. S.; Kim, S. K.; Aratani, N.; Osuka, A. Photophysical Properties of Long Rodlike Meso-Meso-Linked Zinc(II) Porphyrins Investigated by Time-Resolved Laser Spectroscopic Methods. [J] J. Am. Chem. Soc.2001,123,76-86.
    [22]Kasha, M.; Rawls, H. R.; EI-Bayoumi, M. A. The Exciton Model in Molecular Spectroscopy. [J] Pure Appl. Chem.1965,11,371-392.
    [23]Balakrishnan, K.; Datar, A.; Naddo, T.; Huang, J.; Oitker, R.; Yen, M.; Zhao, J.; Zang, L. Effect of Side-Chain Substituents on Self-Assembly of Perylene Diimide Molecules:Morphology Control. [J] J. Am. Chem. Soc.2006,128, 7390-7398.
    [24]Minch, B. A.; Xia, W.; Donley, C. L.; Hernandez, R. M.; Carter, C.; Carducci, M. D.; Dawson, A.; O'Brien, D. F.; Armstrong, N. R. Octakis(2-benzyloxyethylsulfanyl) Copper (II) Phthalocyanine:a New Liquid Crystalline Discotic Material with Benzyl-Terminated, Thioether-Linked Side Chains. [J] Chem. Mater.2005,17,1618-1627.
    [25]Shirakawa, M.; Kawano, S.-I.; Fujita, N.; Sada, K.; Shinkai, S. Hydrogen-Bond-Assisted Control of H versus J Aggregation Mode of Porphyrins Stacks in an Organogel System. [J] J. Org. Chem.2003,68, 5037-5044.
    [26](a) Kimura, M.; Muto, T.; Takimoto, H.; Wada, K.; Ohta, K.; Hanabusa, K.; Shirai, H.; Kobayash, N. Fibrous Assemblies Made of Amphiphilic Metallophthalocyanines. [J] Langmuir 2000,16,2078-2082. (b) Kimura, M.; Kuroda, T.; Ohta, K.; Hanabusa, K.; Shirai, H.; Kobayashi, N. Self-Organization of Hydrogen-Bonded Optically Active Phthalocyanine Dimers. [J] Langmuir 2003,19,4825-4830. (c) Belarbi, Z.; Sirlin, C.; Simon, J.; Andre, J. J. Electrical and magnetic properties of liquid crystalline molecular materials:lithium and lutetium phthalocyanine derivatives. [J] J. Phys. Chem.1989,93,8105-8110. (d) Kimura, M.; Wada, K.; Ohta, K.; Hanabusa, K.; Shirai, H.; Kobayashi, N. Organic-Inorganic Composites Comprised of Ordered Stacks of Amphiphilic Molecular Disks. [J] J. Am. Chem. Soc.2001,123,2438-2439.
    [27]Gao, Y.; Zhang, X.; Ma, C.; Li, X.; Jiang, J. Morphology-Controlled Self-Assembled Nanostructures of 5,15-Di[4-(5-acetylsulfanylpentyloxy)phenyl]porphyrin Derivatives. Effect of Metal-Ligand Coordination Bonding on Tuning the Intermolecular Interaction. [J] J. Am. Chem. Soc.2008,130,17044-17052.
    [28]Babel, A.; Jenekhe, S. A. High Electron Mobility in Ladder Polymer Field-Effect Transistors. [J] J. Am. Chem. Soc.2005,125,13656-13657.
    [29]Guo, S.; Wang, E. Simple Electrochemical Route to Nanofiber Junctions and Dendrites of Conducting Polymer. [J] Langmuir 2008,24,2128-2132.
    [30](a) Steinhart, M.; Zimmermann, S.; Goring, P.; Schaper, A. K.; Gosele, U.; Weder, C.; Wendorff, J. H. Liquid Crystalline Nanowires in Porous Alumina: Geometric Confinement versus Influence of Pore Walls. [J] Nano Lett.2005,5, 429-434. (b) Hurt, R.; Krammer, G.; Crawford, G.; Jian, K.; Rulison, C. Polyaromatic Assembly Mechanisms and Structure Selection in Carbon Materials. [J] Chem. Mater.2002,14,4558-4565. (c) Jian, K.; Shim, H.-S.; Schwartzman, A.; Crawford, G. P.; Hurt, R. H. Orthogonal Carbon Nanofibers by Template-Mediated Assembly of Discotic Mesophase Pitch. [J] Adv. Mater.2003, 15,164-167.
    [31]Porter, M. D.; Bright, T. B.; Allara, D. L.; Chidseyin, C. E. D. Spontaneously organized molecular assemblies.4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry. [J] J. Am. Chem. Soc.1987,109,3559-3568.
    [32](a) Hill, J. P.; Jin, W.; Kosaka, A.; Fukushima, T.; Ichihara, H.; Shimomura, T.; Ito, K.; Hashizume, T.; Ishii, N.; Aidal, T. Self-Assembled Hexa-peri-hexabenzocoronene Graphitic Nanotube. [J] Science 2004,304, 1481-1483. (b) Yamamoto, Y.; Fukushima, T.; Suna, Y.; Ishii, N.; Saeki, A.; Seki, S.; Tagawa, S.; Taniguchi, M.; Kawai, T.; Aidal, T. Photoconductive Coaxial Nanotubes of Molecularly Connected Electron Donor and Acceptor Layers. [J] Science 2006,314,1761-1764.
    [33]Nakanishi, T.; Ohtani, B.; Uosaki, K. Fabrication and Characterization of CdS-Nanoparticle Mono-and Multilayers on a Self-Assembled Monolayer of Alkanedithiols on Gold. [J] J. Phys. Chem. B 1998,102,1571-1577.
    [34]Liu, W.; Cui, Z.-M.; Liu, Q.; Yan, D.-W.; Wu, J.-Y; Yan, H.-J.; Guo, Y.-L.; Wang, C.-R.; Song, W.-G.; Liu, Y.-Q.; Wan, L. J. Catalytic Synthesis and Structural Characterizations of a Highly Crystalline Polyphenylacetylene Nanobelt Array. [J] J. Am. Chem. Soc.,2007,129,12922-12923.
    [35]Serway, R. A. Principles of Physics,2nd ed. [M] Saunders College:Fort Worth, TX; London,1998; p 602.
    [1]Tsumura, A.; Koezuka, H.; Ando, T. Macromolecular Electronic Device: Field-Effect Transistor with a Polythiophene Thin Film. [J] Appl. Phys. Lett. 1986,49,1210-1212.
    [2](a) Xiao, K.; Liu, Y. Q.; Yu, G.; Zhu, D. B. Influence of the Substrate Temperature during Deposition on Film Characteristics of Copper Phthalocyanine and Field-Effect Transistor Properties. [J] Appl. Phys. A 2003,77, 367-370. (b) Du, C.; Guo, Y.; Liu, Y.; Qiu, W.; Zhang, H.; Gao, X.; Liu, Y.; Qi, T.; Lu, K.; Yu, G. Anthra[2,3-b]benzo[d]thiophene:An Air-Stable Asymmetric Organic Semiconductor with High Mobility at Room Temperature. [J] Chem. Mater.2008,20,4188-1490.
    [3]Snow, A. W.; Barger, W. R. in Phthalocyaniness Properties and Applications. [M] Lezonff, C. C. Lever, A. B. P. Eds; VCH:New York,1989, Vol.1.
    [4](a) Guillaud, G.; Simon, J. Chem. Phys. Lett.1994,219,123-126. (b) Guillaud, G.; Chaabane, R.; Jouve, C.; Gamoudi, M. Transient behaviour of thin film transistors based on nickel phthalocyanine. [J] Thin Solid Films 1995,258, 279-282. (c) Bao, Z.; Lovinger, A. J.; Dodabalapur, A. Organic Field-Effect Transistors with High Mobility Based on Copper Phthalocyanine. [J] Appl. Phys. Lett.1996,69,3066-3068.
    [5]Zeis, R.; Siegrist, T.; Kloc, C. Single-Crystal Field-Effect Transistors Based on Copper Phthalocyanine. [J]Appl. Phys. Lett.2005,86,22103/1-3.
    [6]Noh, Y Y.; Kim, J. J.; Yoshida, Y.; Yase, K. Effect of Molecular Orientation of Epitaxially Grown Platinum(II) Octaethyl Porphyrin Films on the Performance of Field-Effect Transistors. [J]Adv. Mater.2003,15,699-702.
    [7]Ito, S.; Murashima, T.; Uno, H.; Ono, N. A new synthesis of benzoporphyrins using 4,7-dihydro-4,7-ethano-2H-isoindole as a synthon of isoindole. [J] Chem. Commun.1998,1661-1662.
    [8]Checcoli, P.; Conte, G.; Salvatori, S.; Paolesse, R.; Bolognesi, A.; Berliocchi, A.; Brunetti, F.; D'Amico, A.; Di Carlo, A.; Lugli, P. Tetra-phenyl porphyrin based thin film transistors. [J] Synth. Met.2003,138,261-266.
    [9](a) Xiao, K.; Liu, Y.; Huang, X.; Xu, Y.; Yu, G.; Zhu, D. Field-Effect Transistors Based on Langmuir-Blodgett Films of Phthalocyanine Derivatives as Semiconductor Layers. [J] J. Phys. Chem. B 2003,107,9226-9230. (b) Hu, W.; Liu, Y.; Xu, Y.; Liu, S.; Zhou, S.; Zhu, D. The application of Langmuir-Blodgett films of a new asymmetrically substituted phthalocyanine, amino-tri-tert-butyl-phthalocyanine, in diodes and in all organic field-effect-transistors. [J] Synth. Met.1999,104,19-26. (c) Liu, Y.; Hu, W.; Qiu W.; Xu, Y.; Zhou, S.; Zhu, D. The Lamgumir-Blodgett films of substituted phthalocyanine [J] Sensor and Actuators B:Chemical 2001,80,202-207. (d) Chen, S.; Liu, Y.; Xu, Y.; Sun, Y.; Qiu, W.; Sun, X.; Zhu, D. Langmuir-Blodgett film of new phthalocyanine containing oxadiazol groups and its application in field-effect transistor. [J] Syn. Met.2006,156,1236-1240.
    [10](a) Jiang, J.; Ng, D. K. P. Decade Journey in the Chemistry of Sandwich-Type Tetrapyrrolato-Rare Earth Complexes. [J] Acc. Chem. Res 2009,42,79-88. (b) Li, R.; Ma, P.; Dong, S.; Zhang, X.; Chen, Y.; Li, X.; Jiang, J. Synthesis, Characterization, and OFET Properties of Amphiphilic Heteroleptic Tris(phthalocyaninato) Europium(III) Complexes with Hydrophilic Poly(oxyethylene) Substituents. [J] Inorg. Chem.2007,46,11397-11404. (c) Chen, Y.; Su, W.; Bai, M.; Jiang, J.; Li, X.; Liu, Y.; Wang, L.; Wang, S. High Performance Organic Field-Effect Transistors Based on Amphiphilic Tris(phthalocyaninato) Rare Earth Triple-Decker Complexe. [J] J. Am. Chem. Soc,2005,127,15700-15701. (d) Chen, Y.; Li, R.; Wang, R.; Ma, P.; Dong, S.; Gao, Y.; Li, X.; Jinag, J. Effect of Peripheral Hydrophobic Alkoxy Substitution on the Organic Field Effect Transistor Performance of Amphiphilic Tris(phthalcoyaninato) Europium Triple-Decker Complexes. [J] Langmuir 2007, 23,12549-12554. (e) Gao, Y.; Ma, P.; Chen, Y.; Zhang, Y.; Bian, Y.; Li, X.; Jiang, J.; Ma, C. Design, Synthesis, Characterization, and OFET Properties of Amphiphilic Heteroleptic Tris(phthalocyaninato) Europium(III) Complexes. The Effect of Crown Ether Hydrophilic Substituents. [J] Inorg. Chem.2009,48, 45-54.
    [11]Bian, Y.; Jiang, J.; Tao, Y.; Choi, M. T. M.; Li, R.; Ng, A. C. H.; Zhu, P.; Pan, N.; Sun, X.; Arnold, D. P.; Zhou, Z.-Y.; Li, H.-W.; Mak, T. C. W.; Ng, D. K. P. Tuning the Valence of the Cerium Center in (Na)phthalocyaninato and Porphyrinato Cerium Double-Deckers by Changing the Nature of the Tetrapyrrole Ligands; [J] J. Am. Chem. Soc 2003,125,12257-12267.
    [12]Li, J.; Gryko, D.; Dabke, R. B.; Diers, J. R.; Bocian, D. F.; Kuhr, W. G.; Lindsey, J. S. Synthesis of Thiol-Derivatized Europium Porphyrinic Triple-Decker Sandwich Complexes for Multibit Molecular Information Storage. [J] J. Org. Chem.2000,65,7379-7390.
    [13](a)赵鸿斌,宁静恒,林原斌Meso-四(对烷氧苯苯基)卟啉金属配合物的合成和性能研究(Ⅲ).[J]有机化学,2001,21,383-387.(b)宁静恒,赵鸿斌,周宁,顾峥,李纯清meso-四(对烷氧苯基)卟啉金属配合物的合成和性能研究(Ⅳ).[J]有机化学,2005,25,1381-1385.
    [14]Fox, M. A.; Grant, J. V.; Melamed, D.; Torimoto, T.; Liu, C.-Y.; Bard, A. J. Effect of Structural Variation on Photocurrent Efficiency in Alkyl-Substituted Porphyrin Solid-State Thin Layer Photocells. [J] Chem. Mater.1998,10, 1771-1776.
    [15](a) Gross, T.; Chevalier, F.; Lindsey, J. S. Investigation of Rational Syntheses of Heteroleptic Porphyrinic Lanthanide (Europium, Cerium) Triple-Decker Sandwich Complexes. [J] Inorg. Chem.2001,40,4762-4774. (b) Chabach, D.; De Cian, A.; Fischer, J.; Weiss, R.; Bibout, M. E. M. Mixed-Metal Triple-Decker Sandwich Complexes with the Porphyrin/Phthalocyanine/Porphyrin Ligand System. [J] Angew. Chem. Int. Ed. Engl.1996,35,898-899.
    [16](a) Jiang, J.; Choi, M. T. M.; Law, W. F.; Chen, J.; Ng, D. K. P. A new pathway to heteroleptic double-decker (phthalocyaninato)(porphyrinato)europium(III) complexes. [J] Polyhedron 1998,17,3903-3908. (b) Ng, D. K. P.; Jiang, J. Sandwich-Type Heteroleptic Phthalocyaninato and Porphyrinato Metal Complexes. [J] Chem. Soc. Rev.1997,26,433-442. (c) Moussavi, M.; De Cian, A.; Fischer, J.; Weiss, R. (Porphyrinato)bis(phthalocyaninato)dilanthanide(III) complexes presenting a sandwich triple-decker-like structure. [J] Inorg. Chem. 1986,25,2107-2108. (d) Chabach, D.; Tahiri, M.; De Cian, A.; Fischer, J.; Weiss, R.; Bibout, M. Tervalent-Metal Porphyrin-Phthalocyanine Heteroleptic Sandwich-Type Complexes. Synthesis, Structure, and Spectroscopic Characterization of Their Neutral, Singly-Oxidized, and Singly-Reduced States. [J] J. Am. Chem. Soc.1995,117,8548-8556.
    [17]Pan, N.; Jiang, J.; Cui, X.; Arnold, D. P. Templated tetramerization of dicyanobenzenes to form mixed porphyrinato and phthalocyaninato rare earth (Ⅲ) triple-decker complexes. [J] J. Porphyrins Phthalocyanines 2002,6, 347-357.
    [18]Jiang, J.; Bao, M.; Rintoul, L.; Arnold, D. P. Vibrational Spectroscopy of Phthalocyanine and Naphthalocyanine in Sandwich-Type (Na)phthalocyaninato and Porphyrinato Rare Earth Complexes. [J] Coord. Chem. Rev.2006,250, 424-448 and references therein.
    [19]Parra, V.; Del Cano, T.; Rodriguez-Mendez, M. L.; Saja, J. A. De; Aroca, R. F. Electrochemical Characterization of Two Perylenetetracarboxylic Diimides: Langmuir-Blodgett Films and Carbon Paste Electrodes. [J] Chem. Mater.2004, 16,358-364.
    [20]Zhu, P.; Pan, N.; Li, R.; Dou, J.; Zhang, Y.; Cheng, D.; Wang, D.; Ng, D. K. P.; Jiang, J. Electron-Donating Alkoxy-Group-Driven Synthesis of Heteroleptic Tris(phthalocyaninato) Lanthanide(III) Triple-Deckers with Symmetrical Molecular Structure. [J] Chem. Eur. J.2005,1425-1432.
    [21](a) Zaumseil, J.; Sirringhaus, H. Electron and Ambipolar Transport in Organic Field-Effect Transistors. [J] Chem. Rev.2007,107,1296-1323. (b) Wang, J.; Wang, H.; Yan, X.; Huang, H.; Jin, D.; Shi, J.; Tang, Y.; Yan, D. Heterojunction Ambipolar Organic Transistors Fabricated by a Two-Step Vacuum-Deposition Process. [J] Adv. Funct. Mater.2006,16,824-830. (c) Babel, A.; Wind, J. D.; Jenekhe, S. A. Ambipolar Charge Transport in Air-Stable Polymer Blend Thin-Film Transistors. [J] Adv. Funct. Mater.2004,14,891-898.
    [22]PCMODEL for windows Version 6.0, Serena Software.
    [23]Chen, Y.; Liu, H.; Zhu, P.; Zhang, Y.; Wang, X.; Li, X.; Jiang, J. Aggregation Behavior of Heteroleptic Tris(phthalocyaninato) Dysprosium Complexes with Different Alkoxy Chains in Monolayer or Multilayer Solid Films. [J] Langmuir 2005,21,11289-11296.
    [24]Su, W.; Jiang, J.; Xiao, K.; Chen, Y.; Zhao, Q.; Yu, G.; Liu, Y Thin-Film Transistors Based on Langmuir-Blodgett Films of Heteroleptic Bis(phthalocyaninato) Rare Earth Complexes. [J] Langmuir 2005,21, 6527-6531.
    [25](a) Chen, Y.; Zhang, Y.; Zhu, P.; Fan, Y.; Bian, Y.; Li, X.; Jiang, J. Arrangement of Tris(phthalocyaninato) Gadolinium Triple-Decker Complexes with Multi-Octyloxy Groups on Water Surface. [J] J. Colloid and Interface Sci.2006, 303,256-263. (b) Wang, X.; Chen, Y.; Liu, H.; Jiang, J. Spectroscopic and Structural Characteristics of Langmuir-Blodgett Films of Bis[2,3,9,10,16,17,24,25-octakis(octyloxy) phthalocyaninato] Rare Earth Complexes. [J] Thin Solid Films 2006,496,619-625. (c) Chen, Y.; Liu, H.; Pan, N.; Jiang, J. Langmuir-Blodgett Films of Substituted Bis(naphthalocyaninato) Rare Earth Complexes:Structure and Interaction with Nitrogen Dioxide. [J] Thin Solid Films 2004,460,279-285.
    [26](a) Yoneyama, M.; Sugi, M.; Saito, M.; Ikegama, K.; Kuroda, S.; Iizima, S. Photoelectic Properties of copper phthalocyanine Langmuir-Blodgett Film [J] Jpn. J. Appl. Phys.1986,25,961-965. (b) Kobayashi, N.; Lam, H.; Nevin, W. A. Janda, P.; Leznoff, C. C.; Koyama, T.; Monden, A.; Shiral, H. Sythesis, Spectroscopy, Electrochemistry, Spectroelectrochemistry, Langmuir-Blodgett Film Formation, and Molecular-Orbital Calculations of Planar Binuclear Phthalocyanines. [J] J. Am. Chem. Soc.1994,116,879-890.
    [27](a) Wurthner, F. Perylene Bisimide Dyes as Versatile Building Blocks for Functional Supramolecular Architectures. [J] Chem. Commun.2004,14, 1564-1579. (b) Balakrishnan, K.; Datar, A.; Naddo, T.; Huang, J.; Oitker, R.; Yen, M.; Zhao, J.; Zang, L. Effect of Side-Chain Substituents on Self-Assembly of Perylene Diimide Molecules:Morphology Control. [J] J. Am. Chem. Soc.2006, 128,7390-7398. (c) Kazmaier, P. M.; Hoffmann, R. Theoretical Study of Crystallochromy. Quantum Interference Effects in the Spectra of Perylene Pigments. [J] J. Am. Chem. Soc.1994,116,9684-9691. (d) Balakrishnan, K.; Datar, A.; Oitker, R.; Chen, H.; Zuo, J.; Zang, L. Nanobelt Self-Assembly from an Organic n-Type Semiconductor:Propoxyethyl-PTCDI. [J] J. Am. Chem. Soc. 2005,127,10496-10497.
    [28]Sun, X.; Li, R.; Wang, D.; Dou, J.; Zhu, P.; Lu, F.; Ma, C.; Choi, C.-F.; Cheng, D. Y. Y.; Ng, D. K. P.; Kobayashi, N.; Jiang J. Synthesis and Characterization of Mixed Phthalocyaninato and meso-Tetrakis(4-chlorophenyl)porphyrinato Triple-Decker Complexes-Revealing the Origin of Their Electronic Absorptions. [J] Eur. J. Inorg. Chem.2004,19,3806-3813.
    [29]Kasha, M.; Rawls, H. R.; EI-Bayoumi, M. A. The Exciton Model in Molecular Spectroscopy. [J] Pure Appl. Chem.1965,11,371-392.
    [30]Cook, M. J.; Chambrier, I. in Porphyrin Handbook Vol 17/Phthalocyanines: Properties and Materials (Eds:Kadsh, K. M.; Smith, K. M.; Guilard, R.). [M] Elsevier Science, USA 2003, pp.37-127.
    [31]Katz, H. E.; Bao, Z. The Physical Chemistry of Organic Field-Effect Transistors. [J] J. Phys. Chem. B 2000,104,671-678.
    [32]Sze, S. M. Physics of Semiconductor Devices. [M] John Wiley &Sons, New York 1981.
    [33]Chen, H. Z.; Ling, M. M.; Mo, X.; Shi, M. M.; Wang, M.; Bao, Z. Air Stable n-Channel Organic Semiconductors for Thin Film Transistors Based on Fluorinated Derivatives of Perylene Diimides. [J] Chem. Mater.2007,19, 816-824.
    [34]Sitites, J. G.; McCarty, C. N.; Quill, L. L. The Rare Earth Metals and their Compounds. Ⅷ. An Improved Method for the Synthesis of Some Rare Earth Acetylacetonates. [J] J. Am. Chem. Soc.1948,70,3142-3143.
    [35]Sheng, N.; Li, R.; Choi, C.-F.; Su, W.; Ng, D. K. P.; Cui, X.; Yoshida, K.; Kobayashi, N.; Jiang, J. Heteroleptic Bis(Phthalocyaninato) Europium(III) Complexes Fused with Different Numbers of 15-Crown-5 Moieties. Synthesis, Spectroscopy, Electrochemistry, and Supramolecular Structure. [J] Inorg. Chem. 2006,45,3794-3802.
    [1]Tsumura, A.; Koezuka, H.; Ando, T. Macromolecular Electronic Device: Field-Effect Transistor with a Polythiophene Thin Film. [J] Appl. Phys. Lett. 1986,49,1210-1212.
    [2]Horowitz, G. Organic Field-Effect Transistors. [J] Adv. Mater.1998,10,365-377.
    [3]Fichou, D. Structural Order in Conjugated Oligothiophenes and Its Implications on Opto-Electronic Devices. [J] J. Mater. Chem.2000,10,571-588.
    [4]Katz, H. E.; Bao, Z. The Physical Chemistry of Organic Field-Effect Transistors. [J] J. Phys. Chem. B 2000,104,671-678.
    [5]Katz, H. E.; Bao, Z.; Gilat, S. L. Small-Molecule Organic Semiconductors. [J] Acc. Chem. Res.2001,34,359-369.
    [6]Wurthner, F. Plastic Transistors Reach Maturity for Mass Applications in Microelectronics. [J] Angew. Chem. Int. Ed.2001,40,1037-1039.
    [7]Dimitrakopoulos, C. D.; Malenfant, P. R. L. Malenfant, P. R. L. Organic Thin Film Transistors for Large Area Electronics. [J] Adv. Mater.2002,14,99-117.
    [8]Veres, J.; Ogier, S.; Lloyd, G.; Leeuw, D. De. Gate Insulators in Organic Field-Effect Transistors. [J] Chem. Mater.2004,16,4543-4555.
    [9]Sun, Y.; Liu, Y.; Zhu, D. Advances in Organic Field-Effect Transistors. [J] J. Mater. Chem.2005,15,53-65.
    [10]Sirringhaus, H. Device Physics of Solution-Processed Organic Field-Effect Transistors. [J] Adv. Mater.2005,17,2411-2425.
    [11]Bao, Z. Materials and Fabrication Needs for Low-Cost Organic Transistor Circuits. [J] Adv. Mater.2000,12,227-230.
    [12]Xiao, K.; Liu, Y. Q.; Huang, X. B.; Yu, Y. Xu, G.; Zhu. D. B. Field-Effect Transistors Based on Langmuir-Blodgett Films of Phthalocyanine Derivatives as Semiconductor Layers. [J] J. Phys. Chem. B 2003,107,9226-9230.
    [13]Zhang, J.; Wang, J.; Wang, H.; Yan, D. Organic Thin-Film Transistors in Sandwich Configuration. [J] Appl. Phy. Lett.2004,84,142-144.
    [14]Bao, Z.; Lovinger, A. J.; Dodabalapur, A. Organic Field-Effect Transistors with High Mobility Based on Copper Phthalocyanine. [J] Appl. Phys. Lett.1996,69, 3066-3068.
    [15]Bao, Z.; Lovinger, A. J.; Brown, J. New Air-Stable n-Channel Organic Thin Film Transistors. [J] J. Am. Chem. Soc.1998,120,207-208.
    [16]Su, W.; Jiang, J.; Xiao, K.; Chen, Y.; Zhao, Q.; Yu, G.; Liu, Y. Thin-Film Transistors Based on Langmuir-Blodgett Films of Heteroleptic Bis(phthalocyaninato) Rare Earth Complexes. [J] Langmuir 2005,21, 6527-6531.
    [17]Chen, Y.; Su, W.; Bai, M.; Jiang, J. High Performance Organic Field-Effect Transistors Based on Amphiphilic Tris(phthalocyaninato) Rare Earth Triple-Decker Complexes. [J] J. Am. Chem. Soc.2005,127,15700-15701.
    [18]Li, R.; Ma, P.; Dong, S.; Zhang, X.; Chen, Y.; Li, X.; Jiang, J. Synthesis, Characterization, and OFET Properties of Amphiphilic Heteroleptic Tris(phthalocyaninato) Europium(III) Complexes with Hydrophilic Poly(oxyethylene) Substituents. [J] Inorg. Chem.2007,46,11397-11404.
    [19]Gao, Y.; Ma, P.; Chen, Y.; Zhang, Y.; Bian, Y.; Li, X.; Jiang, J.; Ma, C. Design, Synthesis, Characterization, and OFET Properties of Amphiphilic Heteroleptic Tris(phthalocyaninato) Europium(III) Complexes. The Effect of Crown Ether Hydrophilic Substituents. [J] Inorg. Chem.2009,48,45-54.
    [20]Schouten, P. G.; Warman, J. M.; Haas, M. P. De; Fox, M. A.; Pan, H. L. Charge migration in supramolecular stacks of peripherally substituted porphyrins. [J] Nature 1991,353,736-737.
    [21]Noh, Y Y.; Kim, J. J.; Yoshida, Y.; Yase, K. Effect of Molecular Orientation of Epitaxially Grown Platinum(II) Octaethyl Porphyrin Films on the Performance of Field-Effect Transistors. [J]Adv. Mater.2003,15,699-702.
    [22]Minari, T.; Seto, M.; Nemoto, T.; Isoda, S.; Tsukagoshi, K.; Aoyagi, Y. Molecular-packing-enhanced charge transport in organic field-effect transistors based on semiconducting porphyrin crystals. [J] Appl. Phys. Lett.2007,91, 123501.
    [23]Aramaki, S.; Sakai, Y.; Ono, N. Solution-processible organic semiconductor for transistor applications:Tetrabenzoporphyrin. [J] Appl. Phys. Lett.2004,84, 2085-2087.
    [24]Shea, P. B.; Kanicki, J.; Ono, N. Field-effect mobility of polycrystalline tetrabenzoporphyrin thin-film transistors. [J] J. Appl. Phys.2005,98,014503.
    [25]Shea, P.; Johnson, A. R.; Ono, N.; Kanicki, J. Electrical properties of staggered electrode, solution-processed, polycrystalline tetrabenzoporphyrin field-effect transistors. [J] IEEE T Electron Dev 2005,52,1497-1503.
    [26]Shea, P. B.; Chen, C.; Kanicki, J.; Pattison, L. R.; Petroff, P.; Yamada, H.; Ono, N. Polycrystalline tetrabenzoporphyrin organic field-effect transistors with nanostructured channels. [J] Appl. Phys. Lett.2007,90,233107.
    [27]Shea, P. B.; Kanicki, J.; Pattison, L. R.; Petroff, P.; Kawano, M.; Yamada, H.; Ono, N. Solution-processed nickel tetrabenzoporphyrin thin-film transistors. [J] J. Appl. Phys.2006,100,034502.
    [28]Shea, P. B.; Pattison, L. R.; Kawano, M.; Chen, C.; Chen, J.; Petroff, P.; Martin, D. C.; Yamada, H.; Ono, N.; Kanicki, J. Solution-processed polycrystalline copper tetrabenzoporphyrin thin-film transistors. [J] Synth. Met.2007,157, 190-197.
    [29]Dhoot, A. S.; Aramaki, S.; Moses, D.; Heeger, A. Metal-Insulator Transition in Solution-Processible Porphyrinic Field-Effect Transistors. [J] Adv. Mater.2007, 19,2914-2917.
    [30]Che, C.; Xiang, H.; Chui, S. S.; Xu, Z. X.; Roy, V. A. L.; Yan, J. J.; Fu, W. F.; Lai, P. T.; Willianms, I. D. A High-Performance Organic Field-Effect Transistor Based on Platinum(II) Porphyrin:Peripheral Substituents on Porphyrin Ligand Significantly Affect Film Structure and Charge Mobility. [J] Chem. Asian. J. 2008,3,1092-1103.
    [31]Checcoli, P.; Conte, G.; Salvatori, S.; Paolesse, R.; Bolognesi, A.; Berliocchi, A.; Brunetti, F.; D'Amico, A.; Di Carlo, A.; Lugli, P. Tetra-phenyl porphyrin based thin film transistors. [J] Synth. Met.2003,138,261-266.
    [32]Cai, X.; Zhang, Y.; Qi, D.; Jiang, J. Density Functional Theory Study on the Semiconducting Properties of Metal Phthalocyanine Compounds:Effect of Axially Coordinated Ligand. [J] J. Phy. Chem. A.2009,113,2500-2506.
    [33]Zhang, Y.; Cai, X.; Bian, Y.; Li, X.; Jiang, J. Heteroatom Substitution of Oligothienoacenes:From Good p-Type Semiconductors to Good Ambipolar Semiconductors for Organic Field-Effect Transistors. [J] J. Phys. Chem. C 2008, 112,5148-5159.
    [34]宁静恒,赵鸿斌,周宁,顾峥,李纯清meso-四(对烷氧苯基)卟啉金属配 合物的合成和性能研究(Ⅳ).[J]有机化学,2005,25,1381-1385.
    [35]Sheldrick, G. M. SADABS, A Software for Empirical Absorption Correction, University of Gottingen, Germany,1997.
    [36]SHELXL Reference Manual, Version 5.1, Bruker Analytical X-Ray Systems, Madison, WI,1997.
    [37]Zaumseil, J.; Sirringhaus, H. Electron and Ambipolar Transport in Organic Field-Effect Transistors. [J] Chem. Rev.2007,107,1296-1323.
    [38]Tang, Q. X.; Li, H. X.; He, M.; Hu, W. P.; Liu, C. M.; Chen, K. Q.; Wang, C.; Liu, Y. Q.; Zhu, D. B. Low Threshold Voltage Transistors Based on Individual Single-Crystalline Submicrometer-Sized Ribbons of Copper Phthalocyanine. [J] Adv. Mater.2006,18,65-68.
    [39]Wang, H. F.; Wen, Y. G.; Yang, X. D.; Wang, Y.; Zhou, W. Y.; Zhang, S. M.; Zhan, X. W.; Liu, Y.; Shuai, Z. G.; Zhu D. B. Fused-Ring Pyrazine Derivatives for n-Type Field-Effect Transistors. [J] ACS Appl. Mater. Interfaces 2009,1, 1122-1129.
    [40]Cook, M. J.; Chambrier, I. in Porphyrin Handbook Vol 17/Phthalocyanines: Properties and Materials (Eds:K. M. Kadsh, K. M. Smith, R. Guilard). [M] Elsevier Science, USA 2003, pp.37-127.
    [41]Paulus, W.; Schober, H.; Eibl, S.; Johnson, M.; Berthier, T.; Hernandez, O.; Ceretti, M.; Plazanet, M.; Conder, K.; Lamberti, C. Lattice Dynamics To Trigger Low Temperature Oxygen Mobility in Solid Oxide Ion Conductors. [J] J. Am. Chem. Soc.2008,130,16080-16085.
    [42]Zhang, Y.; Cai, X.; Jiang, J. Charge Transfer Properties of Bis(phthalocyaninato) Rare Earth (Ⅲ) Complexes:Intrinsic Ambipolar Semiconductor for Field Effect Transistors. [J] J. Phys. Chem. C 2008,112, 14579-14588.
    [43]Kuo, M.-Y.; Chen, H.-Y.; Chao, I. Cyanation:Providing a Three-in-One Advantage for the Design of n-Type Organic Field-Effect Transistors. [J] Chem. Eur.J.2007,13,4750-4758.
    [44]Newman, C. R.; Frisbie, C. D.; Silva, D. A. Da; Bredas, J.-L.; Ewbank, P. C.; Mann, K. R. Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors. [J] Chem. Mater.2004,16,4436-4451.
    [45]Marcus, R A. Annu. Rev. Phys. Chem.1964,15,155-196.
    [46]Yin, S.; Yi, Y.; Li, Q.; Yu, G.; Liu, Y.; Shuai, Z. Balanced Carrier Transports of Electrons and Holes in Silole-Based Compounds -A Theoretical Study. [J] J. Phys. Chem. A 2006,110,7138-7143.
    [47]Yang, X.; Wang, L.; Wang, C.; Long, W.; Shuai, Z. Influences of Crystal Structures and Molecular Sizes on the Charge Mobility of Organic Semiconductors:Oligothiophenes. [J] Chem. Mater.2008,20,3205-3211.
    [48]Valeev, E. F.; Coropceanu, V.; da Silva Filho, D. A.; Salman, S.; Bredas, J.-L. Effect of Electronic Polarization on Charge-Transport Parameters in Molecular Organic Semiconductors. [J] J. Am. Chem. Soc.2006,128, 9882-9886.
    [49]Grzegorczyk, W. J.; Savenije, T. J.; Valeton, J. J. P.; Fratiloiu, S.; Grozema, F. C.; de Leeuw, D. M.; Siebbeles, L. D. A. Optical and Conductive Properties of Large-Area Liquid Crystalline Monodomains of Terthiophene Derivatives. [J] J. Phys. Chem. C 2007,111,18411-18416.
    [50]Prins, P.; Senthilkumar, K.; Grozema, F. C.; Jonkheijm, P.; Schenning, A. P. H. J.; Meijer, E. W.; Siebbeles, L. D. A. Charge Transport in Self-Organized π-Stacks of p-Phenylene Vinylene Oligomers. [J] J. Phys. Chem.B 2005,109,18267-18274.
    [51]Yang X.; Li Q.; Shuai Z. Theoretical modelling of carrier transports in molecular semiconductors:molecular design of triphenylamine dimmer systems. [J] Nanotechnology 2007,18,424029.
    [52]Song Y.; Di C.; Yang X.; Li S.; Xu W.; Liu Y.; Yang L.; Shuai Z.; Zhang D.; Zhu D. A Cyclic Triphenylamine Dimer for Organic Field-Effect Transistors with High Performance. [J] J. Am. Chem. Soc.2006,128, 15940-15941.
    [53]Schein L. B.; McGhie A. R. Band-hopping mobility transition in naphthalene and deuterated naphthalene. [J] Phys. Rev. B 1979,20, 1631-1639.
    [54]Deng W.; Ⅲ Goddard W. A. Predictions of Hole Mobilities in Oligoacene Organic Semiconductors from Quantum Mechanical Calculations. [J] J. Phys. Chem. B 2004,108,8614-8621.
    [55]Li L.; Tang Q.; Li H.; Yang X.; Hu W.; Song Y.; Shuai Z.; Xu W.; Liu Y.; Zhu D. An Ultra Closely π-Stacked Organic Semiconductor for High Performance Field-Effect Transistors. [J]Adv. Mater.2007,19,2613-2617.
    [56]Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. [J] J. Chem. Phys.1985,82,299-310.
    [57]Jr. Dunning, T. H.; Hay, P. J. In Modern Theoretical Chemistry. [M] (Ed.: Schaefer, H. F. Ⅲ), Plenum, New York,1976; Vol.3, Por 1.
    [58]Zhang Y.; Cai X.; Zhang X.; Xu H.; Liu Z.; Jiang J. Time Dependent Density Functional Theory Studies of the Electronic Absorption Spectra of Metallophthalocyanines of Group IVA. [J] Int. J. Quant. Chem.2007,107, 952-961.
    [59]Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski,J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision B.05; Gaussian, Inc.:Pittsburgh, PA,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700