酞菁类化合物的设计合成及结构与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酞菁(Pc)作为一种共面的18π电子共轭大环体系被证实与自然界存在的卟啉十分类似。酞菁的一个显著的特性是它的多功能性和可剪裁性,通过在酞菁环上进行一些化学修饰,可以很好的调整其性能。其大环周围苯环上的每一个位置均可以被取代基所取代,而且,取代基的位置和种类大大影响着酞菁的物理和化学性质。中心金属离子同样影响到酞菁的结构和物化性能,对于过渡金属,一般形成单层酞菁配合物,而离子半径较大、配位数也较大的一些金属如稀土金属却以夹心三明治型配合物的形式存在。
     近年来,酞菁配合物以其非同寻常的光、电、热、磁性质和作为新型的分子导体、分子磁体、分子电子元器件等功能材料的巨大的应用潜力,吸引着人们越来越浓厚的研究兴趣。而怎样去寻找一个有着新颖性质的结构一直是困扰人们的难题,本论文主要就这种有着优异剪裁性的酞菁类化合物的研究来寻找结构和性能间的联系,并尝试设计合成了一些具有预期性质的酞菁类化合物并对其进行了深入的研究。
     1、酞菁体系中取代基效应的研究
     酞菁(Pc)大环周围的苯环上的每一个位置均可以被取代基所取代,所以在酞菁环上一共有16个可取代的位置。其中1,4,8,11,15,18,22,25被称为非周边位置(np-site)或α位;2,3,9,10,16,17,23,24称为周边位置(p-site)或β位。其中取代基的位置和种类大大影响着卟啉、酞菁的物理和化学性质。由于分子间较强的相互作用,绝大多数未取代酞菁及其金属配合物在水和有机溶剂中难以溶解,因而限制了它们的应用研究。若在酞菁分子上引入取代基,尤其是具有较大空间阻碍的取代基,则可以有效地阻碍分子之间的聚集,提高其在有机溶剂中的溶解度。除此之外,引入不同的取代基还可以调变酞菁的性质,使之更加适应作为特定材料的需要。本章重点研究了各种不同取代基,不同取代位置的自由酞菁的电化学性质。实验结果表明:烷基,烷硫基在自由酞菁的边缘位置取代对酞菁体系的电化学基本没有影响。烷氧基无论是在α位还是β位都作为给电子基团出现,而酚硫基则与炔基一样均为吸电子基团。酚氧基的情况比较特殊,随着酚氧基的加入,第一氧化电位增大而第一还原电位减小。为了加深对酞菁体系中取代基效应的理解,我们使用PM3算法对各种取代自由酞菁的分子轨道(MO)进行了模拟计算,研究了分子轨道(MO)与其电化学性质间的内在关系。
     2、酞菁体系中π共轭效应的研究
     酞菁具有特殊的二维共轭π-电子结构,共轭的大环体系有强烈的π-π电子相互作用,这是该类化合物具有特殊的光、电、磁学等特殊性质的结构基础。尽管与酞菁相比研究的比较少,其环扩展和收缩的类似物,即萘菁(Nc)和四氮杂卟啉(TAP),近年来也引起了越来越多的注意。为对这些酞菁类化合物的性质获得更深入的理解,本章设计合成了两种办法改变酞菁的π共轭体系。一种是平面扩展或收缩酞菁大环来改变其π体系大小;另一种是将酞菁大环立体化,制备成三明治型的酞菁双层和π共轭体系更大的萘菁的双层。研究结果表明随着平面π共轭体系的增大,化合物的紫外可见光谱和荧光光谱中最大吸收或激发波长均逐步红移。电化学中第一氧化电位与第一还原电位及第一氧化和还原的电势差均逐步减小。同时可以看出外围苯环单元的取代基效应小于内侧苯环的取代基效应。对于立体化的酞菁双层和萘菁双层,第一氧化和第一还原过程的半波电位,随着稀土原子半径的减小而轻微地线性地向负方向移动。化合物的第二和第三氧化电位则恰恰相反,随着稀土原子半径的减小线性增大。第二还原到第四还原电位则几乎不随稀土原子半径的变化而变化。比较萘菁双层和酞菁双层还发现,环共轭体系的增大在一定程度上会削弱金属大小对配合物的影响。
     3、一种具有特殊超分子结构的酞菁锌的设计合成
     酞菁由于其大的π共轭体系,良好的热稳定性,易于裁剪和衍生等性质,在超分子体系的研究中早就被人们所重视。除了取代基和中心金属外,排列方式特别是晶体中分子的排列方式也是影响酞菁性质的重要因素。从二十世纪八十年代起,人们广泛研究了具有各种取代基和各种中心金属的酞菁配合物的晶体结构和性质。尽管人们试图在晶体中将酞菁体系直接使用氢键连接形成面对面堆积的形式,但除IIA的Mg和Be外,由于酞菁分子间很强的π-π相互作用,水很难插入两个酞菁大环之间与金属配位,使得由中心金属配位水的氢键连接的具有面对面超分子结构的酞菁体系很难实现。
     本章通过设计合成完成了这个难题,并对这种由氢键连接的伪三明治型的锌酞菁进行了完整的表征和电化学性质研究,并从晶体结构入手辅以理论计算解释了这种具有C_4对称性的α位烷氧基四取代锌酞菁进行这样一种特殊超分子组装的内在原因。
     4、一系列双亲性酞菁的设计合成及OFET性质研究
     由于酞菁衍生物与其它有机半导体材料相比有着良好的化学稳定性和热稳定性,其薄膜被广泛用作场效应晶体管(FET)的组成部分。大多数以酞菁为材料的器件都是用真空蒸镀的方法制作的。近年来,以溶液为基础的薄膜沉积(如旋转涂膜、分子自组装膜和LB膜)以及印刷方法作为公认的低成本制备方法,引起人们越来越多的关注。众所周知,双层酞菁稀土配合物在普通有机溶剂中具有良好的可溶性以及成膜性,而且由于其特殊的三明治结构,分子内酞菁环之间存在着强烈的π-π相互作用,人们期待以这类分子材料作为本征的半导体比其单层相似物在有机场效应晶体管(OFET)领域起到更重要的作用。本章设计合成了以氧乙烯链为亲水层,烷氧链为疏水层,具有双亲性的三层三明治型酞菁配合物。通过改变烷氧链的长度来改变配合物的双亲性,以期达到调整膜的组成而调控其OFET性质的目的。我们对这一系列双亲性酞菁进行了紫外、红外、质谱和元素分析等完整的表征,研究了其电化学性质,并使用LB膜沉积的方法制备了有机场效应晶体管并研究了它们的场效应迁移率,揭示了在这种带有开链冠醚的三层酞菁化合物中烷氧链的长度和场效应迁移率之间的关系,并阐释了其内在原因。
Phthalocyanines and porphyrins are two important classes of pigments which have found their applications in various disciplines. Both series belong to a cyclic tetrapyrrole family in which the four isoindole or pyrrole nitrogen atoms are able to complex with a range of metal ions. With large metal centers which favor octa-coordination (e.g. rare earths, actinides, group 4 transition metals, and main group elements such as In, Sn, As, Sb, and Bi), sandwich-type complexes in the form of double- and triple-deckers can be formed. Due to the intramolecularπ-πinteractions and the intrinsic nature of the metal centers, these novel complexes display characteristic features, which cannot be found in their non-sandwich counterparts, enabling them to be used in different areas. They are versatile materials for electrochromic displays, field effect transistors, gas sensors and as structural and spectroscopic models for the special pair found in the bacterial photosynthetic reaction centers.
     Our research work has been focused on the following respects:
     1. The Electron-donating or -withdrawing Nature of Substituents Revealed By the Electrochemistry of Metal-free Phthalocyanines
     The effect of substituents on the electrochemistry of metal-free phthalocyanines was examined for seventeen phthalocyanine compounds, which also provides new information about the electronic donating or withdrawing nature of various substituents, namely alkoxy. alkylthio, alkyl, alkynyl, phenyloxy, and phenylthio groups attached onto the phthalocyanine system, from the viewpoint of electrochemistry. Most of the effects of peripheral and non-peripheral substitution on the electrochemistry of metal-free phthalocyanines have been reasonably explained by considering the energy levels of frontier molecular orbitals of corresponding compounds, which were obtained by the calculations using semi-empirical PM3 method.
     2.Study ofπ-conjugated Systems in Ring-Fused Phthaloyanine Derivatives and Bis-(na)pthalocyaninato Double-decker Complexes
     We have prepared a series of Pc derivatives with variousπ-conjugated systems by fusing benzo rings and quantitatively characterized the electronic structures. The LUMO and HOMO were found to have a parallel relationship. The shift of the redox potentials, and the relationship between the frontier orbitals and fused benzo rings were quantitatively characterized in terms of the CV measurements and MO calculations. Moreover, the electrochemistry of homoleptic bis(naphthalocyaninato) double-decker complexes for the whole series of tervalent rare earths M(TBNc)_2 has been systematically studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The half-wave potentials of all the oxidations and the first reduction for double-decker complexes are dependent on the size of the metal center. The difference between the redox potentials of the first and second reductions for M~Ⅲ(TBNc)_2, which represents the potential difference between the first oxidation and first reduction of [M~Ⅲ(TBNc)_2]~-, lies in the range 1.09-0.95 V and gradually diminishes along with the lanthanide contraction, indicating increasedπ-πinteraction in the double-deckers in the same order. Comparison of electrochemical characteristics between M(TBNc)_2 and M(TBPc)_2 reveals that the extension on the ligand conjugated system from phthalocyanine to naphthalocyanine attenuates the ring-to-ring separation effect on the redox potentials of the double-deckers of the whole series of tervalent lanthanides.
     3. H_2O-involved hydrogen bonds in pseudo double-decker supramolecular structure of phthalocyaninato zinc complex1,8,15,22-Tetrakis(3-pentyloxy)phthalocyaninato zinc complex Zn[Pc(α-OC_5H_(11))_4] has been prepared by treating metal-free phthalocyanine H_2Pc(α-OC_5H_(11))_4 with Zn(OAc)_2·2H_2O in refluxing n-pentanol. X-ray single crystal analysis reveals that two water molecules exist between two Zn[Pc(α-OC_5H_(11))_4] molecules. Each H_2O coordinates with one zinc cation and hydrogen bonds with an aza-nitrogen atom and its neighboring oxygen atom from the alkoxy substituent of another molecule, forming a pseudo-double-decker supramolecular structure in the crystals with a ring-to-ring separation of 3.728 A. This, to the best of our knowledge, represents the first example of phthalocyaninato transition metal complexes, for which the H_2O-involved hydrogen bonds connect two phthalocyanine rings to form a pseudo-double-decker supramolecular structure {Zn[Pc(α-OC_5H_(11)_4]·H_2O}_2. To enhance understanding the existence of hydrogen bonds in the solid state crystal structure of this compound, theoretical calculations on the stabilization energy in a system composed of two Zn[Pc(α-OC_5H_(11))_4] moieties as well as in the supramolecular structure {Zn[Pc(α-OC_5H_(11_)_4]·H_2O}_2 have been performed using the density functional theoretical method. Comparison in the calculated stabilization energy between these two systems together with the nature bond orbital analysis over the later supramolecular structure reveals the dominant H_2O-involved hydrogen bonding interaction over theπ-πinteraction in {Zn[Pc(α-OC_5H_(11))_4]·H_2O}_2.
     4. Synthesis, Characterization, and OFET Properties of Amphiphilic Heteroleptic Tris(phthalocyaninato) Europium(Ⅲ) Complexes with Hydrophilic Poly(oxyethylene) Substituents
     A series of amphiphilic heteroleptic tris(phthalocyaninato) europium complexes with hydrophilic poly(oxyethylene) heads and hydrophobic alkoxy tails {Pc[(OC_2H_4)_2OCH+3]_8}Eu{Pc[(OC_2H_4)_2OCH_3]_8}Eu[Pc(OC_nH_(2n+1))_8] (n = 6, 8, 10, 12) (1-4) were designed and prepared from the reaction between homoleptic bis(phthalocyaninato) europium compound {Pc[(OC_2H_4)_2OCH_3]_8}Eu{Pc[(OC_2H_4)_2OCH_3]_8} and metal free 2,3,9,10,16,17,23,24-octakis(alkoxy) phthalocyanine H_2Pc(OC_nH_(2n+1))_8 (n = 6, 8. 10,12) in the presence of Eu(acac)_3·H_2O (Hacac = acetylacetone) in boiling 1,2,4-trichlorobenzene (TCB). These novel sandwich triple-decker complexes have been characterized by a wide range of spectroscopic methods and electrochemically studied. With the help of Langmuir-Blodgett (LB) technique, these typical amphiphilic triple-decker complexes have been fabricated into organic field effect transistors (OFET) with unusual bottom contact configuration. The devices display good OFET performance with the carrier mobility for holes in the direction parallel to the aromatic phthalocyanine rings, which shows dependence on the length of hydrophobic alkoxy side chains, decreasing from 0.46 for 1 to 0.014 cm~2 V~(-1) s~(-1) for 4 along with the increase in the carbon number in the hydrophobic alkoxy side chains.
引文
[1] H.Ficsher et al. Die Chemie des pyrrols [M] Vol 2, part 1, AkademicVerlagsegesllschft, Liepzig, 1937,158.
    
    [2] J. Zelaski. Porphyrin [J] Z. Physiol. Chem., 1902, 37, 54.
    
    [3] C. P. Wang et al. Lanthanide porphyrin complexes. Potential new class of nuclearmagnetic resonance dipolar probe. [J] J. Am. Chem. Soc, 1974, 96, 7149-7150.
    
    [4] C. P. Wang et al. Porphyrin complexes. [J] Tetrahydron Lett., 1975, 31,237.
    
    [5]计亮年,彭小彬,黄锦汪.金属卟啉配合物模拟某些金属酶的研究进展自然科学 进展[J]2002,12,120-129.
    
    [6] J. S. Sessler, S. J. Weghom. Expended, Contracted, 81 isomeric porphyrins [M] Pergamon, Perface, 1997.
    
    [7]李德平,胡静.血卟啉类化合物诊治肿瘤的研究进展及应用[J]中国生化药物杂 志,2003,24,162-163.
    
    [8]杨新国,孙景志,汪茫,陈红征,黄骥.卟啉类光电功能材料研究进展[J]功能 材料,2003,34,113-117.
    
    [9] (a) N. Uyeda, T. Kobayashi, E. Suito, Y. Harada, M. Watanabe. Molecular image resolution in electron microscopy [J] J. Appl. Phys., 1972,43, 5181.
    
    (b) T. Kobayashi, S. Isoda. Lattice Images and Molecular Images of Organic Materials [J] J. Mater. Chem. 1993,3,1.
    
    [10] Eley, D. D. Phthalocyanines as semiconductors [J] Nature 1948,162, 819.
    
    [11] (a) Schramm, C. J., Stojakovic, D. R., Hoffman, B. M.&Marks, T. J.; New low-dimensional molecular metals: single-crystal electrical conductivity of nickel phthalocyanine iodide [J] Science, 1978, 200, 47.
    
    (b) Marks, T. J., Electrically conductive metallomacrocyclic assemblies; [J] Science, 1985,227, 881.
    
    [12] (a) Bott, B., Jones, T. A.; A highly sensitive NO_2 sensor based on electrical conductivity changes in phthalocyanine films; [J] Sensors&Actuators, 1984, 5, 43.
    
    (b)Wright, J. D.; Gas adsorption on phthalocyanines and its effects on electrical properties. [J] Prog. Surf. Sci. 1989, 31,1.
    
    [13] Vartanyan, A. T. Poluprovodnikovye Svoistva Organicheskikh Krasitel [J] Zh. Fiz Khim. 948, 22, 769-774.
    
    [14] Law, K.-Y. Organic photoconductive materials: recent trends and developments. [J]Chem. Rev., 1993, 93,449-486
    
    [15] Tang, C. W.; Two-layer organic photovoltaic cell; [J] Appl. Phys. Lett., 1986, 48.183-185
    
    [16] Nazeeruddin, M. K., et al, Efficient near IR sensitization of nanocrystalline TiO_2films by ruthenium phthalocyanines. [J] Chem. Commun., 1998, 719-720
    
    [17] Wohrle, D., et al, Microlasers based on organic dyes in nanoporous crystals [J]Molecular Crystals&Liquid Crystals, 1993, 230, 221.
    
    [18]王朝晖,衷庆华,熊轶嘉,孙亚,孔繁敖.酞菁锌分子激发态的超快内转换和振 动弛豫[J]化学物理学报,1998,2,15-18.
    
    [19] De la Torre, G, Vazquez. P. et al. Phthalocyanines and related compounds. [J] J. Mater.Chem., 1998, 8,1671-1683.
    
    [20] Shirk J. S., Lindle J. R., Bartoli F. J. et al. Third-order optical nonlinearities ofbis(phthalocyanines) [J] J. Phys. Chem., 1992, 96, 5847-5852.
    
    [21]陈仕艳,刘云圻,黄学斌,邱文丰,朱道本.酞菁在分子材料器件方面的研究进 展[J]自然科学进展,2004,14,125-132.
    
    [22] C. C. Leznoff, A. B. P. Lever. Phthalocynines: properties and applications. [M]Volumes 1-4, New York: VCH, 1989.
    
    [23] Borisenkova, S. A. New aspects of the heterogeneous catalysis of thiol oxidation byphthalocyanines. [J] Petroleum Chem. 1991, 31, 379-398.
    
    [24] Bennett W. E., Broberg D. E., Baenziger N. C. Crystal structure of stannicphthalocyanine, an eight-coordinated tin complex [J] Inorg. Chem. 1973, 12,930-936.
    
    [25] Kirin I. S., Moskalev P. N., Makashev Yu. A. Formation of phthalocyanines ofrare-earth elements [J] Russ. J. Inorg. Chem. 1965,10,1065.
    
    [26] Cian A. De., Moussavi M., Fischer J. et al., Synthesis, structure, and spectroscopicand magnetic properties of lutetium(Ⅲ) phthalocyanine derivatives [J] Inorg. Chem..1985,24,3162-3167.
    
    [27] (a) Lux F., Dempf D., Graw D., Diphthalocyaninato-thorium(Ⅳ) and -uranium (Ⅳ)[J] Angew. Chem. Int. Ed. Eng., 1968, 7, 819-820.
    
    (b) Lux, F., Brwon, D., Dempf, D.et al. Synthesis of 1-Adamantanecarbaldehydes [J] Angew. Chem. Int. Ed. Eng. 1969.7, 894.
    
    [28] M. Bouvet, J. Smion, Electrical properties of rare earth bisphthalocyanine and bisnaphthalocyanine complexes. [J] Chem. Phys. Lett. 1990,172,299
    
    [29] D. K. P. Ng, J. Jiang., Sandwich-Type Heteroleptic Phthalocyaninato and Porphyrinato Metal Complexes [J] Chem. Soc. Rev. 1997,26,433
    
    [30]姜建壮,吴基培,刘伟,谢经雷,孙思修.对称的二层及三层三明治型金属酞菁 配合物的研究进展.[J]化学通报.1999,2.
    
    [31] A.Gieren, W. Hoppe, X-Ray crystal structure analysis of bisphthalocyaninatouranium [J] Chem. Commun. 1971,413.
    
    [32] Cian .A .De; Moussavi M; Fischer J; et al.; Synthesis, structure, and spectroscopicand magnetic properties of lutetium(Ⅲ) phthalocyanine derivatives [J] Inorg. Chem.1985,24,3162.
    
    [33] Koike.N., Uekusa.H., Ohashi Y.; et al.; Relationship between the Skew Angle andInterplanar Distance in Four Bis(phthalocyaninato)lanthanide(Ⅲ) Tetrabutylammonium Salts ([NBun4][LnPc_2]; Ln = Nd, Gd, Ho, Lu) [J] Inorg. Chem. 1996, 35,5798.
    
    [34] J. Buchler; A. D. C. J. Fischer; M. K. Botulinski; H. Paulus; R. Weiss.; Metalcomplexes with tetrapyrrole ligands. Cerium(Ⅳ) bis-(octaethylporphyrinate) anddicerium(Ⅲ) tris(octaethylporphyrinate): Parents of a new family of lanthanoiddouble-decker and triple-decker molecules; [J] J. Am. Soc. 1986,108; 3652.
    
    [35] G C. S. Collins; D. J. Schifirin; The electrochromic properties of lutetium and otherphthalocyanines. [J] J. Electroanal. Chem. 1982,139, 335.
    
    [36] C. S .Frampton; J. M. O'Connor; J. Peterson; J. Silver; Enhanced colors andproperties in the electrochromic behavior of mixed rare-earth-elementbisphthalcoyanines. [J] Displays, 1988,9,174.
    
    [37] A. Capobianchi, A. M. Paoletti, G Pennesi, G Rossiand S. Paner;Electrochromism in sandwich-type diphthalocyanines: electrochemical andspectroscopic behaviour of bis(phthalocyaninato)titanium(rV) (Ti(Pc)_2) film. [J]Synth.Met. 1995,75,37.
    
    [38] McKeown, N. B.; The general chemistry of phthalcoyanines. [J] Chem. & Industry;1999, Feb. 1,92.
    
    [39] J. J. Andre, K. Holczer, P. Petit, M. T. Riou, J. Smon; Electrical and magneticproperties of thin films and single crystals of bis(phthalocyaninato) lutetium. [J] Chem. Phys. Lett. 1985, 115, 463.
    [40] J. Padilla and W. E. Hatifield. Magnetic and electrical properties of sandwich-like lanthanide phthalocyanines; [J] Synth. Met. 1989, 29, F45.
    [41] J. Padilla and W. E. Hatifield; Correlation between π-orbital overlap and conductivity in bis-phthalocyaninato lanthanides; [J] Inorg. Chim. Acta. 1991,185. 131.
    [42] J. Souto, R. Aroca, J. A. Desaja; Gas Adsorption and Electrical Conductivity of Langmuir-Blodgett Films of Terbium Bisphthalocyanine. [J] J. Phys. Chem. 1994, 98, 8998.
    [43] M. Trometer, R. Even, J. Simon, A. Dubon and J. -Y. LavalJ. P. Germain, C. Maleysson, A. Pauly and H. Robert; Lutetium bisphthalocyanine thin films for gas detection. [J] Sens. Actuators B. 1992, 8, 129.
    
    [44] J. Simon and S. Sirlin; Mesomorphic molecular materials for electronics, optoelectronics, iono-electronics: octaalkylphthalocyanine derivatives [J] Pure Appl. Chem. 1989,61,1625.
    [45] G Guillaud, M. Al Sadoun, M. Maitrot, J. J. Andre, J. Simon and R. Even. Field-effect transistors based on intrinsic molecular semiconductors [J] Chem. Phys. Lett. 1988,167, 503.
    [46] C. Clarisse, M. T. Riou, M. Gauneau and M. Le Cntellec. Field-Effect Transistor with Diphthalocyanine Thin Film [J] Electron. Lett. 1988,24, 674.
    [47] T. Toupance, V. Ahsen and J. Simon. Iono-electronics: crown ether substituted lutetium bisphthalocyanines [J] J. Chem. Soc, Chem. Commun. 1994, 75-76.
    [48] Nicholson M .M, Pizzarello F. A. The redox chemistry of phthalocyanine [J] J. Electrochem Soc, 1980,127,2617.
    [49] Nicholson M .M, Pizzarello F. A.; The role of oxygen in the redox chemistry of luterrium diphthalocyanine; [J] J. Electrochem Soc, 1984,131,2311.
    [50] K. L. Trojan, J. L. Kendall, K. D. Kepler and W. E. Hatfield; Strong exchange coupling between the lanthanide ions and the phthalocyaninato ligand radical in bis(phthalocyaninato)lanthanide sandwich compounds [J] Inorg. Chim. Acta. 1992. 198, 795.
    [51] K. Ishii, Y. Ohba, M. Iwaizumi and S. Yamauch, Studies on Monomers and Dimers of Y(III) and La(III) Porphyrin Complexes by Time-Resolved Electron Paramagnetic Resonance [J] J. Phys. Chem. 1996, 100, 3839.
    
    [52] H. Konami, M. Hatano, N. Kobayashi and T. Osa. Redox potentials of a series oflanthanide-bisphthaJocyanine sandwich complexes. [J] Chem. Phys. Lett. 1990, 165,397.
    
    [53] J. Padilla and W. E. Hatfield, σ and π-interactions of the pyrrolic ligand ofsandwich-like lanthanide phthalocyanines determined from magnetic susceptibilityand ligand-field theory. [J] Inorg. Chim. Acta, 1990, 172,241.
    
    [54] E. Oriti, J. L. Bredas and C. Clarisse, Studies on Monomers and Dimers of Y(Ⅲ) andLa(Ⅲ) Porphyrin Complexes by Time-Resolved Electron Paramagnetic Resonance; [J]J. Chem. Phys. 1990,92,1228.
    
    [55] P. C. Martin, J. Arnold, and D. F. Bocian; Spectroscopic characterization of zirconium(Ⅳ) and hafhium(Ⅳ) sandwich porphyrin complexes; [J] J. Phys. Chem. 1993, 97,1332
    
    [56] J. W. Buchler and B. Scharbert, Metal complexes with tetrapyrrole ligands. 50. Redoxpotentials of sandwichlike metal bis(octaethylporphyrinates) and their correlationwith ring-ring distances. [J] J. Am. Chem. Soc. 1988,110,4272.
    
    [57] J. Jiang, W. Liu, -F. Law, and D. K. P. Ng; A new synthetic route to unsymmetrical bis(phthalocyaninato)europium(Ⅲ) complexes. [J] Inorg. Chim. Acta, 1998,268, 141
    
    [58] Burroughes, J. H.; Bradley, D. D.; Brown, A. R. et al. Light-emitting diodes based onconjugated polymers. [J] Nature 1990, 347, 539-542.
    
    [59] Ebisawa, F.; Kurokawa, T.; Nara, S. Electrical properties of polyacetylene/polysiloxane interface. [J] J. Appl. Phys. 1983, 54, 3255-3258.
    
    [60] Tsumura, A.; Koezuka, H.; Ando, T. Macromolecular electronic device: Field-effecttransistor with a polythiophene thin film. [J] Appl. Phys. Lett. 1986,49,1210-1212.
    
    [61] Tang, C. W.; Van Slyke, S. A. Organic electroluminescent diodes. [J] Appl. Phys. Lett.1987,51,913-915.
    
    [62] Clarisse, C; Riou, M T.; Gauneau, M. Field-effect transistor with diphthalocyaninethin film. [J] Electron Lett. 1988,24,674-676.
    
    [63] Crone, B.; Dodabalapur, A.; Gelperin, A. et al. Electronic sensing of vapors withorganic transistors. [J] Appl. Phys. Lett. 2001, 78,2229-2232.
    
    [64] Schon, J. H.; Kloc, C; Dodabalapur, A. et al. An Organic Solid State Injection Laser.[J] Science 2000,289. 599-601.
    
    [65] Drury, C. J.; Mutsaers, C. M. J.; Hart, C. M. et al. Low-cost all-polymer integrated??circuits. [J] Appl. Phys. Lett. 1998, 73, 108-110.
    
    [66] Schon, J. H.; Dodabalapur, A.; Bao, Z. et al. Gate-induced superconductivity in asolution-processed organic polymer film. [J] Nature 2001,410,189-192.
    
    [67] Schon, J. H.; Kloc, C.; Batlogg, B. High-Temperature Superconductivity inLattice-Expanded C_(60). [J] Science 2001,293, 2432-2434.
    
    [68] Koezuka, H.; Tsumura, A.; Ando, T. Field-effect transistor with polythiophen thinfilms. Synth. Met. [J] 1987, 18, 699-702.
    
    [69] (a) Dimitrakopoulos, C. D.; Malenfant, P. R. L. Organic Thin Film Transistors forLarge Area Electronics. [J] Adv. Mater. 2002, 14, 99-117.
    
    (b) Sun, Y.; Liu, Y.; Zhu,D. Advances in organic field-effect transistors. [J] J. Mater. Chem. 2005, 15, 53-65.
    
    (c) Katz, H. E.; Bao, Z.; Gilat, S. Small-molecule organic semiconductors. Acc.Chem. Res. [J] 2001, 34, 359-369.
    
    (d) Fichou, D. Structural order in conjugatedoligothiophenes and its implications on opto-electronic devices. [J] J. Mater. Chem.2000,10,571-588.
    
    [70] (a) Veres, J.; Ogier, S.; Lloyd, G. Gate Insulators in Organic Field-Effect Transistors.[J] Chem. Mater. 2004, 16, 4543-4555.
    
    (b) Chen, H.; Josowicz, M.; Janata. J.Chemical Effects in Organic Electronics. [J] Chem. Mater. 2004, 16,4728-4735.
    
    [71] (a) Gamier, F. Electronic Materials: The Oligomer Approach, Eds.: Mullen. K.;Wegner, G., [M] Wiley-VCH, Weinheim, 1998, 559-583.
    
    (b) Katz, H. E.;Dodabalapur, A.; Bao, Z.; Handbook of Oligo- and Polythiophenes, Ed.: Fichou, D.,[M] Wiley-VCH, Weinheim, 1999,459-489.
    
    [72] Horowitz, G.; Hajlaoui, R.; Fichou, D.; El Kassmi, A. Gate voltage dependentmobility of oligothiophene field-effect transistors.[J] J. Appl. Phys. 1999, 85,3202-3206.
    
    [73] (a) Gamier, F.; Yassa, A.; Hajlaoui, R.; Horowitz, G.; Deloffre, F.; Servet, B.; Ries,S.; Alnot, P. Molecular engineering of organic semiconductors: design ofself-assembly properties in conjugated thiophene oligomers. [J] J. Am. Chem. Soc.1993, 115, 8716-8721.
    
    (b) Bao, Z.; Dodabalapur, A.; Lovinger, A. J. Soluble andprocessable regioregular poly(3-hexylthiophene) for thin film field-effect transistorapplications with high mobility. [J] Appl. Phys. Lett. 1996, 69, 4108-4110.
    
    (c)Sirringhaus, H.; Tessler, N. R.; Friend, H. Integrated optoelectronic devices based onconjugated polymers. [J] Science 1998,280,1741-1744.
    
    [74] (a) Halik, M.; Klauk, H.; Zschieschang, U.; Schmid, G.; Ponomarenko, S.; Kirchmeyer, S.; Weber, W. Relationship between Molecular Structure and Electrical Performance of Oligothiophene Organic Thin Film Transistors. [J] Adv. Mater. 2003, 15, 917-922.
    
    (b) Dimitrakopoulos, C. D.; Furman, B. K.; Graham, T.; Hedge, S.; Purushothaman, S. Field-effect transistors comprising molecular beam deposited α, ω-di-hexyl- hexathienylene and polymeric insulator. [J] Synth. Met. 1998, 92, 47-52.
    
    (c) Horowitz, G.; Hajlaoui, M. E. Mobility in Polycrystalline Oligothiophene Field-Effect Transistors Dependent on Grain Size. [J] Adv. Mater. 2000, 12, 1046-1050.
    
    (d) Facchetti, T.; Mushrushi, M.; Yoon, M.; Hutchison, G. R.; Ratner, M. A.; Marks, T. J. Building Blocks for n-Type Molecular and Polymeric Electronics. Perfluoroalkyl- versus Alkyl-Functionalized Oligothiophenes (n=2-6). Systematics of Thin Film Microstructure, Semiconductor Performance, and Modeling of Majority Charge Injection in Field-Effect Transistors. [J] J. Am. Chem. Soc. 2004, 126, 13859-13874.
    
    [75] Horowitz, G. Organic field-effect transistors. [J] Adv. Mater. 1998, 10, 365-377. (b) Horowitz, G. Field-effect transistors based on short organic molecules. [J] J. Mater. Chem. 1999,9,2021-2026.
    
    [76] Sundar, V. C.; Zaumseil, J.; Podzorov, V.; Menard, E.; Willett, R. L.; Someya, T. Gershenson , M. E.; Rogers, J. A. Elastomeric transistor stamps: Reversible probing of charge transport in organic crystals. [J] Science 2004,303,1644-1646.
    
    [77] Lin, Y. Y.; Gundlach, D. J.; Nelson, S. F.; Jackson, T. N. Stacked Pentacene layer organic thin-film transistors with improved characteristics. [J] IEEE Electron Device Lett. 1997,18,606-609.
    
    [78] (a) Brown, A. R.; Pomp, A.; de Leeuw, D. M.; Klaassen, D. B. M.; Havinga, E. E.; Herwig P.; Mullen, K. Precursor route pentacene metal-insulator- semiconductor field-effect transistors. [J] J. Appl. Phys. 1996, 79, 2136-2138.
    
    (b) Herwig P. T.;Mullen, K. Soluble Pentacene Precursor: Synthesis, Solid-State Conversion into Pentacene and Application in a Field-Effect Transistor. [J] Adv. Mater. 1999, 11, 480-483.
    
    (c) Afzali, A.; Dimitrakopoulos, C. D.; Breen, T. L. High-Performance, Solution-Processed Organic Thin Film Transistors from a Novel Pentacene Precursor. [J] J. Am. Chem. Soc. 2002, 124, 8812-8813.
    
    (d) Afzali, A.; Dimitrakopoulos, A.: Graham, T. O. Photosensitive Pentacene Precursor: Synthesis, Photothermal??Patterning, and Application in Thin-Film Transistors. [J] Adv. Mater. 2003, 15.2066-2069.
    
    [79] (a) Weidkamp, K. P.; Afzali, A.; Tromp, R. M.; Hamers, R. J. A PhotopatternablePentacene Precursor for Use in Organic Thin-Film Transistors. [J] J. Am. Chem. Soc.2004, 126, 12740.2741.
    
    (b) Payne, M. M; Parkin, S. R.; Anthony, J. E.; Kuo. C:Jackson, T. N. Organic Field-Effect Transistors from Solution-DepositedFunctionalized Acenes with Mobilities as High as 1 cm~2/V·s. [J] J. Am. Chem. Soc.2005,127,4986-4987.
    
    [80] Snow, A. W.; Barger, W. R. In Phthalocyaniness Properties and Applications; Lezonff,C. C.; Lever, A. B. P. Eds.; [M] VCH: New York, 1989, Vol. 1.
    
    [81] (a) Bao, Z.; Lovinger, A. J.; Dodabalapur, A.; Organic field-effect transistors withhigh mobility based on copper phthalocyanine. [J] Appl. Phys. Lett. 1996. 69.3066-3068.
    
    (b) Bao, Z.; Lovinger, A. J.; Brown, J. New Air-Stable n-Channel OrganicThin Film Transistors. [J] J. Am. Chem. Soc. 1998,120,207-208.
    
    [82] Xiao, K.; Liu, Y.; Huang, X.; Xu, Y.; Yu G.; Zhu, D. Field-Effect Transistors Basedon Langmuir-Blodgett Films of Phthalocyanine Derivatives as Semiconductor Layers.[J] J. Phys. Chem. B 2003,107,9226-9230.
    
    [83] Zhang, J.; Wang, J.; Wang, H.; Yan, D. Organic thin-film transistors in sandwichconfiguration. [J] Appl. Phy. Lett. 2004, 84,142-144.
    
    [84] Zeis, R.; Siegrist, T.; Kloc Ch. Single-crystal field-effect transistors based on copperphthalocyanine. [J] Appl. Phys. Lett. 2005, 86,22103-22105.
    
    [85] Babel, A.; Jenekhe, S. A. High Electron Mobility in Ladder Polymer Field-EffectTransistors. [J] J. Am. Chem. Soc. 2003,125,13656-13657.
    
    [86] (a) Yasuda, T.; Fujita, K.; Tsutsui, T. Geng, Y.; Culligan, S. W; Chen, S. H. CarrierTransport Properties of Monodisperse Glassy-Nematic Oligofluorenes in OrganicField-Effect Transistors. [J] Chem. Mater. 2005, 17, 264-268.
    
    (b) Chua, L. L.; Ho, P.K. H.; Sirringhaus, H.; Friend, R. H. Observation of Field-Effect Transistor Behaviorat Self-Organized Interfaces. [J] Adv. Mater. 2004, 16,1609-1615.
    
    [87] Bromley, S. T.; Mas-Torrent, M.; Hadley, P.; Rovira, C. Importance of IntermolecularInteractions in Assessing Hopping Mobilities in Organic Field Effect Transistors:Pentacene versus Dithiophene-tetrathiafulvalene. [J] J. Am. Chem. Soc. 2004. 126.6544-6545.
    
    [88] Cornil, J.; Calbert, J. Ph.; Bredas, J. L. Electronic Structure of the Pentacene SingleCrystal: Relation to Transport Properties. [J] J. Am. Chem. Soc. 2001, 123,1250-1251.
    
    [89] Bao, Z. Materials and Fabrication Needs for Low-Cost Organic Transistor Circuits; [J]Adv. Mater. 2000,12,227-230.
    
    [90] Paloheimo, J.; Kuivalainen, P.; Stubb, H.; Vuorimaa, E.; Yli-Lahti, P. Molecularfield-effect transistors using conducting polymer Langmuir-Blodgett films. [J] Appl.Phys.Lett. 1990,56,1157-1159.
    
    [91] Su, W.; Jiang, J.; Xiao, K.; Chen, Y.; Zhao, Q.; Yu, G; Liu, Y. Thin-Film TransistorsBased on Langmuir-Blodgett Films of Heteroleptic Bis(phthalo cyaninato) Rare EarthComplexes. [J] Langmuir 2005,21,6527-6531.
    
    [92] Xu, H.; Yu, G.; Xu, W.; Xu, Y.; Cui, G; Zhang, D.; Liu, Y.; Zhu D.High-Performance Field-Effect Transistors Based on Langmuir-Blodgett Films ofCyclopyrrole. [J] Langmuir 2005,21, 5391-5395.
    
    [93] Chen, Y.; Su, W.; Bai, M.; Jiang, J.; Li, X.; Liu, Y.; Wang, L.; Wang, S. HighPerformance Organic Field-Effect Transistors Based on Amphiphilic Tris(phthalocyaninato) Rare Earth Triple-Decker Complexe. [J] J. Am. Chem. Soc 2005, 127.15700-15701.
    
    [94] Jin, Y.; Rang, Z.; Nathan, M.; Ruden, P. P. Pentacene organic field-effect transistoron metal substrate with spin-coated smoothing layer. [J] Appl. Phys. Lett 2004, 85,4406-4408.
    
    [95] Klauk, H.; Halik, M.; Zdchieschang, U.; Schmid, G; Radlik, W.; Weber, W.High-mobility polymer gate dielectric pentacene thin film transistors. [J] J. Appl.Phys. 2002, 92, 5259-5263.
    
    [96] Bao, Z.; Feng, Y; Dodabalapur A, High-performance plastic transistors fabricated byprinting technique. Chem Mater, [J] 1997,9,1299-1302.
    
    [97] Schon, J. H.; Meng, H.; Bao, Z. Self-assembled monolayer organic field-effecttransistors. [J] Nature 2001,413, 713-716.
    
    [1] Lever, A. B. P.; Leznoff, C. C. Phthalocyanine: Properties and Applications; [M] VCH: New York, 1989-1996; Vols. 1-4.
    
    [2] McKeown, N. B. Phthalocyanines Materials: Synthesis, Structure and Function; [M]Cambridge University Press: New York, 1998.
    
    [3] Kadish, K. M.; Smith, K. M; Guilard, R. The Porphyrin Handbook; [M] AcademicPress: San Diego, 2000-2003; Vols. 1-20.
    
    [4] Ng, D. K. P.; Jiang, J. Sandwich-Type Heteroleptic Phthalocyaninato andPorphyrinato Metal Complexes. [J] Chem. Soc. Rev. 1997, 26,433-442.
    
    [5] Jiang, J.; Kasuga, K.; Arnold, D. P. In Supramolecular Photosensitive andElectroactive Materials; [M] Academic Press: New York, 2001; chapter 2, pp.113-210.
    
    [6] L'Her, M.; Pondaven, A. In The Porphyrin Handbook; [M] Academic Press: SanDiego, 2003; Vol. 16: 117-170
    
    [7] Nicholson, M. M. In Phthalocyanine: Properties and Applications; [M] VCH: NewYork, 1993; Vol. 3, chapter 2, pp 71-117.
    
    [8] (a) Kobayashi, N.; Sasaki, N.; Higashi, Y; Osa, T. Regiospecific and NonlinearSubstituent Effects on the Electronic and Fluorescence Spectra of Phthalocyanines. [J]Inorg. Chem. 1995, 34, 1636-1637.
    
    (b) Nyokong, T.; Furuya, F.; Kobayashi, N.; Du,D.; Liu, W.; Jiang, J. Comparative Spectroscopic and Electrochemical Properties ofBis(octakis(dodecylthio)naphthalocyaninato) europium and Bis(tetra-tert-butylnaphthalocyaninato)europium Complexes. [J] Inorg. Chem. 2000, 39, 128-135.
    
    [9] Turek, P.; Petit, P.; Andre, J.-J.; Simon, J.; Even, R.; Boudjema, B.; Guillaud, G;Maitrot, M. Anew series of molecular semiconductors: phthalocyanine radicals [J] J.Am. Chem. Soc. 1987,109, 5119-5122.
    
    [10] Lever, A. B. P.; Hempstead, M. R.; Leznoff, C. C.; Liu, W.; Melnik, M.; Nevin, W. A.;Seymour, Recent Studies in Phthalocyanine Chemistry. [J] P. Pure Appl. Chem. 1986,58,1467-1476.
    
    [11] Madru, R.; Guillaud, G; Al Sadoun, M.; Maitrot, M.; Andre, J.-J.; Simon, J.; Even, R. Chem. Phys. Lett. A well-behaved field effect transistor based on an novel??phathalocyanine. [J] 1988.145, 343-346.
    
    [12] (a) Bian, Y; Jiang, J.; Tao, Y; Choi, M. T. M.; Li, R.; Ng, A. C. H.; Zhu, P.; Pan, N.: Sun, X.; Arnold, D. P.; Zhou, Z.; Li, H.-W.; Mak, T. C. W.; Ng, D. K. P. Tuning the Valence of the Cerium Center in (Na)phthalocyaninato and Porphyrinato Cerium Double-Deckers by Changing the Nature of the Tetrapyrrole Ligands; [J] J. Am. Chem. Soc. 2003, 125, 12257-12267.
    
    (b) Chen, Y; Su, W.; Bai, M.; Jiang, J.; Li. X.; Liu, Y; Wang, L.; Wang, S. High Performance Organic Field-Effect Transistors Based on Amphiphilic Tris(phthalocyaninato) Rare Earth Triple-Decker Complexes; [J] J. Am. Chem. Soc. 2005,127, 15700-15701.
    
    [13] Frisch M. J. et al. Gaussian-98, Revision A.9, [M] Gaussian, Inc., Pittsburgh PA. 1998.
    
    [14] Kirin, I.S.; Moskalev, P. N.; Makashev, Y A. The novel route to phthalocyanine [J] Russ. J. Inorg. Chem. 1965,10,1065.
    
    [15] (a) Bian, Y; Wang, R.; Jiang, J.; Lee, C.-H.; Wang, J.; Ng, D. K. P. Synthesis. spectroscopic characterisation and structure of the first chiral heteroleptic bis(phthalocyaninato) rare earth complexes; [J] Chem. Commun. 2003, 1194.
    
    (b) Bian, Y; Wang, R.; Wang, D.; Zhu, P.; Li, R.; Dou, J.; Liu, W; Choi, C.-F.; Chan. H.-S.; Ma., C.; Ng, D. K. P.; Jiang, J. Synthesis, Structure, and Spectroscopic and Electrochemical Properties of Heteroleptic Bis (phthalocyaninato) Rare Earth Complexes with a C4 Symmetry; [J] Helv. Chim. Acta 2004, 87,2581-2596.
    
    [16] Zhu, P.; Lu, F.; Pan, N.; Arnold, D. P.; Zhang, S.; Jiang, J. Comparative Electrochemical Study of Unsubstituted and SubstitutedBis(phthalocyaninato) Rare Earth(Ⅲ) Complexes; [J] Eur. J. Inorg. Chem. 2004, 510-517.
    
    [17] Nishi, H.; Azuma, N.; Kitahara, K. Preparation and Properties of Octaalkyl phthalocyanines Having Long Alkyl Side Chains of Odd Numbers of Carbons [J] J. Heterocycl. Chem. 1992, 29,475-477.
    
    [18] (a) Stewart, J. J. P. J. Comp. Chem. Optimization of Parameters for Semi- Empirical Methods Ⅰ-Method [J] 1989, 10, 209-220.
    
    (b) Stewart, J. J. P. Optimization of Parameters for Semiempirical Methods Ⅱ-Applications. [J] J. Comp. Chem. 1989. 10. 221-264.
    
    [19] (a) Brauman, J. I.; Blair, L. K. Gas-phase acidities of alcohols [J] J. Am. Chem. Soc. 1970, 92, 5986-599.
    
    (b) Naka, K.; Uemura, T.; Chujo, Y. π-Conjugated??Poly(dithiafulvene)s and Poly(diselenafulvene)s: Effects of Side Alkyl Chains on Optical, Electrochemical, and Conducting Properties [J] Macromolecules. 2002, 35. 3539-3543.
    
    [20] Kobayashi, N.; Ogata, H.; Nonaka, N.; Luk'yanets, E. A. Effect of Peripheral Substitution on the Electronic Absorption and Fluorescence Spectra of Metal-Free and Zinc Phthalocyanines. [J] Chem. Eur. J. 2003,9, 5123-5134.
    
    [21] (a) Lu, F. L.; Bao, M.; Ma, C. Q.; Zhang, X. X.; Arnold, D. P.; Jiang, J. Z. Infrared spectra of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes. Part 3. The effects of substituents and molecular symmetry on the infrared characteristics of phthalocyanine in bis(phthalocyaninato) rare earth complexes. [J] Spectrochim Acta Part A 2003, 59, 3273.
    
    (b) Zhu, P.; Pan, N.; Ma, C.; Sun, X.; Arnold, D. P.; Jiang, J. Electrochemistry of Heteroleptic Tris(phthalocyaninato) Rare Earth(Ⅲ) Complexes [J] Eur. J. Inorg. Chem. 2004, 518-523.
    
    [22] (a) Brauman, J. I.; Blair, L. K. Gas-phase acidities of alcohols. Effects of alkyl groups. [J] J. Am. Chem. Soc. 1968, 90,6561-6562.
    
    (b) Brauman, J. I.; Blair, L. K. Gas-phase acidities of amines [J] J. Am. Chem. Soc. 1969, 91,2126-2127.
    
    [1] (a) Lever, A. B. P.; Leznoff, C. C. Phthalocyanine: Properties and Applications; [M] VCH: New York, 1989-1996; Vols. 1-4.
    
    (b) Ng, D. K. P.; Jiang, J. Sandwich-Type Heteroleptic Phthalocyaninato and Porphyrinato Metal Complexes. [J] Chem. Soc. Rev. 1997,26,433-442.
    
    [2] Guyon F., Pondaven A., Guenot P. and L'Her M. Bis(2,3-naphthalocyaninato) lutetium(Ⅲ) and 2,3-Naphthalocyaninato phthalocyaninato lutetium(Ⅲ) Complexes: Synthesis, Spectroscopic Characterization, and Electrochemistry. [J] Inorg. Chem.. 1994, 33,4787.
    
    [3] Fitzgerald, W. Tayloi, H. Owen, "Facile Synthesis of Substituted Fumaro nitriles and Maleonitriles: Precursors to Soluble Tetraazaporphyrins", Synthesis, 1991, 9,686.
    
    [4] G. Ricciardi, A. Rosa, et. al, "Synthesis, Structure, and Physicochemical Properties of Ethylsulfanyl porphyrazinato cobalt(Ⅱ). Metal-Ligand Bonds in Co(OESPz) and in Related Cobalt(Ⅱ) Tetrapyrroles: Insights from a Density Functional Study. Inorg. Chem., 1999, 38(7), 1422.
    
    [5] H. S. Nalwa, M. Hanack, G. Pawlowski, M. K. Engel, Third-order nonlinear optical properties of porphyrazine, phthalocyanine and naphthalocyanine germanium derivatives: Demonstrating the effect of n-conjugation length on third-order optical nonlinearity of two-dimensional molecules. [J] Chemical Physics 1999,245, 17-26.
    
    [6] Y. Chen, S. O'Flaherty, M. Fujitsuka, M. Hanack, L. R. Subramanian, O. Ito and W. J. Blau, Synthesis, Characterization, and Optical-Limiting Properties of Axially Substituted Gallium(Ⅲ) Naphthalocyanines. [J] Chem. Mater. 2002,14, 5163-5168.
    
    [7] M. Isaacs, M. J. Aguirre, A. Toro-Labbe, J. Costamagna, M. Paez and J. H. Zagal, Comparative study of the electrocatalytic activity of cobalt phthalocyanine and cobalt naphthalocyanine for the reduction of oxygen and the oxidation of hydrazine. [J] ElectrochimicaActa 1998,43,1821-1827.
    
    [8] N. Kobayashi, H. Miwa, and V. N. Nemykin, Adjacent versus Opposite Type Di-Aromatic Ring-Fused Phthalocyanine Derivatives: Synthesis, Spectroscopy, Electrochemistry, and Molecular Orbital Calculations. [J] J. Am. Chem. Soc. 2002, 124, 8007-8020.
    
    [9] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B. et. al. Gaussian 03, Revision B.05; [M]Gaussian, Inc.: Pittsburgh, PA, 2003.
    
    [10] Brauer M, Kunert M, Dinjus E, Klussmann M, Doring M, Gorls H, Anders E.Evaluation of the accuracy of PM3, AM1 and MNDO/d as applied to zinc compounds.[J] J. Mol. Struct. THEOCHEM. 2000, 505, 289-301
    
    [11] Naka, K.; Uemura, T.; Chujo, Y. π-Conjugated Poly(dithiafulvene) andPoly(diselenafulvene)s: Effects of Side Alkyl Chains on Optical, Electrochemical,and Conducting Properties [J] Macromolecules. 2002, 35,3539-3543.
    
    [12] Kobayashi, N.; Ogata, H.; Nonaka, N.; Luk'yanets, E. A. Effect of PeripheralSubstitution on the Electronic Absorption and Fluorescence Spectra of Metal-Freeand Zinc Phthalocyanines. [J] Chem. Eur. J. 2003, 9, 5123-5134.
    
    [13] Kobayashi, N.; Sasaki, N.; Higashi, Y.; Osa, T. Regiospecific and NonlinearSubstituent Effects on the Electronic and Fluorescence Spectra of Phthalocyanines. [J]Inorg. Chem. 1995, 34,1636-1637.
    
    [14] Zhu, P.; Lu, F.; Pan, N.; Arnold, D. P.; Zhang, S.; Jiang,J.ComparativeElectrochemical Study of Unsubstituted and Substituted Bis(phthalocyaninato) RareEarth(Ⅲ) Complexes; [J] Eur. J. Inorg. Chem. 2004, 510-517.
    
    [15] (a) Miwa, H.; Ishii, K.; Kobayashi, N. Electronic Structures of Zinc and PalladiumTetraazaporphyrin Derivatives Controlled by Fused Benzo Rings. [J] Chem. Eur. J.2003, 9, 5123-5134.
    
    (b) Kobayashi, N.; Nakajima, S.; Ogata, H.; Fukuda, T. Synthesis,Spectroscopy, and Electrochemistry of Tetra-tert-butylated Tetraazaporphyrins,Phthalocyanines, Naphthalocyanines, and Anthracocyanines, together with MolecularOrbital Calculations. [J] Chem. Eur. J. 2004,10, 6294-6312.
    
    [16] X. X. Zhang, Y. X. Zhang, J. Z. Jiang, Geometry and electronic structure of free baseporphyrazine, phthalocyanine and naphthalocyanine as well as their magnesiumcomplexes, [J] J. Mol. Struct. THEOCHEM, 2004, 673,103-108.
    
    [17] Bian, Y.; Wang, R.; Jiang, J.; Lee, C.-H.; Wang, J.; Ng, D. K. P. Synthesis,spectroscopic characterisation and structure of the first chiral heterolepticbis(phthalocyaninato) rare earth complexes. [J] Chem. Commun. 2003, 1194-1195.
    
    [18] (a) P. Turek, P. Petit, J.-J. Andre, J. Simon, R. Even, B. Boudjema, G. Guillaud. M.Maitrot, J. Am. Chem. Soc. 1987; 109, 5119.
    
    (b) R. Madru, G. Guillaud, M. AlSadoun, M. Maitrot, J.-J. Andre, J. Simon, R. Even, Chem. Phys. Lett. 1988; 145.??343.
    
    [19] Zhu, P.; Pan, N.; Ma, C.; Sun, X.; Arnold, D. P.; Jiang, J. Electrochemistry of Heteroleptic Tris(phthalocyaninato) Rare Earth(Ⅲ) Complexes [J] Eur. J. Inorg. Chem. 2004, 518-523.
    
    [20] J. -H. Fuhrhop, K. M. Kadish, D. G. Davis, Redox behavior of metal oxtaethyl porhyrins. [J] J. Am. Chem. Soc. 1973,95, 5140-5147.
    
    [21] (a) Nicholson M .M, Pizzarello F. A.; The role of oxygen in the redox chemistry of luterrium diphthalocyanine; [J] J. Electrochem Soc, 1984,131, 2311
    
    (b) K. L. Trojan,J. L. Kendall, K. D. Kepler and W. E. Hatfield; Strong exchange coupling between the lanthanide ions and the phthalocyaninato ligand radical in bis(phthalocyaninato)lanthanide sandwich compounds [J] Inorg. Chim. Acta. 1992, 198, 795
    
    [22] (a) E. Orti, J. L. Bredas, Electronic structure of phthalocyanines: Theoretical investigation of the optical properties of phthalocyanine monomers, dimers, and crystals. [J] J. Chem. Phys. 1990, 92, 1228.
    
    (b) N. Ishikawa, Electronic structures and spectral properties of double- and triple-decker phthalocyanine complexes in a localized molecular orbital view. [J] J. Porphyrins Phthalocyanines 2001, 5, 87-101.
    
    [1] Takashi, K.; Jean M. J. F. A new approach to mesophase stabilization throughhydrogen bonding molecular interactions in binary mixtures. [J] J. Am. Chem. Soc.;1989,111,8533-8534.
    
    [2] K, T.; K, T. Use of Intermolecular Hydrogen Bonding between Imidazolyl Moietiesand Carboxylic Acids for the Supramolecular Self-Association of Liquid-CrystallineSide-Chain Polymers and Networks. [J] Macromolecules. 1998, 31, 4475-4479.
    
    [3] Dumas, J. M.; Gomel, M.; Guerin, M. Molecular Interactions Involving OrganicHalides. In The Chemistry of Functional Groups, Supplement D, Patai, S.; Rappoport,Z. Eds. [M] John Wiley & Sons Ltd: New York, 1983, Chapter 21, pp 985.
    
    [4] (a) Jeffrey, G. A. An Introduction to Hydrogen Bonding; [M] Oxford University Press:New York, 1997.
    
    (b) Desiraju, G. R.; Steiner, T. The Weak Hydrogen Bond. [M]Oxford University Press: Oxford, 1999
    
    [5] Jeffrey, G. A.; Saenger, W. Hydrogen Bondingin Biological Structures. [M] NewYork: Springer, 1991,125,82
    
    [6] (a) Legon, A. C. Prereactive Complexes of Dihalogens XY with Lewis Bases B in theGas Phase: A Systematic Case for the Halogen Analogue B-XY of the HydrogenBond B-HX. [J] Angew. Chem. Int. Ed. 1999, 38, 2686-2714.
    
    (b) Suzuki, S.; Green.P. E.; Bumgarner, R. E. Benzene Forms Hydrogen Bonds with Water. [J] Science.1992,257,942.
    
    [7] (a) Lever, A. B. P.; Leznoff, C. C. Phthalocyanine: Properties and Applications; [M]VCH: New York, 1989-1996; Vols. 1-4.
    
    (b) McKeown, N. B. PhthalocyaninesMaterials: Synthesis, Structure and Function; [M] Cambridge University Press: NewYork, 1998.
    
    (c) Kadish, K. M.; Smith, K. M.; Guilard, R. The Porphyrin Handbook:[M] Academic Press: San Diego, 2000-2003; Vols. 1-20.
    
    [8] Nohr, R. S.; Wynne, K. J. X-Ray crystal structure of a conducting polymer precursor:bridge-stacked phthalocyanine gallium fluoride. [J] Chem. Commun. 1981.1210-1211.
    
    [9] Wynne, K. J. Two ligand-bridged phthalocyanines: crystal and molecular structure offluoro(phthalocyaninato)gallium, [Ga(Pc)F]_n, and (.mu.-oxo)bis [(phthalocyaninato)aluminum], [Al(Pc)]_2O. [J] Inorg. Chem. 1985,24, 1339-1343.
    
    [10] Dirk, C. W.; Inabe, T.; Schoch, K. F.; Marks, T. J. Cofacial assembly of partially oxidized metallamacrocycles as an approach to controlling lattice architecture in low-dimensional molecular solids. Chemical and architectural properties of the "face-to-face" polymers [M(phthalocyaninato)O]_n, where M = Si, Ge, and Sn [J] J. Am. Chem. Soc. 1983, 105, 1539-1550.
    
    [11] Deneux, M. M.; Benlian, D.; Pierrot, M.; Fournel, A.; Sorbier, J. P. Structure and conductivity of chloro(phthalocyaninato)zinc single crystals. [J] Inorg. Chem. 1985, 24, 1878-1882.
    
    [12] Cian, A. D.; Moussavi, M. M; Fischer, J.; Weiss, R. Synthesis, structure, and spectroscopic and magnetic properties of lutetium(Ⅲ) phthalocyanine derivatives: LuPc_2CH_2Cl_2 and [LuPc(OAc)(H_2O)_2]·H_2O·2CH_3OH [J] Inorg. Chem. 1985, 24, 3162-3167.
    
    [13] Janczak, J.; Idemori, Y. M. Synthesis, crystal structure and characterisation of aquamagnesium phthalocyanine-MgPc(H_2O). The origin of an intense near-IR absorption of magnesium phthalocyanine known as "X-phase". [J] Polydedron 2003. 22, 1167-1181.
    
    [14] Martinez-Diaz, M. V; Rodriguez-Morgade, M. S.; Feiters, M. C.; Van kan, P. J. M.; Nolte, R. J. M.; Stoddart, J. F.; Torres, T. Supramolecular Phthalocyanine Dimers Based on the Secondary Dialkylammonium Cation/Dibenzo-24-crown-8 Recognition Motif. [J] Org. Lett. 2000,2,1057-1060.
    
    [15] M, S.; C, R.; M, H. Separation of 2(3),9(10),16(17),23(24)-Tetrasubstituted Phthalocyanines with Newly Developed HPLC Phases [J] J. Am. Chem. Soc. 1996, 118,10085-10093.
    
    [16] Bian, Y.; Wang, R.; Jiang, J.; Lee, C.-H.; Wang, J.; Ng, D. K. P. Synthesis, spectroscopic characterisation and structure of the first chiral heteroleptic bis(phthalocyaninato) rare earth complexes. [J] Chem. Commun. 2003,1194-1195.
    
    [17] Bian, Y; Li, L.; Dou, J.; Cheng, D. Y Y; Li, R.; Ma, C.; Ng, D. K. P.; Kobayashi, N.; Jiang, J. Synthesis, Structure, Spectroscopic Properties, and Electrochemistry of (1,8,15,22-Tetrasubstituted phthalocyaninato)lead Complexes. [J] Inorg. Chem. 2004, 43, 7539-7544.
    
    [18] (a) Jiang, J.; Arnold, D. P.; Yu, H. Infra-red spectra of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth??complexes. [J] Polyhedron 1999, 18, 2129-2139.
    
    (b) Lu, F.; Bao, M.; Ma. C: Zhang.X.; Arnold, D. P.; Jiang, Infrared spectra of phthalocyanine and naphthalocyanine insandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes. Part 3.The effects of substituents and molecular symmetry on the infrared characteristics ofphthalocyanine in bis(phthalocyaninato) rare earth complexes [J] J. Spectrochim.Acta A 2003, 59, 3273.
    
    (c) Bao, M; Pan, N.; Ma, C.; Arnold, D. P.; Jiang. Infraredspectra of phthalocyanine and naphthalocyanine in sandwich-type(na)phthalocyaninato and porphyrinato rare earth complexes Part 4. The infraredcharacteristics of phthalocyanine in heteroleptic tris(phthalocyaninato) rare earthcomplexes [J] J. Vibrational Spectroscopy 2003, 32,175-184.
    
    [19] Jiang,J.; Bao, M.; Rintoul, L.; Arnold, D. P. Vibrational spectroscopy ofphthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato andporphyrinato rare earth complexes. [J] Coord. Chem. Rev. 2006, 250, 424-448. andreferences therein.
    
    [20] Fischer, M. S.; Templeton, D. H.; Zalkin, A.; Calvin, M. Structure an Chemistry ofthe Porphyrins. The Crystal and Molecular Structure of the MonohydratedDipyridinated Magnesium Phthalocayanin Complex. [J] J. Am. Chem. Soc. 1971, 93,2622-2628.
    
    [21] Miwa, H.; Ishii, K.; Kobayashi, N. Electronic structures of Zinc an PalladiumTetraazaporphyrin Derivatives Controlled by Fused Benzo Rings. [J] Chem. Eur. J.2004,10,4422-4435.
    
    [22] Pimentel, G. C.; McClellan. A. L. in The Hydrogen Bond (Ed. Freeman, W. H.), [M]San Francisco, Calif., 1960, pp. 289
    
    [23] Jiang, J.; Kasuga, K.; Arnold, D. P. In Supramolecular Photosensitive andElectroactive Materials; Nalwa, H. S., Ed.; [M] Academic Press: New York, 2001,chapter 2, pp. 113-210.
    
    [24] Zhang, H.; Wang, R.; Zhu, P.; Han, J.; Lu, F.; Lee, C.-H.; Ng, D. K. P.; Cui. X.; Ma,C.; Jiang, J. The First Slipped Pseudo-Quadruple-Decker Complex ofPhthalocyanines [J] Inorg. Chem. 2004,43,4740-4742.
    
    [25] (a) Shipman, L. L.; Cotton, T. M.; Norris, J. R.; Katz, J. J. An analysis of the visibleabsorption spectrum of chlorophyll a monomer, dimer, and oligomers in solution. [J]J. Am. Chem. Soc. 1976, 98, 8222-8230.
    
    (b) Kubiak, R.; Waskowska, A.; Pietraszko,??A.; Bukowska, E. Syntheses and thermal characterization of the magnesium phthalocyanine complexes with 2-methoxy- and with 2-ethoxyethanol. X-ray structure of (2-ethoxyethanol)magnesium phthalocyanine [J] Inorg. Chim. Acta. 2005, 358,453-458.
    
    [26] (a) Ballirano, P.; Caminiti, R.; Ercolani, C.; Maras, A.; Orru, M. A. X-ray Powder Diffraction Structure Reinvestigation of the α and β Forms of Cobalt Phthalocyanine and Kinetics of the Phase Transition. [J] J. Am. Chem. Soc. 1998, 120, 12798-12807.
    
    (b) Bench. B. A.; Beveridge, A.; Sharman, W. M.; Diebold, G. J.; Van Lier, J. E.; Gorun, S. M.; Introduction of Bulky Perfluoroalkyl Groups at the Periphery of Zinc Perfluorophthalocyanine: Chemical, Structural, Electronic, and Preliminary Photophysical and Biological Effects [J] Angew. Chem. Int. Ed. 2002,41, 747-750.
    
    [27] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant. J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.;Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision B.05; [M] Gaussian, Inc.: Pittsburgh, PA, 2003.
    
    [28] Berrios, C.; Cardenas-Jiron, G. I.; Marco, J. F.; Gutierrez, C.; Ureta-Zanartu, M. S. Theoretical and Spectroscopic Study of Nickel(Ⅱ) Porphyrin Derivatives [J] J. Phys. Chem.A2007,111,2706-2714.
    
    [1] Snow, A. W.; Barger, W. R. In Phthalocyaniness Properties and Applications. Vol. 1; Lezonff, C. C.; Lever, A. B. P. Eds. [M] VCH: New York, 1989.
    
    [2] Bao, Z.; Lovinger, A. J.; Dodabalapur. Organic field-effect transistors with highmobility based on copper phthalocyanine. [J] Appl. Phys. Lett. 1996,69, 3066-3068.
    
    [3] Bao, Z.; Lovinger, A. J.; Dodabalapur. A. Highly ordered vacuum-deposited thin filmsof metallophthalocyanines and their applications in field-effect transistors [J] Adv.Mater. 1997,9,42.
    
    [4] Schon J H.; Hong M.; Bao, Z. Gate-induced superconductivity in a solution-processedorganic polymer film. [J] Nature 2001,413, 713.
    
    [5] Hu, W.; Liu, Y.; Liu, S.; Zhou, S.; Zhu, D. The gas Sensitivity of ametal-insulator-semiconductor field-effect-transistor based on Langmuir-Blodgettfilms of a new asymmetrically substituted phthalocyanine. [J] Thin Solid Films 2000,360,256-260.
    
    [6] Liu, Y; Hu, W.; Qiu W.; Xu, Y; Zhou, S.; Zhu, D. The Lamgumir-Blodgett films ofsubstituted phthalocyanine [J] Sens. Actuaors B 2001, 80,202-207.
    
    [7] Xiao, K.; Liu, Y; Huang, X.; Yu G.; Sun, Y; Zhu, D. n-Type Field-Effect TransistorsMade of an Individual Nitrogen-Doped Multiwalled Carbon Nanotube. [J] J. Am.Chem. Soc 2005,127, 8614-8617.
    
    [8] Bao, Z.; Feng, Y; Dodabalaour, A.; Raju, V. R.; Lovinger, A. High-PerformancePlastic Transistors Fabricated by Printing Techniques. [J] J. Chem. Mater. 1997, 9,1299-1301.
    
    [9] Paloheimo, J.; Stubb, H.; Yli-Lahti, P.; Dyreklev, P.; Inganas, O. Thin Solid Films.1992,210-211,283.
    
    [10] Xu, G.; Bao,Z.; Groves, J. T. Langmuir-Blodgett Films of RegioregularPoly(3-hexylthiophene) as Field-Effect Transistors. [J] Langmuir 2000,16,1834-1841.
    
    [11] Hu, W., Liu, Y, Xu, Y, et al. The application of Langmuir-Blodgett films of a new asymmetrically substituted phthalocyanine, amino-tri-tert-butyl- phthalocyanine. in diodes and in all organic field-effect-transistors. [J] Synth. Met. 1999, 104: 19-26.
    
    [12] Liu, Y. et al. Sensor and Actuators B: Chemical. 2001, 80, 202.
    
    [13] Xiao K., Liu Y., Huang X., et al. Field-Effect Transistors Based on Langmuir-Blodgett Films of Phthalocyanine Derivatives as Semiconductor Layers [M] J. Phys. Chem. B 2003,107: 9226-9230.
    
    [14] Chen S., Liu Y., Xu Y. et al. Langmuir-Blodgett film of new phthalocyanine containing oxadiazol groups and its application in field-effect transistor. [J] Syn. Met. 2006, 156,1236-1240.
    
    [15] (a) Chen, Y; Su, W.; Bai, M.; Jiang, J.; Li, X.; Liu, Y; Wang, L.; Wang. S. High performance organic field-effect transistors based on amphiphilic tris (phthalocyaninato) rare earth triple-decker complexes. J. Am. Chem. Soc. 2005. 127, 15700-15701.
    
    (b) Chen, Y; Li, R.; Wang, R.; Ma, P.; Dong, S.; Gao, Y; Li, X.; Jiang, Effect of Peripheral Hydrophobic Alkoxy Substitution on the Organic Field Effect Transistor Performance of Amphiphilic Tris(phthalcoyaninato) Europium Triple-Decker Complexes. [J] Langmuir 2007,23, 12549-12554.
    
    [16] Liu, J.; Yang, K.; Lu, Z. Controlled Assembly of Regular Composite Nanowire Arrays and Their Multilayers Using Electropolymerized Polymers as Templates [J] J. Am. Chem. Soc. 1997,119,11061.
    
    [17] (a) Arnold, D. P.; Jiang, J. Distinction between Light and Heavy Lanthanide Ions Based on the ~1H NMR Spectra of Heteroleptic Triple-Decker Phthalocyaninato Sandwich Complexes. [J] J. Phys. Chem. A 2001, 105, 7525-7533.
    
    (b) Bian, Y; Li. L.: Wang, D.; Choi, C.-F.; Cheng, D. Y Y; Zhu, P.; Li, R.; Dou, J.; Wang, R.; Pan, N.; Ma, C.; Ng, D. K. P.; Kobayashi, N.; Jiang, J. Synthetic, Structural, Spectroscopic, and Electrochemical Studies of Heteroleptic Tris(phthalocyaninato) Rare Earth Complexes. [J] Eur. J. Inorg. Chem. 2005,2612-2618.
    
    [18] (a) Ishikawa, N.; lino, T.; Kaizu, Y Interaction between f-electronic systems in dinuclear lanthanide complexes with phthalocyanines [J] J. Am. Chem. Soc. 2002. 124, 11440-11447.
    
    (b) Ishikawa, N.; Iino, T.; Kaizu, Y Determination of ligand-field parameters and f-electronic structures of hetero-dinuclear phthalocyanine complexes with a diamagnetic yttrium(Ⅲ) and a paramagnetic trivalent lanthanide ion [J] J. Phys. Chem. A 2002, 106, 9543-9550.
    
    (c) Ishikawa, N.; Iino, T.; Kaizu, Y Study of ~1H NMR spectra of dinuclear complexes of heavy lanthanides with phthalocyanines based on separation of the effects of two paramagnetic centers [J] J. Phys. Chem. A??2003, 107, 7879-884.
    
    [19] Zhu, P.; Pan, N.; Li. R.; Dou, J.; Zhang, Y; Cheng, D. Y Y; Wang, D.; Ng, D. K. P.;Jiang, J. Electron-donating alkoxy-group-driven synthesis of heteroleptictris(phthalocyaninato) lanthanide(Ⅲ) triple-deckers with symmetrical molecularstructure. [J] Chem. Eur. J. 2005,11,1425-1432.
    
    [20] PCMODEL for windows Version 6.0, Serena Software.
    
    [21] (a) Yoneyama, M; Sugi, M.; Saito, M.; Ikegama, K.; Kuroda, S.; Iizima, S.Photoelectic Properties of copper phthalocyanine Langmuir-Blodgett Film [J] Jpn.J. Appl. Phys. 1986,25, 961-965.
    
    (b) Kobayashi, N.; Lam, H.; Nevin, W. A.; Janda, P.;Leznoff, C. C.; Koyama, T.; Monden, A.; Shiral, H. Sythesis, Spectroscopy,Electrochemistry, Spectroelectrochemistry, Langmuir-Blodgett Film Formation, andMolecular-Orbital Calculations of Planar Binuclear Phthalocyanines. [J] J. Am. Chem.Soc. 1994,116,879-890.
    
    [22] Katz, H.E.; Bao, Z. N. The Physical Chemistry of Organic Field-Effect Transistors [J]J. Phys. Chem. B 2000,104,671.
    
    [23] (a) Kymissis, I.; Dimitrakopoulos, C. D.; Purushothaman, S. IEEE Trans. ElectronDevices Letter. 2001, 48, 1060-1064.
    
    (b) Gundlach, D. J.; Jia, L. L.; Jackson, T. N.IEEE Electron DeVice Lett. 2001,22, 571-573.
    
    [24] Xu, G.; Bao, Z.; Groves, J. T. Langmuir-Blodgett Films of RegioregularPoly(3-hexylthiophene) as Field-Effect Transistors. [J] Langmuir 2000, 16, 1834.
    
    [25] Cook, M. J.; Chambrier, I. in Porphyrin Handbook Vol 17 / Phthalocyanines:Properties and Materials (Ed. Kadsh, K. M.; Smith, K. M.; Guilard, R.), ElsevierScience, USA 2003, pp. 37-127.
    
    (1) (a) Lever, A. B. P.; Leznoff, C. C. Phthalocyanine: Properties and Applications; VCH: New York, 1989-1996; Vols. 1-4.
    
    (b) McKeown, N. B. Phthalocyanines Materials: Synthesis, Structure and Function; Cambridge University Press: New York, 1998.
    
    (c)Kadish, K. M.; Smith, K. M.; Guilard, R. The Porphyrin Handbook; Academic Press: San Diego, 2000-2003; Vols. 1-20.
    
    (2)(a) Turek, P.; Petit, P.; Andre, J.-J.; Simon, J.; Even, R.; Boudjema, B.; Guillaud, G.; Maitrot, M. J. Am. Chem. Soc. 1987, 109, 5119-5122.
    
    (b) Madru, R.; Guillaud, G.; Al Sadoun, M.; Maitrot, M.; Andre, J.-J.; Simon, J.; Even, R. Chem. Phys. Lett. 1988,145, 343-346.
    
    (c) Jiang, J.; Kasuga, K.; Arnold, D. P. In Supramolecular Photosensitive and Electroactive Materials; Nalwa, H. S., Ed.; Academic Press: New York, 2001; chapter 2, pp. 113-210.
    
    (d) Ng, D. K. P.; Jiang, J. Chem. Soc. Rev. 1997, 26,433-442.
    
    (e) Jiang,J.; Liu, W.; Arnold, D. P. J. Porphyrins Phthalocyanines 2003, 7,459-473.
    
    (f) Chen, Y;Su, W.; Bai, M.; Jiang, J.; Li, X.; Liu, Y; Wang, L.; Wang, S. J. Am. Chem. Soc. 2005, 127,15700-15701.
    
    (3) Nicholson, M. M. In Phthalocyanine: Properties and Applications; Lever, A. B. P.; Leznoff, C. C, Eds: VCH: New York, 1993; Vol. 3, chapter 2, pp 71-117.
    
    (4) de la Torre, G.; Torres, T.; Agullo-Lopz, F. Adv. Mater. 1997, 9, 265-269.
    
    (5) Lever, A. B. P.; Hempstead, M. R.; Leznoff, C. C.; Liu, W; Melnik, M.; Nevin, W. A.; Seymour, P. Pure Appl. Chem. 1986,58,1467-1476.
    
    (6) (a) Kobayashi, N.; Sasaki, N.; Higashi, Y; Osa, T. Inorg. Chem. 1995, 34, 1636-1637.
    
    (b) Kobayashi, N.; Ogata, H.; Nonaka, N.; Luk'yanets, E. A. Chem. Eur. J. 2003, 9, 5123-5134.
    
    (7) L'Her, M.; Pondaven, A. In The Porphyrin Handbook; Kadish, K. M.; Smith, K. M; Guilard, R., Eds; Academic Press: San Diego, 2003; Vol. 16: 117-170.
    
    (8) (a) Brauman, J. I.; Blair, L. K. J. Am. Chem. Soc. 1968, 90, 5036-5037.
    
    (b) Baker. F. W.;??Parish, R. C.; Stock, L. M. J. Am. Chem. Soc. 1967, 89, 5677-5685.
    
    (9) (a) Brauman, J. I.; Blair, L. K. J. Am. Chem. Soc. 1970, 92, 5986-599.
    
    (b) Naka. K.;Uemura, T.; Chujo, Y. Macromolecules. 2002, 35, 3539-3543.
    
    (10) (a) McMahon, T. B.; Kebarle, P. J. Am. Chem. Soc. 1977, 99, 2222-2230.
    
    (b). Karty. J.M ; Wu, Y.; Brauman, J. I. J. Am. Chem. Soc. 2001,123, 9800-9805.
    
    (11) (a) Brauman, J. I.; Blair, L. K. J. Am. Chem. Soc. 1968, 90, 6561-6562.
    
    (b) Brauman. J.I.; Blair, L. K. J. Am. Chem. Soc. 1969, 91,2126-2127.
    
    (12) (a) Stewart, J. J. P. J. Comp. Chem. 1989, 10, 209-220.
    
    (b) Stewart, J. J. P. J. Comp.Chem. 1989,10,221-264.
    
    (13) (a) Morpurgo, S.; Bossa, M.; Morpurgo, G. O. J. Mol. Struct. THEOCHEM1998, 429, 71-80.
    
    (b) Brauer, M.; Kunert, M.; Dinjus, E.; Klu β mann, M.; Doring, M.; Gorls. H.: Anders, E. J. Mol. Struct. THEOCHEM 2000, 505,289-301.
    
    (14) (a) Turker, L. J. Mol. Struct. THEOCHEM 1999, 492, 159-163.
    
    (b) Buam, D. M. L.;Lyngdoh, R. H. D. J. Mol Struct. THEOCHEM 2000, 505, 149-159.
    
    (15) Frisch M. J. et al. Gaussian-98, Revision A.9, Gaussian, Inc., Pittsburgh PA, 1998.
    
    (16) Nishi, H.; Azuma, N.; Kitahara, K. J. Heterocycl. Chem. 1992,29,475-477.
    
    (17) Siegl, W. O. J. Heterocyclic Chem. 1981,18,1613-1618.
    
    (18) Cook, M. J.; Dunn, A. J.; Howe, S. D.; Thomson, A. J. J. Chem. Soc, Perkin Trans I 1988,2453-2458.
    
    (19) Maya, E.; Haisch, P.; Vazquez, P.; Torres, T. Tetrahedron 1998,54,4379-4404.
    
    (20) Zhu, P.; Lu, F.; Pan, N.; Arnold, D. P.; Zhang, S.; Jiang, J. Eur. J. Inorg. Chem. 2004. 510-517.
    
    (21) (a) Jiang, J.; Liu, R. C. W.; Mak, T. C. W.; Ng, D. K. P.; Chan, T. W. D. Polyhedron 1997,16, 515-520.
    
    (b) Jiang, J.; Liu, W.; Lin, J.; Law, W. R; Ng, D. K. P. Inorg. Chim. Acta 1998, 268, 49-52.
    
    (c) Jiang, J.; Xie, J.; Choi, M. T. M.;. Ng, D. K. P J. Porphyrins Phthalocyanines 1999, 3, 322-328.
    
    (d) Bian, Y; Jiang, J.; Tao, Y; Choi,M. T. M.: Li, R.; Ng, A. C. H.; Zhu, P.; Pan, N.; Sun, X.; Arnold, D. P.; Zhou, Z.; Li, H.-W.; Mak. T. C. W.; Ng, D. K. P. J. Am. Chem. Soc. 2003,125, 12257-12267.
    
    (22) (a) Bian, Y; Wang, R.; Jiang, J.; Lee, C.-H.; Wang, J.; Ng, D. K. P. Chem. Commun. 2003, 1194.
    
    (b) Bian, Y; Wang, R.; Wang, D.; Zhu, P.; Li, R.; Dou, J.; Liu, W.; Choi. C.-R; Chan, H.-S.; Ma., C.; Ng, D. K. P.; Jiang, J. Helv. Chim. Acta 2004. 87. 2581-2596.
    
    (c) Bian, Y; Li, L.; Wang, D.; Choi, C.-R; Cheng, D. R R; Zhu, P.: Li, R.:??Dou, J.; Wang, R.; Pan, N.; Ma, C.; Ng, D. K. P.; Kobayashi, N.; Jiang, J. Inorg. Chem. 2004, 43, 7539-7544.
    
    (23) Zhang, H.; Wang, R.; Zhu, P.; Han, J.; Lu, E; Lee, C.-H.; Ng, D. K. P.; Cui, X.; Ma, C.; Jiang, J. Inorg. Chem. 2004,43,4740-4742.
    
    (24) (a) Kobayashi, N.; Nakajima, S.; Osa, T. Chem. Lett. 1992, 2415-2418.
    
    (b) Kobayashi,N.; Nakajima, S.; Ogata, H.; Fukuda, T. Chem. Eur. J. 2004,10,62940-6312.
    
    (25) (a) Jiang, J.; Liu, W; Poon, K. W; Du, D.; Arnold, D. P.; Ng, D. K. P. Eur. J. Inorg. Chem. 2000, 205-209.
    
    (b) Nyokong, T.; Furuya, F.; Kobayashi, N.; Du, D.; Liu, W; Jiang, J. Inorg. Chem. 2000,39, 128-135.??Electro-active Materials", Ed.: H. S. Nalwa, Academic Press, New York, 2001, chapter 2,pp. 113-210.
    
    (5) D. K. P. Ng, J. Jiang, Chem. Soc. Rev. 1997; 26: 433.
    
    (6) P. Turek, P. Petit, J.-J. Andre, J. Simon, R. Even, B. Boudjema, G. Guillaud, M. Maitrot, J. Am. Chem. Soc. 1987; 109: 5119.
    
    (7) R. Madru, G. Guillaud, M. Al Sadoun, M. Maitrot, J.-J. Andre, J. Simon, R. Even, Chem. Phys. Lett. 1988; 145: 343.
    
    (8) I. S. Kirin, P. N. Moskalev, Yu. A. Makashev, Russ. J. Inorg. Chem. 1965; 10: 1065.
    
    (9) (a) J. Jiang, W. Liu, W.-F. Law, J. Lin, D. K. P. Ng, Inorg. Chim. Acta 1998; 268: 49.
    
    (b) J. Jiang, R. C. W. Liu, T. C. W. Mak, T. D. W. Chan, D. K. P. Ng, Polyhedron, 1997; 16: 515.
    
    (c) J. Jiang, T. C. W. Mak, D. K. P. Ng, Chem. Ber., 1996; 129: 933.
    
    (10) (a) J. Jiang, R. L. C. Lau, T. W. D. Chan, T. C. W. Mak, D. K. P. Ng, Inorg. Chim. Acta, 1997; 255: 59.
    
    (b) R. L. C. Lau, J. Jiang, D. K. P. Ng, T. W. D. Chan, J. Am. Soc. Mass Spectrosc., 1997; 8: 161.
    
    (11) J. Jiang, M. T. M. Choi, W.-F. Law, J. Chen, D. K. P. Ng, Polyhedron 1998; 17: 3903.
    
    (12) D. Chabach, M. Tahiri, A. De Cian, J. Fischer, R. Weiss, M. El Malouli Bibout, J. Am. Chem. Soc. 1995; 117: 8548.
    
    (13) K. M. Kadish, G. Moninot, Y. Hu, D. Dubois, A. Ibnlfassi, J.-M. Barbe, R. Guilard, J. Am. Chem. Soc. 1993; 115: 8153.
    
    (14) (a) W Liu, J. Jiang, D. Du, D. P. Arnold, Aust. J. Chem. 2000; 53: 131.
    
    (c) F. Lu, X.Sun, R. Li, D. Liang, P. Zhu, X. Zhang, C.-F. Choi, D. K. P. Ng, T. Fukuda, N. Kobayashi, J. Jiang, New J. Chem. accepted.
    
    (15) (a) F. Lu, M. Bao, C. Ma, X. Zhang, D. P. Arnold, J. Jiang, Spectrochim Acta Part A 2003; 59: 3273.
    
    (b) M. Bao, Y. Bian,L. Rintoul, R. Wang, D. P. Arnold, C. Ma, J. Jiang, Vibrational Spectroscopy 2004; 34: 283.
    
    (c) F. Lu, L. Rintoul, X. Sun, D. P. Arnold, X. Zhang, J. Jiang, J. Raman Spectroscopy 2004; in press.
    
    (16) (a) P. Zhu, N. Pan, C. Ma, X. Sun, D. P. Arnold, J. Jiang, Eur. J. Inorg. Chem. 2004; 510.
    
    (b) M. L'Her, A. Pondaven, in The Porphyrin Handbook, Eds. K. M. Kadish, K. M. Smith, R. Guilard, Academic Press, San Diego, 2003, Vol. 16: 117-170.
    
    (17) (a) J. Jiang, Y. Bian, F. Furuya, W. Liu, M. T. M. Choi, N. Kobayashi, H.-W. Li, Q. Yang, T. C. W. Mak, D. K. P. Ng, Chem. Eur. J. 2001; 7: 5059.
    
    (b) J. Jiang, W. Liu,K.-W. Poon, D. K. P. Ng, Eur. J. Inorg. Chem. 2001; 413.
    (18) Y. Bian, D. Wang, R. Wang, L. Wen, J. Dou, D. Zhao, D. K. P. Ng, J. Jiang, New J. Chem., 2003; 27: 844.
    
    (19) F. Guyon, A. Pondaven, P. Guenot, M. L'Her, Inorg. Chem. 1994; 33: 4787.
    
    (20) F. Guyon, A. Pondaven, J. M. Kerbaol, M. L'Her, Inorg Chem. 1998; 37: 569.
    
    (21) (a) J. Jiang, W. Liu, K.-W. Poon, D. P. Arnold, D. K. P. Ng, Eur. J. Inorg. Chem. 2000: 205. (b) T. Nyokong, F. Furuya, N. Kobayashi, W. Liu, D. Du, J. Jiang, Inorg. Chem. 2000; 39: 128.
    
    (22) Y. Bian, J. Jiang, Y. Tao, M. T. M. Choi, R. Li, A. C. H. Ng, P. Zhu, N. Pan, X. Sun, D. P. Arnold, Z. Zhou, H.-W. Li, D. K. P. Ng, J. Am. Chem. Soc. 2003; 125: 12257.
    
    (23) M. J. Frisch et al., Gaussian-98, Revision A.9, Gaussian, Inc., Pittsburgh PA. 1998.
    
    (24) M. Bouvet, J. Simon, Chem. Phys. Lett. 1990; 172: 299.
    
    (25) J.-H. Fuhrhop, K. M. Kadish, D. G Davis, J. Am. Chem. Soc. 1973; 95: 5140.
    
    (26) R. Li, P. Zhu, J. Jiang, unpublished result.
    
    (27) (a) E. Orti, J. L. Bredas, J. Chem. Phys. 1990; 92: 1228. (b) N. Ishikawa, J. Porphyrins Phthalocyanines 2001; 5: 87.
    
    
    (1) (a) Lever, A. B. P.; Leznoff, C. C. Phthalocyanine: Properties and Applications; VCH: New York, 1989-1996; Vols. 1-4.
    
    (b) McKeown, N. B. Phthalocyanines Materials: Synthesis, Structure and Function; Cambridge University Press: New York, 1998.
    
    (c)Kadish, K. M.; Smith, K. M.; Guilard, R. The Porphyrin Handbook, Academic Press: San Diego, 2000-2003; Vols. 1-20.
    
    (2) (a) Gregory, P. High-Technology Applications of Organic Colorants; Plenum Press: New York, 1991.
    
    (b) Gregory, P. J. Porphyrins Phthalocyanines 2000,4,432.
    
    (3) (a) Ao, R.; Kilmmert, L.; Haarer, D. Adv. Mater. 1995, 7, 495.
    
    (b) Birkett, D. Chem. Ind 2000,178.
    
    (4) Moser, F. H.; Thomas, A. L. The Phthalocyanines; Vols. 1 and 2, Manufacture and Applications; CRC Press: Boca Raton, F1, 1983.
    
    (5) (a) Wohrle, D.; Meissner, D. Adv. Mater. 1991, 3, 129.
    
    (b) Eichhorn, H. J. Porphyrins Phthalocyanines 2000,4, 88.
    
    (6) (a) Wright, J. D. Prog. Surf. Sci. 1989, 31, 1.
    
    (b) Snow, A. W.; Barger, W. R. In Phthalocyanines: Properties and Applications, Leznoff, C. C.; Lever, A. B. P., Eds.; VCH: New York, 1989; pp. 341.
    
    (7) (a) Nalwa, H. S.; Shirk, J. S. In Phthalocyanines: Properties and Applications, Leznoff. C. C.; Lever, A. B. P., Eds.; VCH: New York, 1996; pp. 79.
    
    (b) Shirk, J. S.; Pong, R. G. S.; Flom, S. R.; Heckmann, H.; Hanack, M. J. Phys. Chem. 2000,104,1438.
    
    (8) (a)Luk'yanets, E. A. J. Porphyrins Phthalocyanines 1999, 5, 424.
    
    (b) H. Hasrar, H.; van Lier, J. E. Chem. Rev. 1999,99, 2379.
    
    (9) Cosomelli, B.; Roncuccin, G.; Dei, D.; Fantetti, L.; Ferroin, F.; Ricci, M.; Spinelli, D.??Tetrahedron 2003,59,10025.
    
    (10)Beltran, H. I.; Esquive, R.; Sosa-Sanchez, A.; Sosa-Sanchez, J. L.; Hopfl, H.; Barba. V.;Farfan, N.; Garcia, M. G; Olivares-Xometl, O.; Zamudio-Rivera, L. S. lnorg. Chem.2004, 43, 3555.
    
    (11)(a) Nohr, R. S.; Wynne, K. J. Chem. Commun. 1981,1210.
    
    (b) Wynne, K. J. lnorg. Chem.1985, 24, 1339.
    
    (c) Dirk, C. W.; Inabe, T.; Schoch, K. F.; Marks, T. J. J. Am. Chem.Soc.1983,705, 1539.
    
    (d) Deneux, M. M.; Benlian, D.; Pierrot, M.; Fournel, A.; Sorbier.J. P. Inorg. Chem. 1985, 24, 1878.
    
    (e) Cian, A. D.; Moussavi, M. M.; Fischer, J.; Weiss.R. Inorg. Chem. 1985,24, 3162.
    
    (12)(a) Jeffrey, G. A. An Introduction to Hydrogen Bonding; Oxford University Press: NewYork, 1997.
    
    (b) Desiraju, G. R.; Steiner, T. The Weak Hydrogen Bond; OxfordUniversityPress: Oxford, 1999.
    
    (c) Dumas, J. M.; Gomel, M.; Guerin, M. Molecular InteractionsInvolving Organic Halides. In The Chemistry of Functional Groups, Supplement D,Patai, S.; Rappoport, Z. Eds.; John Wiley & Sons Ltd: New York, 1983; Chapter 21. pp985.
    
    (13)(a) Martinez-Diaz, M. V.; Rodriguez-Morgade, M. S.; Feiters, M. C.; Van kan, P. J. M.:Nolte, R. J. M.; Stoddart, J. F.; Torres, T. Org. Lett. 2000, 2, 1057.
    
    (b) Janczak. J.; Idemori, Y. M. Polydedron 2003,22,1167.
    
    (14)(a) Bian, Y; Wang, R.; Jiang, J.; Lee, C.-H.; Wang, J.; Ng, D. K. P. Chem. Commun.2003,1194.
    
    (b) Li, R.; Zhang, X.; Zhu, P.; Li, X.; Ng, D. K. P.; Kobayashi, N.; Jiang, J.Inorg. Chem. 2006, 45,2327.
    
    (15)Liu, W.; Lee, C.-H.; Li, H.-W; Lam, C.-K.; Wang, J.; Mak, T. C. W; Ng, D. K. P. Chem.Commun. 2002, 628.
    
    (16)Lu, R; Bao, M.; Ma, C.; Zhang, X.; Arnold, D. P.; Jiang, J. Spectrochim. Acta A 2003. 59.3273.
    
    (17)Jiang, J.; Bao, M.; Rintoul, L.; Arnold, D. P. Coord. Chem. Rev. 2006, 250, 424. andreferences therein.
    
    (18)Sidorov, A. N.; Kotlyar, I. P. Opt. Spectrosc. (Engl. Transl.) 1961, 11, 175
    
    (19)Bian, Y; Li, L.; Dou, J.; Cheng, D. Y Y; Li, R.; Ma, C.; Ng, D. K. P.; Kobayashi. N.;Jiang, J. Inorg. Chem. 2004, 43, 7539.
    
    (20)Pimentel, G. C.; McClellan. A. L. in The Hydrogen Bond (Ed. Freeman, W. H.), SanFrancisco, Calif., 1960, pp. 289
    
    (21) Jiang, J.; Kasuga, K.; Arnold, D. P. In Supramolecular Photosensitive and Electroactive Materials; Nalwa, H. S., Ed.; Academic Press: New York, 2001, chapter 2, pp. 113-210.
    
    (22) Zhang, H.; Wang, R.; Zhu, P.; Han, J.; Lu, F.; Lee, C.-H.; Ng, D. K. P.; Cui, X.; Ma, C.; Jiang, J. Inorg. Chem. 2004,43,4740.
    
    (23) Shipman, L. L.; Cotton, T. M.; Norris, J. R.; Katz, J. J. J. Am. Chem. Soc. 1976, 98, 8222.
    
    (24) Takano, S.; Naito, T.; Inable, T. Chem. Lett. 1998, 1249. (b) Ballirano, P.; Caminiti, R.; Ercolani, C.; Maras, A.; Orru, M. A. J. Am. Chem. Soc. 1998,120,12798.
    
    (25) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, et al.Gaussian 03, Revision B.05; Gaussian, Inc.: Pittsburgh, PA, 2003.
    
    (26) Berrios. C.; Cardenas-Jiron, G. I.; Marco, J. R; Gutierrez, C.; Ureta-Zanartu, M. S. J. Phys. Chem. A 2007, 111, 2706.
    
    (27) One Molecular Simulation Software, Inc., see https://www.accelrvs.com
    
    (28) Lee, C.; Yang, W.; Parr, R. G.Phys. Rev. B 1998, 37, 785.
    
    (b) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
    
    (29) (a)Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54, 724.
    
    (b) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972,56,2257.
    
    (c) Hariharan, P. C.; Pople, J. A. Mol Phys. 1974, 27, 209.
    
    (d) Gordon, M. S. Chem. Phys. Lett. 1980, 76, 163.
    
    (e) Hariharan, P. C.; Pople, J. A. Theo. Chim. Acta. 1973,28,213
    
    (30) SMART and SAINT for Windows NT Software Reference Manuals, Version 5.0, Bruker Analytical X-Ray Systems, Madison, WL 1997.
    
    (31)Sheldrick, G. M. SADABS - A Software for Empirical Absorption Correction,University of Gottingen, 1997.
    
    (32) SHELXL Reference Manual, Version 5.1, Bruker Analytical X-Ray Systems, Madison,WI, 1997.
    
    (1) (a) Lever, A. B. P.; Leznoff, C. C. Phthalocyanine: Properties and Applications; VCH: New York, 1989-1996; Vols. 1-4.
    
    (b) McKeown, N. B. Phthalocyanines Materials: Synthesis, Structure and Function; Cambridge University Press: New York, 1998;
    
    (c) Kadish, K. M.; Smith, K. M.; Guilard, R. The Porphyrin Handbook; Academic Press: San Diego, 2000-2003; Vols. 1-20.
    
    (2) Gregory, P. High-Technology Applications of Organic Colorants; Plenum Press: New York, 1991.
    
    (3) (a) Hanack, M; Lang, M. Adv. Mater. 1994, 6, 819-833. (b) Riou, M. T.; Clarisses. C. J. Electroanal. Chem. 1988, 249, 181-190.
    
    (c) Schlettwein, D.; Worhle, D.: Jaeger. N. I. J. Electrochem. Soc. 1989,136,2882-2886.
    
    (4) (a) Cook, M. J.; Mayes, D. A.; Poynter, R. H. J. Mater. Chem. 1995, 5, 2233-2238.
    
    (b) Laschewsky, A. Adv. Mater. 1989, 1, 392-395.
    
    (c) Yokoyama, T.; Yokoyama, S.; Kamikado, T.; Okuno, Y.; Mashiko, S. Nature 2001,413,619-621.
    
    (5) (a) Cook, M. J.; Daniel, M. F.; Harrison, K. J.; McKeown, N. B.; Thomson, A. J. J. Chem. Soc., Chem. Commun. 1987, 1148-1150.
    
    (b) McKeown, N. B.; Cook, M. J.;Thomson, A. J.; Harrison, K. J.; Daniel, M. F.; Richardson, R. M.; Roser, S. J. J. Thin Solid Films 1988, 159, 469-478.
    
    (c) Cook, M. J.; McKeown, N. B.; Simmons, J. M.; Thomson, A. J.; Harrison, K. J.; Richardson, R. M.; Roser, S. J. J. Mater. Chem. 1991, 1, 121-127.
    
    (d) Chambrier, I.; Cook, M. J.; Cracknell, S. J.; McMurdo, J. J. Mater. Chem. 1993,5,841-849.
    
    (6) (a) Barret, P. A.; Dent, C. E.; Linstead, R. P. J. Chem. Soc. 1936, 1719-1736.
    
    (b) Kirin,I. S.; Moskalev, P. N.; Makashev, Y. A. Russ. J. Inorg. Chem. 1965,10,1065-1066.
    
    (7) (a) Buchler, J. W.; Ng, D. K. P. in The Porphyrin Handbook, Vol. 3 (Eds.: Kadish, K. M.; Smith, K. M.; Guilard, R.), Academic Press, San Diego, 2000, pp. 245-294.
    
    (b) Jiang, J.; Kasuga, K.; Arnold, D. P. in Supramolecular Photo-sensitive and Electro-active Materials (Ed.: Nalwa, H. S.), Academic Press, New York, 2001. pp. 113-210.
    
    (c) Jiang, J.; Liu, W.; Arnold, D. P. J. Porphyrins Phthalocyanines 2003, 7, 459-473.
    
    (d) Bian, Y.; Jiang, J.; Tao, Y.; Choi, M. T. M.; Li, R.; Ng, A. C. H.; Zhu, P.; Pan, N.; Sun, X.; Arnold, D. P.; Zhou, Z-Y.; Li, H-W.; Mak, T. C. W.; Ng, D. K. P. J. Am. Chem. Soc. 2003,125,12257-12267.
    
    (8) (a) Jiang, J.; Liu, W.; Lin, J.; Law, W. F.; Ng, D. K. P. Inorg. Chim. Acta 1998, 268, 49-52.
    
    (b) Jiang, J.; Xie, J.; Choi, M. T. M.; Ng, D. K. P. J. Porphyrins Phthalocyanines 1999, 3, 322-328.
    
    (c) Bian, Y.; Wang, R.; Jiang, J.; Lee, C.-H.; Wang, J.; Ng, D. K. P. Chem. Commun. 2003, 1194-1195.
    
    (d) Zhang, H.; Wang, R.; Zhu, P.; Han, J.; Lu, F.; Lee, C.-H.; Ng, D. K. P.; Cui, X.; Ma, C.; Jiang, J. Inorg. Chem. 2004, 43, 4740-4742.
    
    (e) Bian, Y.; Wang, R.; Wang, D.; Zhu, P.; Li, R.; Dou, J.; Liu. W.; Choi, C.-F.; Chan, H.-S.; Ma, C.; Ng, D. K. P.; Jiang, J. Helv. Chim. Acta 2004. 87. 2581-2596.
    
    (f) Lu, G.; Bai, M.; Li, R.; Zhang, X.; Ma, C.; Lo, P.-C.; Ng, D. K. P.; Jiang, J. Eur. J. Inorg. Chem. 2006, 3703-3709.
    
    (9) (a) Liu, W.; Jiang, J.; Arnold, D. P.; Pan, N. Inorg. Chim. Acta 2000, 310,140-146.
    
    (b)Arnold, D. P.; Jiang, J. J. Phys. Chem. A 2001, 105, 7525-7533.
    
    (c) Zhu, P.; Pan. N.;Li. R.; Dou, J.; Zhang, Y.; Cheng, D. Y. Y.; Wang, D.; Ng, D. K. P.; Jiang, J. Chem.??Eur. J. 2005,11, 1425-1432.
    
    (d) Bian, Y.; Li, L.; Wang, D.; Choi, C.-F.; Cheng. D. Y. Y.; Zhu, P.; Li, R.; Dou, J.; Wang, R.; Pan, N.; Ma, C.; Ng, D. K. P.; Kobayashi. N.: Jiang, J. Eur. J. Inorg. Chem. 2005, 2612-2618.
    
    (10) (a) Ishikawa, N.; lino, T.; Kaizu, Y. J. Am. Chem. Soc. 2002, 124, 11440-11447.
    
    (b)Ishikawa, N.; lino, T.; Kaizu, Y. J. Phys. Chem. A 2002,106,9543-9550.
    
    (c) Ishikawa. N.; lino, T.; Kaizu, Y. J. Phys. Chem. A 2003,107, 7879-884.
    
    (d) Ishikawa, N.; Otsuka, S.; Kaizu, Y. Angew. Chem. Int. Ed. 2005, 44, 731-733.
    
    (11) (a) Sheng, N.; Li, R.; Choi, C.-F.; Su, W.; Ng, D. K. P.; Cui, X.; Yoshida. K.; Kobayashi, N.; Jiang, J. Inorg. Chem. 2006, 45, 3794-3802.
    
    (b) Ishikawa, N.; Kaizu. Y. Chem. Phys. Lett. 1993, 203, 472-476.
    
    (c) Ishikawa, N.; Kaizu, Y. Mol. Crsyt. Liq.Cryst. 1996, 286, 263-268.
    
    (d) Ishikawa, N.; Kaizu, Y. Chem. Lett. 1998, 183-184.
    
    (e)Ishikawa, N.; Kaizu, Y. J. Phys. Chem. A 2000, 104, 10009-10016.
    
    (f) Ishikawa. N.;Kaizu, Y. Coord. Chem. Rev. 2002,226, 93-101.
    
    (12) Cadiou, C.; Pondaven, A.; L'Her, M.; Jehan, P. J.; Guenot, P. J. Org. Chem. 1999, 64, 9046-9050.
    
    (13) (a) Chen, Y; Su, W; Bai, M.; Jiang, J.; Li, X.; Liu, Y; Wang, L.; Wang, S. J. Am. Chem.Soc. 2005,127, 15700-15701.
    
    (b) Chen, Y; Li, R.; Wang, R.; Ma, P.; Dong. S.; Gao. Y; Li, X.; Jinag, J. Langmuir revised.
    
    (14) (a) Simon, J.; Andre, J. Molecular Semiconductors; Springer-Verlag: Berlin, 1985.
    
    (b) Bouvet, M.; Simon, J. Chem. Phys. Lett. 1990,172,299-302.
    
    (15) Su, W.; Jiang, J.; Xiao, K.; Chen, Y.; Zhao, Q.; Yu, G.; Liu, Y. Langmuir 2005, 21. 6527-6531.
    
    (16) Toupance, T.; Ahsen, V.; Simon, J. J. Am. Chem. Soc. 1994,116, 5352-5361.
    
    (17) (a) Ishikawa, N.; Kaizu, Y. Chem. Phys. Lett. 1994, 228, 625-632.
    
    (b) Ishikawa. N.; Kaizu, Y. Chem. Phys. Lett. 1995, 236, 50-56.
    
    (c) Ishikawa, N.; Okubo, T.; Kaizu, Y. Inorg. Chem. 1999,38, 3173-3181.
    
    (18) Li, R.; Zhang, X.; Zhu, P.; Li, X.; Ng, D. K. P.; Kobayashi, N.; Jiang, J. Inorg. Chem. 2006, 45, 2327-2334.
    
    (19) Jiang, J.; Bao, M.; Rintoul, L.; Arnold, D. P. Coord. Chem. Rev. 2006, 250. 424-448 and references therein.
    
    (20) PCMODEL for windows Version 6.0, Serena Software.
    
    (21) (a) Chen, Y.; Zhang, Y.; Zhu, P.; Fan, Y.; Bian, Y.; Li, X.; Jiang, J. J. Colloid and Interface Sci. 2006, 303,256-263.
    
    (b) Wang, X.; Chen, Y.; Liu, H.; Jiang, J. Thin Solid Films 2006, 496, 619-625.
    
    (c) Chen, Y.; Liu, H.; Zhu, P.; Zhang, Y.; Wang, X.; Li, X.; Jiang, J. Langmuir 2005, 21, 11289-11295.
    
    (d) Chen, Y.; Liu, H.; Pan, N.; Jiang, J. Thin Solid Films 2004, 460,279-285.
    
    (22) (a) Yoneyama, M; Sugi, M.; Saito, M.; Ikegama, K.; Kuroda, S.; Iizima, S. Jpn. J. Appl. Phys. 1986, 25, 961-965.
    
    (b) Kobayashi, N.; Lam, H.; Nevin, W. A.; Janda, P.; Leznoff, C. C.; Koyama, T.; Monden, A.; Shiral, H. J. Am. Chem. Soc. 1994, 116, 879-890.
    
    (23) Hang, J.; Wang, J.; Wang, H.; Yan, D. Appl. Phys. Lett. 2004,84, 142-144.
    
    (24) (a) Kymissis, I.; Dimitrakopoulos, C. D.; Purushothaman, S. IEEE Trans. Electron DeVices Letter. 2001, 48, 1060-1064.
    
    (b) Gundlach, D. J.; Jia, L. L.; Jackson, T. N. IEEE Electron DeVice Lett. 2001,22, 571-573.
    
    (25) Di, C.; Yu, G.; Liu, Y.; Xu, X.; Wei, D.; Song, Y.; Sun, Y.; Wang, Y.; Zhu, D.; Liu, J.; Liu, X. J. Am. Chem. Soc. 2006,128, 16418-16419.
    
    (26) Sze, S. M. Physics of Semiconductor Devices, John Wiley & Sons, New York 1981.
    
    (27) Cook, M. J.; Chambrier, I. in Porphyrin Handbook Vol 17 / Phthalocyanines: Properties and Materials (Ed. Kadsh, K. M.; Smith, K. M.; Guilard, R.), Elsevier Science, USA 2003, pp. 37-127.
    
    (28) Sitites, J. G.; McCarty, C. N.; Quill, L. L. J. Am. Chem. Soc. 1948, 70, 3142-3143.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700