纳米碳管表面的聚合物修饰及其初步应用于纳米复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
到目前为止,在纳米碳管相关的溶液或基体树脂中处理、控制及组装等功能性领域中,共价键合方式修饰纳米碳管已经成为最有效的手段之一。然而对纳米碳管进行聚合物修饰的方法中仍然存在着难以克服的困难——“grafting to”接枝方式中较大分子量聚合物(>20 000g/mol)的接枝密度低、反应条件要求高(高温、长时间)和制备过程相对繁琐,以及现有改性方式用于工业化生产的可实施性较差等。本课题内容主要围绕上述问题展开,并且成功实现将部分聚合物改性纳米碳管的方式应用于高性能纳米复合材料的制备。以下为主要内容:
     (1)利用TEMPO活性聚合方式制备含有较高反应活性苄氯基团的两嵌段共聚物,并在相对温和的条件下通过Pschorr-type芳基化法在单壁纳米碳管表面引入苯基团。利用苄氯与苯基团之间的偶合反应,成功地采用“grafting to”方式将分子量高达47 600 g/mol的两嵌段共聚物接枝到单壁纳米碳管表面,实现了以多点键合方式对单壁纳米碳管的表面改性,并在碳管表面形成了致密均匀聚合物接枝层。通过拉曼和FTIR表征了一步法接枝到碳管表面的苯基团;HR-TEM的表征结果证实了此接枝反应的高效性——厚而且均匀的聚合物层包覆在单壁纳米碳管的表面;在TGA上81 wt%的热失重与HR-TEM的结果相一致;同时,~1H NMR证实了随着反应时间的延长聚合物与碳管的键合密度呈逐渐增加的趋势。这一界面层的设计和实现改善了以采用“grafting to”方式进行较大分子量聚合物对纳米碳管表面接枝不均匀的状况,不仅为较大分子量的功能性聚合物修饰纳米碳管开辟了新的途径,也为优化聚合物/单壁碳管纳米复合材料开辟了一种新颖有效思路,并且有利于系统地研究聚合物/纳米碳管界面层的键合密度与复合材料最终力学性能的相关性。
     (2)少壁纳米碳管的物理和化学性质非常接近于单壁纳米碳管,其特殊的管层结构也赋予它独特的应用领域。我们采用“grafting to”接枝方法并以多点键合的方式对少壁纳米碳管进行聚合物表面修饰,通过两嵌段共聚物上的多个苄氯基团与碳管表面的苯基团的偶合反应,得到在碳管表面高键合密度的聚合物接枝层。据理论预测,聚合物/碳管界面的多点键合方式能有效改善聚合物基复合材料的应力传输效率及相关性能。我们把利用上述改性方式修饰的纳米碳管通过溶剂、超声的辅助,并借助旋转涂膜的方法与工业级聚苯乙烯(PS)树脂复合制成了高性能的纳米复合薄膜。针对薄膜平面、液氮脆断面以及拉伸断面的SEM进行了表征,结果证明改性后的纳米碳管能在PS树脂中得到非常良好的分散效果。碳管的净含量仅为0.06 wt%的复合薄膜即可在拉伸强度和拉伸模量方面分别提高了约82%和78%。热性能方面也得到明显增强,相对于纯PS树脂,在纳米碳管含量少于0.06 wt%时其复合薄膜的玻璃化温度几乎没有变化,但是当碳管含量继续增大至0.50 wt%复合薄膜的玻璃化温度则被提高了接近10℃。碳管含量继续增加却会阻碍复合薄膜的力学性能的进一步提高,并且其玻璃化温度的进一步提升也不再明显。
     (3)便捷、高效是对纳米碳管进行聚合物修饰领域的发展追求。我们通过常规方式进行聚苯乙烯的制备:采用(2,2,6,6-四甲基)-哌啶氮氧自由基(TEMPO)调控并采用偶氮二异丁腈(AIBN)引发制备聚苯乙烯(PS)。通过将对基苯胺(APA)嫁接到少壁和单壁纳米碳管(CNT)的表面,得到表面带有苯基团的功能化纳米碳管(APA-CNT)。在三氟甲基磺酸存在的情况下,利用苯乙烯分子链末端AIBN残留段端基上的氰基与APA-SWNT的苯基在室温条件下进行反应,得到聚苯乙烯包覆且在溶剂中有着良好溶解性能的纳米碳管。通过TEM、AFM和TGA等表征了聚合物功能化纳米碳管的结构形态和接枝效果;Raman和UV-vis表征结果证实了纳米碳管在接枝上聚合物前后相关性能的差异。该方法首次实现了在室温条件下进行聚合物对碳管的修饰;同时,实现了一步法制备带功能性基团的聚合物,完全避免了传统“grafting to”方式修饰碳管的过程中需要对聚合物进行功能化的繁琐步骤。
     (4)由于苯乙烯单体可以与多种乙烯基单体进行共聚制备聚合物,且适合于多种引发方式,因此我们介绍一种便捷的方式在纳米碳管表面引入大量苯乙烯单体,以便实现聚合物对碳管表面的修饰和简化碳管填充的复合材料的制备工艺。首先通过在SWNTs表面引入苯基团,并利用苯与苄氯基团的偶合反应将对氯甲基苯乙烯接枝到SWNTs表面,形成富含苯乙烯单体的SWNTs。表面包含大量苯乙烯单体的SWNTs可以通过与乙烯基单体进行原位聚合的方式进行聚合物对SWNTs表面共价键接枝。HR-TEM和SEM对聚合物接枝修饰后的SWNTs表征结果证实了聚合物对SWNTs表面的接枝效果。仅仅通过对氯甲基苯乙烯对其表面修饰后的SWNTs即可在溶剂中得到一定的溶解分散效果,通过进一步与聚苯乙烯接枝修饰后的SWNTs在溶剂中的溶解效果更明显地得到改善。这种通过先在SWNTs表面引入苯乙烯单体来修饰纳米碳管的方法,既可以使修饰后的碳管与乙烯基单体原位聚合实现聚合物对纳米碳管的修饰,也可将富含苯乙烯单体的SWNTs通过熔体混合方式直接与聚合物树脂制备高性能复合材料。
Covalent functionalization of carbon nanotubes (CNTs) is currently developing as one of the most powerful tools enabling their processing, manipulation, and assembly from solution and polymer matrices. There are still some problems necessary to overcome in this area, for example, in the existing "grafting to" approaches one needs to balance the molecular weight and grafting density of polymers, and harsh conditions (high temperature and long reaction time) and fussy procedures in polymer functionalizations. The purpose of our investigations is to find some possible routes to overcome the above difficulties. Meanwhile, we hope to explore possible applications of these functionalized CNTs in high-performance polymer nanocomposites. The primary contents of this dissertation are outlined as follows:
     Single-walled carbon nanotubes (SWNTs) with high covalent bonding density of polymer layers were prepared by "grafting to" approach, where the benzyl chloride groups of styrene copolymers (M_n = 47 600) reacted with the phenyl alkyne groups on SWNTs under relatively mild conditions. This resulted in a grafting efficiency as high as 81 wt % in TGA. Microscopic observations displayed the uniform, thick polymer layers on the SWNT surface. The high density of covalent bonding between polymer and nanotubes was confirmed by Raman, ~1H NMR and FTIR, which makes them well dissolved in organic solvents and homogeneously dispersed in the polymer matrix. The in situ UV-vis observations during the dissolution indicated that for such a multifunctional system almost no cross-links occurred between SWNTs due to the physical absorption and steric hindrance of polymer chains during the functionalization of SWNTs. The current method suggests a possibility to control the covalent bonding density at the interface and to tune the thickness of polymer layers by altering the molecular weights of functional blocks and whole copolymer molecules. It should be helpful for systematically studying the effect of interfacial bonding density on macroscopic properties and further optimizing the properties of SWNT-based nanocmposites.
     Few-walled carbon nanotubes (FWNTs) have attracted much attention due to their unique structure that may be potential in solving some existing problems associated with SWNTs and multi-walled carbon nanotubes (MWNTs). We here extended the method applied in the first section to the FWNT-polymer interface, in which the pre-synthesized multi-functional diblock copolymers, and then uniform thick polymer layers were coated on the FWNT surface. From the recent molecular simulations and experimental observations, it was recognized that the interfacial shear strength between SWNTs and amorphous/crystalline polymers could be increased with increasing interfacial chemical cross-links. This opinion was further confirmed in our work It was shown that the polymer grafted CNTs with higher bonding density exhibited a pronounced reinforcement effect on the mechanical properties of polymer nanocomposites. The addition of only 0.06 wt % SWNTs resulted in 82% and 78% of increases in tensile strength and elastic modulus of the composites, respectively. This reflects an efficient interfacial stress transfer between SWNTs and polymer. The same increase appeared in thermal property of nanocompostes.
     The facility and efficiency is important in considering of polymer funcionalization of CNTs. We here report an easy method to functionalize CNTs with polystyrene (PS). We first prepared PS in which 2, 2 -Azobis (isobutyronitrile) (AIBN) was used as an initiator and 2,2,6,6-Tetramethyl-1-piperidineoxy (TEMPO) as a modulator. After the decomposition of AIBN to initiate the polymerization, cyanic groups are left at the PS chain ends. Subsequently, CNTs were functionalized with p-aminophenylalkyne (APA). With the assistance of trifluoromethane sulphonic acid, the coupling reaction between cyanic and phenyl alkyne groups was completed at room temperature, resulting in a 32 wt % grafting efficiency in TGA. The details of PS-grafted CNTs were further characterized by TEM, AFM, Raman and UV-vis. To the best of our knowledge, it is for the first time exhibited that the PS functionalization of CNTs was able to be completed at room temperature and moreover, the grafting polymer (PS) did not require additional incorporation of reactive groups (only the residual cyanic groups at the PS ends were utilized). This is in contrast with the strategies adopted in other "grafting to" methods, and thus simplifies the functionalization procedure of CNTs.
     Styrene can copolymerize with many vinyl monomers, and adapt to any polymerization initiated methods. We here propose a facile method to introduce lots of styrene monomers to the SWNT surface so that the polymer modification can be realized by means of in-situ polymerization of those styrene monomers covalently linked on SWNTs. To achieve this, phenyl alkyne groups were first grafted to the SWNT surface, followed by the coupling reaction between phenyl alkyne and benzyl chloride of p-chloromethylstyrene. The polymer layers were then formed on the SWNT surface via in-situ polymerization initiated by AIBN and modulated by TEMPO. The results from HR-TEM and SEM proved the micro-configuration of the polymer-grafted SWNTs. Because of introduction of lots of monomers onto the SWNT surface, the solubility of SWNTs was improved and can be dispersed in various organic solvents. The method presented not only affords a chance to copolymerize SWNTs with extensive vinyl monomers, but also can prepare directly nanocomposites by melt-mixing with polymers.
引文
[1] Kroto, H. W.; Heath, J. R.; O'Brien, S. C. C60: Buckyminister-fullerene[J]. Nature. 1985, 318(6042): 162-163.
    [2] Iijima, S. Helical Microtubules of Graphitic Carbon[J]. Nature. 1991, 354(6348): 56-58.
    [3] Harris, P. J. E Carbon nanotubes and related structures. [M] . London: Cambridge University Press, 1999.
    [4] Kratschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R. Solid C-60-A New Form of Carbon[J]. Nature. 1990, 347(6291): 354-358.
    [5] Baker, R. T. K.; Barber, M. A.; Harris, P. S.; Feates, F.S.; Waite, R. J. Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene[J]. Journal of Catalysis. 1972, 26(1): 51-62.
    [6] Kraetschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R. Solid C60: a new form of carbon[J]. Nature. 1990, 347(6291): 354-358.
    [7] Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter[J]. Nature. 1993, 363(6430): 603-605.
    [8] Bethune, D. S.; Kiang, C. H.; de Vries, M. S.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R. Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls[J]. Nature. 1993, 363(6430): 605-607.
    [9] Barros, E. B.; Jorio, A.; Samsonidze, G. G.; Capaz, R. B.; Souza, A. G.; Mendes, J.; Dresselhaus, G.; Dresselhaus, M. S. Review on the symmetry-related properties of carbon nanotubes[J]. Physics Reports-Review Section of Physics Letters. 2006, 431(6): 261-302.
    [10] Ajayan, P. M. Nanotubes from carbon[J]. Chemical Reviews. 1999, 99(7): 1787-1799.
    [11] Zhou, O.; Fleming, R. M.; Murphy, D. W.; Chen, C. H.; Haddon, R. C.; Ramirez, A. P.; Glarum, S. H. Defects In Carbon Nanostructures[J]. Science. 1994, 263(5154): 1744-1747.
    [12] Amelinckx, S.; Zhang, X. B.; Bernaerts, D.; Zhang, X. F.; Ivanov, V.; Nagy, J. B. A Formation Mechanism For Catalytically Grown Helix-Shaped Graphite Nanotubes[J]. Science. 1994, 265(5172): 635-639.
    [13] Amelinckx, S.; Lucas, A.; Lambin, P. Electron diffraction and microscopy of nanotubes[J]. Reports on Progress In Physics. 1999, 62(11): 1471-1524.
    [14] Kiang, C. H.; Endo, M.; Ajayan, P.M.; Dresselhaus, G.; Dresselhaus, M. S. Size effects in carbon nanotubes[J]. Physical Review Letters. 1998, 81(9): 1869-1872.
    [15] Tersoff, J.; Ruoff, R. S. Structural-Properties Of A Carbon-Nanotube Crystal[J]. Physical Review Letters. 1994, 73(5): 676-679.
    [16] Liu, J.; Dai, H. J.; Hafner, J. H.; Colbert, D. T.; Smalley, R. E.; Tans, S. J.; Dekker, C. Fullerene 'crop circles'[J]. Nature. 1997, 385(6619): 780-781.
    [17] Che, J. W.; Cagin, T.; Goddard, W. A. Thermal conductivity of carbon nanotubes[J]. Nanotechnology. 2000, 11(2): 65-69.
    [18] Collins, P. C.; Arnold, M. S.; Avouris, P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown[J]. Science. 2001, 292(5517): 706-709.
    [19] Overney, G.; Zhong, W.; Tomanek, D. Structural Rigidity And Low-Frequency Vibrational-Modes Of Long Carbon Tubules[J]. Zeitschrift Fur Physik D-Atoms Molecules and Clusters. 1993, 27(1): 93-96.
    [20] Yakobson, B. I.; Brabec, C. J.; Bernholc, J. Nanomechanics of carbon tubes: Instabilities beyond linear response[J]. Physical Review Letters. 1996, 76(14): 2511-2514.
    [21] Treacy, M. M. J.; Ebbesen, T. W.; Gibson, J. M. Exceptionally high Young's modulus observed for individual carbon nanotubes[J]. Nature. 1996, 381(6584): 678-680.
    [22] Yakobson, B. I.; Smalley, R. E. Nourishing nanotubes-reply[J]. American Scientist. 1997, 85(6): 500-500.
    [23] Ruoff, R. S.; Lorents, D. C. Mechanical and thermal-properties of carbon nanotubes[J]. Carbon. 1995, 33(7): 925-930.
    [24] Stone, A. J.; Wales, D. J. Theoretical studies of icosahedral C60 and some related species [J]. ChemicaI Physics Letters. 1986, 128(5-6): 501-503.
    [25] kakobson, B. I. Mechanical relaxation and "intramolecular plasticity" in carbon nanotubes[J]. Applied Physics Letters. 1998, 72(8): 918-920.
    [26] Liu, C.; Cong, H. T.; Li, F.; Tan, P. H.; Cheng, H. M.; Lu, K.; Zhou, B. L. Semi-continuous synthesis of single-walled carbon nanotubes by a hydrogen arc discharge method[J]. Carbon. 1999, 37(11): 1865-1868.
    [27] Ebbesen, T. W.; Ajayan, P. M. Large-Scale synthesis of carbon nanotubes[J]. Nature. 1992, 358(6383): 220-222.
    [28] Ishigami, M.; Cumings, J.; Zettl, A.; Chen, S. A simple method for the continuous production of carbon nanotubes[J]. Chemical Physics Letters. 2000, 319(5-6): 457-459.
    [29] Guo, T.; Nikolaev, P.; Rinzler, A. G.; Tomanek, D.; Colbert, D. T.; Smalley, R. E. Self-assembly of tubular fullerenes[J]. Journal of Physical Chemistry. 1995, 99(27): 10694-10697.
    [30] Guo, T.; Nikolaev, P.; Thess, A.; Colbert, D. T.; Smalley, R. E. Catalytic growth of single-walled nanotubes by laser vaporization[J]. Chemical Physics Letters. 1995, 243(1-2): 49-54.
    [31] Thess, A.; Lee, R.; Nikolaev, P.; Dai, H. J.; Petit, P.; Robert, J.; Xu, C. H.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G.; Colbert, D. T.; Scuseria, G. E.; Tomanek, D.; Fischer, J. E.; Smalley, R. E. Crystalline ropes of metallic carbon nanotubes[J]. Science. 1996, 273(5274): 483-487.
    [32] Yudasaka, M.; Komatsu, T.; Ichihashi, T.; Iijima, S. Single-wall carbon nanotube formation by laser ablation using double-targets of carbon and metal[J]. Chemical Physics Letters. 1997, 278(1-3): 102-106.
    [33] Ivanov, V.; Nagy, J. B.; Lambin, P.; Lucas, A.; Zhang, X. B.; Zhang, X. E; Bernaerts, D.; Vantendeloo, G.; Amelinckx, S.; Vanlanduyt, J. The study of carbon nanotubules produced by catalytic method[J]. Chemical Physics Letters. 1994, 223(4): 329-335.
    [34] Fonseca, A.; Pierard, N.; Tollis, S.; Bister, G.; Konya, Z.; Nagaraju, N.; Nagy, J. B. Hydrogen storage in carbon nanotubes produced by CVD[J]. Journal De Physique Iv. 2002, 12(PR4): 129-137.
    [35] Nagaraju, N.; Fonseca, A.; Konya, Z.; Nagy, J. B. Alumina and silica supported metal catalysts for the production of carbon nanotubes[J]. Journal of Molecular Catalysis A-Chemical. 2002, 181(1-2): 57-62.
    [36] Dal, H. J.; Rinzler, A. G.; Nikolaev, P.; Thess, A.; Colbert, D. T.; Smalley, R. E. Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide[J]. Chemical Physics Letters. 1996, 260(3-4): 471-475.
    [37] Cassell, A. M.; Raymakers, J. A.; Kong, J.; Dai, H. J. Large scale CVD synthesis of single-walled carbon nanotubes[J]. Journal of Physical Chemistry B. 1999, 103(31): 6484-6492.
    [38] Lyu, S. C.; Liu, B. C.; Lee, T. J.; Liu, Z. Y.; Yang, C. W.; Park, C. Y.; Lee, C. J. Synthesis of high-quality single-walled carbon nanotubes by catalytic decomposition of C_2H_2[J]. Chemical Communications. 2003, (6): 734-735.
    [39] Lyu, S. C.; Lee, T. J.; Yang, C. W.; Lee, C. J. Synthesis and characterization of high-quality double-walled carbon nanotubes by catalytic decomposition of alcohol[J]. Chemical Communications. 2003, (12): 1404-1405.
    [40] Journet, C.; Maser, W. K.; Bernier, E; Loiseau, A.; delaChapelle, M. L.; Lefrant, S.; Deniard, E; Lee, R.; Fischer, J. E. Large-scale production of single-walled carbon nanotubes by the electric-arc technique[J]. Nature. 1997, 388(6644): 756-758.
    [41] Liu, C.; Cheng, H. M.; Cong, H. T.; Li, F.; Su, G.; Zhou, B. L.; Dresselhaus, M. S. Synthesis of macroscopically long ropes of well-aligned single-walled carbon nanotubes[J]. Advanced Materials. 2000, 12(16): 1190-1192.
    [42] Kubo, R. Electronic properties of metallic fineparticles[J]. J. Phys. Soc. Jpn. 1962, 17(5): 975-986.
    [43] Cheng, H. M.; Li, F.; Su, G.; Pan, H. Y.; He, L. L.; Sun, X.; Dresselhaus, M. S. Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons[J]. Applied Physics Letters. 1998, 72(25): 3282-3284.
    [44] Cheng, H. M.; Li, F.; Sun, X.; Brown, S. D. M.; Pimenta, M. A.; Marucci, A.; Dresselhaus, G.; Dresselhaus, M. S. Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons[J]. Chemical Physics Letters. 1998, 289(5-6): 602-610.
    [45] Flahaut, E.; Govindaraj, A.; Peigney, A.; Laurent, C.; Rousset, A.; Rao, C. N. R. Synthesis of single-walled carbon nanotubes using binary (Fe, Co, Ni) alloy nanoparticles prepared in situ by the reduction of oxide solid solutions[J]. Chemical Physics Letters. 1999, 300(1-2): 236-242.
    [46] Fonseca, A.; Hernadi, K.; Piedigrosso, P.; Colomer, J. F.; Mukhopadhyay, K.; Doome, R.; Lazarescu, S.; Biro, L. P.; Lambin, P.; Thiry, E A.; Bernaerts, D.; Nagy, J. B. Synthesis of single- and multi-wall carbon nanotubes over supported catalysts[J]. Applied Physics A-Materials Science & Processing. 1998, 67(1): 11-22.
    [47] Ci, L. J.; Wei, J. Q.; Wei, B. Q.; Liang, J.; Xu, C. L.; Wu, D. H. Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method[J]. Carbon. 2001, 39(3): 329-335.
    [48] Tang, Z. K.; Sun, H. D.; Wang, J.; Chen, J.; Li, G. Mono-sized single-wall carbon nanotubes formed in channels of AIPO_(4-5) single crystal[J]. Applied Physics Letters. 1998, 73(16): 2287-2289.
    [49] Wang, N.; Tang, Z. K.; Li, G. D.; Chen, J. S. Materials science - Single-walled 4 angstrom carbon nanotube arrays[J]. Nature. 2000, 408(6808): 50-51.
    [50] Bandow, S.; Takizawa, M.; Hirahara, K.; Yudasaka, M.; Iijima, S. Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes[J]. Chemical Physics Letters. 2001, 337(1-3): 48-54.
    [51] Hutchison, J. L.; Kiselev, N. A.; Krinichnaya, E. P.; Krestinin, A. V.; Loutfy, R. O.; Morawsky, A. P.; Muradyan, V. E.; Obraztsova, E. D.; Sloan, J.; Terekhov, S. V.; Zakharov, D. N. Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method[J]. Carbon. 2001, 39(5): 761-770.
    [52] Ren, W. C.; Li, F.; Chen, J. A.; Bai, S.; Cheng, H. M. Morphology, diameter distribution and Raman scattering measurements of double-walled carbon nanotubes synthesized by catalytic decomposition of methane[J]. Chemical Physics Letters. 2002, 359(3-4): 196-202.
    [53] Qi, H.; Qian, C.; Liu, J. Synthesis of high-purity few-walled carbon nanotubes from ethanol/methanol mixture[J]. Chemistry of Materials. 2006, 18(24): 5691-5695.
    [54] Tohji, K.; Takahashi, H.; Shinoda, Y.; Shimizu, N.; Jeyadevan, B.; Matsuoka, I.; Saito, Y.; Kasuya, A.; Ito, S.; Nishina, Y. Purification procedure for single-walled nanotubes[J]. Journal of Physical Chemistry B. 1997, 101(11): 1974-1978.
    [55] Bandow, S.; Rao, A. M.; Williams, K. A.; Thess, A.; Smalley, R. E.; Eklund, P. C. Purification of single-wall carbon nanotubes by microfiltration[J]. Journal of Physical Chemistry B. 1997,101(44): 8839-8842.
    [56] Duesberg, G. S.; Muster, J.; Krstic, V.; Burghard, M.; Roth, S. Chromatographic size separation of single-wall carbon nanotubes[J]. Applied Physics A-Materials Science & Processing. 1998, 67(1): 117-119.
    [57] Chiang, I. W.; Brinson, B. E.; Huang, A. Y.; Willis, P. A.; Bronikowski, M. J.; Margrave, J. L.; Smalley, R. E.; Hauge, R. H. Purification and characterization of single-wall carbon nanotubes (SWNTs) obtained from the gas-phase decomposition of CO (HiPco process)[J]. Journal of Physical Chemistry B. 2001,105(35): 8297-8301.
    [58] Fang, H. T.; Liu, C. G; Chang, L.; Feng, L.; Min, L.; Cheng, H. M. Purification of single-wall carbon nanotubes by electrochemical oxidation[J]. Chemistry of Materials. 2004,16(26): 5744-5750.
    [59] Itkis, M. E.; Perea, D. E.; Jung, R.; Niyogi, S.; Haddon, R. C. Comparison of analytical techniques for purity evaluation of single-walled carbon nanotubes[J]. Journal of The American Chemical Society. 2005,127(10): 3439-3448.
    [60] Xu, Y. Q.; Peng, H. Q.; Hauge, R. H.; Smalley, R. E. Controlled multistep purification of single-walled carbon nanotubes[J]. Nano Letters. 2005, 5(1): 163-168.
    [61] Dujardin, E.; Ebbesen, T. W.; Krishnan, A.; Treacy, M. M. J. Purification of single-shell nanotubes[J]. Advanced Materials. 1998,10(8): 611-612.
    [62] Dillon, A. C; Gennett, T.; Jones, K. M.; Alleman, J. L; Parilla, P. A.; Heben, M. J. A simple and complete purification of single-walled carbon nanotube materials[J]. Advanced Materials. 1999,11(16): 1354-1358.
    [63] Ebbesen, T. W.; Ajayan, P. M.; Hiura, H.; Tanigaki, K. Purification Of Nanotubes[J]. Nature. 1994,367(6463): 519-519.
    [64] Tohji, K.; Goto, T.; Takahashi, H.; Shinoda, Y.; Shimizu, N.; Jeyadevan, B.; Matsuoka, I.; Saito, Y; Kasuya, A.; Ohsuna, T.; Hiraga, H.; Nishina, Y. Purifying single-walled nanotubes[J]. Nature. 1996,383(6602): 679-679.
    [65] Tsang, S. C; Harris, P. J. F; Green, M. L. H. Thinning And Opening Of Carbon Nanotubes By Oxidation Using Carbon-Dioxide[J]. Nature. 1993, 362(6420): 520-522.
    [66] Nakajima, T.; Kasamatsu, S.; Matsuo, Y. Synthesis and characterization of fluorinated carbon nanotube[J]. European Journal of Solid State And Inorganic Chemistry. 1996, 33(9): 831-840.
    [67] Hamwi, A.; Alvergnat, H.; Bonnamy, S.; Beguin, F. Fluorination of carbon nanotubes[J]. Carbon. 1997, 35(6): 723-728.
    [68] Mickelson, E. X; Huffman, C. B.; Rinzler, A. G; Smalley, R. E.; Hauge, R. H.; Margrave, J. L. Fluorination of single-wall carbon nanotubes[J]. Chemical Physics Letters. 1998, 296(1-2): 188-194.
    [69] Touhara, H.; Okino, F. Property control of carbon materials by fluorination [J]. Carbon. 2000, 38(2): 241-267.
    [70] Yudanov, N. E; Okotrub, A. V.; Shubin, Y. V.; Yudanova, L. I.; Bulusheva, L. G; Chuvilin, A. L.; Bonard, J. M. Fluorination of arc-produced carbon material containing multiwall nanotubesfj]. Chemistry of Materials. 2002, 14(4): 1472-1476.
    [71] Kelly, K. E; Chiang, I. W.; Mickelson, E. T.; Hauge, R. H.; Margrave, J. L; Wang, X.; Scuseria, G. E.; Radloff, C; Halas, N. J. Insight into the mechanism of sidewall functionalization of single-walled nanotubes: an STM study[J]. Chemical Physics Letters. 1999, 313(3-4): 445-450.
    [72] Hayashi, T.; Terrones, M.; Scheu, C; Kim, Y. A.; Ruhle, M.; Nakajima, T.; Endo, M. NanoTeflons: Structure and EELS characterization of fluorinated carbon nanotubes and nanofibers[J]. Nano Letters. 2002, 2(5): 491-496.
    [73] An, K. H.; Heo, J. G; Jeon, K. G; Bae, D.; Jo, C. S.; Yang, C. W.; Park, C. Y.; Lee, Y. H.; Lee, Y. S.; Chung, Y. S. X-ray photoemission spectroscopy study of fluorinated single-walled carbon nanotubes[J]. Applied Physics Letters. 2002, 80(22): 4235-4237.
    [74] Lee, Y. S.; Cho, T. H.; Lee, B. K.; Rho, J. S.; An, K. H.; Lee, Y. H. Surface properties of fluorinated single-walled carbon nanotubes[J]. Journal of Fluorine Chemistry. 2003,120(2): 99-104.
    [75] Kudin, K. N.; Bettinger, H. E; Scuseria, G. E. Fluorinated single-wall carbon nanotubes[J]. Physical Review B. 2001, 63(4): art. No.-045413.
    [76] Root, M. J. Comparison of fluorofullerenes with carbon monofluorides and fluorinated carbon single wall nanotubes: Thermodynamics and electrochemistry[J]. Nano Letters. 2002, 2(5): 541-543.
    [77] Bettinger, H. F. Effects of finite carbon nanotube length on sidewall addition of fluorine atom and methylene[J]. Organic Letters. 2004, 6(5): 731-734.
    [78] Hirsch, A. Functionalization of single-walled carbon nanotubes[J]. Angewandte Chemie-International Edition. 2002, 41(11): 1853-1859.
    [79] Holzinger, M.; Vostrowsky, O.; Hirsch, A.; Hennrich, E; Kappes, M.; Weiss, R.; Jellen, F. Sidewall functionalization of carbon nanotubes[J]. Angewandte Chemie-lnternational Edition. 2001,40(21): 4002-+.
    [80] Holzinger, M.; Steinmetz, J.; Samaille, D.; Glerup, M.; Paillet, M.; Bernier, P.; Ley, L.; Graupner, R. [2+1] cycloaddition for cross-linking SWCNTs[J]. Carbon. 2004, 42(5-6): 941-947.
    [81] Moghaddam, M. J.; Taylor, S.; Gao, M.; Huang, S. M.; Dai, L. M.; McCall, M. J. Highly efficient binding of DNA on the sidewalls and tips of carbon nanotubes using photochemistry [J]. Nano Letters. 2004, 4(1): 89-93.
    [82] Lee, K. M.; Li, L. C; Dai, L. M. Asymmetric end-functionalization of multi-walled carbon nanotubes[J]. Journal of the American Chemical Society. 2005,127(12): 4122-4123.
    [83] Georgakilas, V.; Kordatos, K.; Prato, M.; Guldi, D. M.; Holzinger, M.; Hirsch, A. Organic functionalization of carbon nanotubes [J]. Journal of The American Chemical Society. 2002,124(5): 760-761.
    [84] Tagmatarchis, N.; Prato, M. Functionalization of carbon nanotubes via 1,3-dipolar cycloadditions[J]. Journal of Materials Chemistry. 2004, 14(4): 437-439.
    [85] Bianco, A.; Prato, M. Can carbon nanotubes be considered useful tools for biological applications? [J]. Advanced Materials. 2003,15(20): 1765-1768.
    [86] Pantarotto, D.; Partidos, C. D.; Graff, R.; Hoebeke, J.; Briand, J. P.; Prato, M.; Bianco, A. Synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides[J]. Journal of the American Chemical Society. 2003,125(20): 6160-6164.
    [87] Georgakilas, V.; Tagmatarchis, N.; Pantarotto, D.; Bianco, A.; Briand, J. P.; Prato, M. Amino acid functionalisation of water soluble carbon nanotubes [J]. Chemical Communications. 2002, (24): 3050-3051.
    [88] Wang, Y. B.; Iqbal, Z.; Mitra, S. Microwave-induced rapid chemical functionalization of single-walled carbon nanotubes[J]. Carbon. 2005, 43(5): 1015-1020.
    [89] Coleman, K. S.; Bailey, S. R.; Fogden, S.; Green, M. L. H. Functionalization of single-walled carbon nanotubes via the Bingel reaction[J]. Journal of the American Chemical Society. 2003,125(29): 8722-8723.
    [90] Worsley, K. A.; Moonoosawmy, K. R.; Kruse, P. Long-range periodicity in carbon nanotube sidewall functionalization[J]. Nano Letters. 2004, 4(8): 1541-1546.
    [91] Ni, B.; Sinnott, S. B. Chemical functionalization of carbon nanotubes through energetic radical collisions[J]. Physical Review B. 2000, 61(24): R16343-R16346.
    [92] Mylvaganam, K.; Zhang, L. C. Nanotube functionalization and polymer grafting: An ab initio study[J]. Journal of Physical Chemistry B. 2004, 108(39): 15009-15012.
    [93] Bahr, J. L.; Yang, J. P.; Kosynkin, D. V.; Bronikowski, M. J.; Smalley, R. E.; Tour, J. M. Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: A bucky paper electrode [J]. Journal of the American Chemical Society. 2001,123(27): 6536-6542.
    [94] Dyke, C. A.; Stewart, M. P.; Maya, F.; Tour, J. M. Diazonium-based functionalization of carbon nanotubes: XPS and GC-MS analysis and mechanistic implications [J]. Synlett. 2004, (1): 155-160.
    [95] Marcoux, P. R.; Hapiot, P.; Batail, P.; Pinson, J. Electrochemical functionalization of nanotube films: growth of aryl chains on single-walled carbon nanotubes[J]. New Journal of Chemistry. 2004, 28(2): 302-307.
    [96] Strano, M. S.; Dyke, C. A.; Usrey, M. L.; Barone, P. W.; Allen, M. J.; Shan, H. W.; Kittrell, C; Hauge, R. H.; Tour, J. M.; Smalley, R. E. Electronic structure control of single-walled carbon nanotube functionalization[J]. Science. 2003, 301(5639): 1519-1522.
    [97] Hudson, J. L.; Casavant, M. J.; Tour, J. M. Water-soluble, exfoliated, nonroping single-wall carbon nanotubes [J]. Journal of the American Chemical Society. 2004,126(36): 11158-11159.
    [98] Kooi, S. E.; Schlecht, U.; Burghard, M.; Kern, K. Electrochemical modification of single carbon nanotubes[J]. Angewandte Chemie-International Edition. 2002, 41(8): 1353-1355.
    [99] Balasubramanian, K.; Friedrich, M.; Jiang, C. Y.; Fan, Y. W.; Mews, A.; Burghard, M.; Kern, K. Electrical transport and confocal Raman studies of electrochemically modified individual carbon nanotubes[J]. Advanced Materials. 2003,15(18): 1515-1516.
    [100] Balasubramanian, K.; Sordan, R.; Burghard, M.; Kern, K. A selective electrochemical approach to carbon nanotube field-effect transistors [J]. Nano Letters. 2004, 4(5): 827-830.
    [101] Peng, H. Q.; Alemany, L. B.; Margrave, J. L.; Khabashesku, V. N. Sidewall carboxylic acid functionalization of single-walled carbon nanotubes [J]. Journal of the American Chemical Society. 2003,125(49): 15174-15182.
    [102] Tagmatarchis, N.; Georgakilas, V.; Prato, M.; Shinohara, H. Sidewall functionalization of single-walled carbon nanotubes through electrophilic addition[J]. Chemical Communications. 2002, (18): 2010-2011.
    [103] Banerjee, S.; Wong, S. S. Rational sidewall functionalization and purification of single-walled carbon nanotubes by solution-phase ozonolysis[J]. Journal of Physical Chemistry B. 2002,106(47): 12144-12151.
    [104] Banerjee, S.; Wong, S. S. Demonstration of diameter-selective reactivity in the sidewall ozonation of SWNTs by resonance Raman spectroscopy[J]. Nano Letters. 2004,4(8): 1445-1450.
    [105] Lu, X.; Zhang, L. L.; Xu, X.; Wang, N. Q.; Zhang, Q. N. Can the sidewalls of single-wall carbon nanotubes be ozonized?[J]. Journal of Physical Chemistry B. 2002,106(9): 2136-2139.
    [106] Barthos, R.; Mehn, D.; Demortier, A.; Pierard, N.; Morciaux, Y.; Demortier, G.; Fonseca, A.; Nagy, J. B. Functionalization of single-walled carbon nanotubes by using alkyl-halides[J]. Carbon. 2005, 43(2): 321-325.
    [107] O'Connell, M. J.; Bachilo, S. M.; Huffman, C. B.; Moore, V. C; Strano, M. S.; Haroz, E. H.; Rialon, K. L.; Boul, P. J.; Noon, W. H.; Kittrell, C.; Ma, J. P.; Hauge, R. H.; Weisman, R. B.; Smalley, R. E. Band gap fluorescence from individual single-walled carbon nanotubes[J]. Science. 2002, 297(5581): 593-596.
    [108] Islam, M. F.; Rojas, E.; Bergey, D. M.; Johnson, A. X; Yodh, A. G. High weight fraction surfactant solubilization of single-wall carbon nanotubes in water [J]. Nano Letters. 2003,3(2): 269-273.
    [109] Kang, Y. J.; Taton, T. A. Micelle-encapsulated carbon nanotubes: A route to nanotube composites[J]. Journal of The American Chemical Society. 2003, 125(19): 5650-5651.
    [110] O'Connell, M. J.; Boul, P.; Ericson, L. M.; Huffman, C; Wang, Y. H.; Haroz, E.; Kuper, C; Tour, J.; Ausman, K. D.; Smalley, R. E. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping[J]. Chemical Physics Letters. 2001, 342(3-4): 265-271.
    [111] Star, A.; Stoddart, J. E; Steuerman, D.; Diehl, M.; Boukai, A.; Wong, E. W.; Yang, X.; Chung, S. W.; Choi, H.; Heath, J. R. Preparation and properties of polymer-wrapped single-walled carbon nanotubes[J]. Angewandte Chemie-International Edition. 2001,40(9): 1721-1725.
    [112] Star, A.; Stoddart, J. F. Dispersion and solubilization of single-walled carbon nanotubes with a hyperbranched polymer[J]. Macromolecules. 2002, 35(19): 7516-7520.
    [113] Gomez, F. J.; Chen, R. J.; Wang, D. W.; Waymouth, R. M.; Dai, H. J. Ring opening metathesis polymerization on non-covalently functionalized single-walled carbon nanotubes[J]. Chemical Communications. 2003, (2): 190-191.
    [114] Barraza, H. J.; Pompeo, F.; O'Rear, E. A.; Resasco, D. E. SWNT-filled thermoplastic and elastomeric composites prepared by miniemulsion polymerization[J].Nano Letters. 2002,2(8): 797-802.
    [115] Nakashima, N.; Tomonari, Y.; Murakami, H. Water-soluble single-walled carbon nanotubes via noncovalent sidewall-functionalization with a pyrene-carrying ammonium ion[J]. Chemistry Letters. 2002, (6): 638-639.
    [116] Zhang, J.; Lee, J. K.; Wu, Y; Murray, R. W. Photoluminescence and electronic interaction of anthracene derivatives adsorbed on sidewalls of single-walled carbon nanotubes[J]. Nano Letters. 2003, 3(3): 403-407.
    [117] Paloniemi, H.; Aaritalo, T.; Laiho, T.; Liuke, H.; Kocharova, N.; Haapakka, K.; Terzi, F.; Seeber, R.; Lukkari, J. Water-soluble full-length single-wall carbon nanotube polyelectrolytes: Preparation and characterization[J]. Journal ofPhysical Chemistry B. 2005,109(18): 8634-8642.
    [118] Fernando, K. A. S.; Lin, Y; Wang, W.; Kumar, S.; Zhou, B.; Xie, S. Y; Cureton, L. T.; Sun, Y. P. Diminished band-gap transitions of single-walled carbon nanotubes in complexation with aromatic molecules[J]. Journal of the American Chemical Society. 2004,126(33): 10234-10235.
    [119] Qin, S. H.; Oin, D. Q.; Ford, W. T.; Resasco, D. E.; Herrera, J. E. Polymer brushes on single-walled carbon nanotubes by atom transfer radical polymerization of n-butyl methacrylate[J]. Journal of the American Chemical Society. 2004,126(1): 170-176.
    [120] Qin, S. H.; Qin, D. Q.; Ford, W. T.; Resasco, D. E.; Herrera, J. E. Functionalization of single-walled carbon nanotubes with polystyrene via grafting to and grafting from methods[J]. Macromolecules. 2004, 37(3): 752-757.
    [121] Yao, Z. L.; Braidy, N.; Botton, G. A.; Adronov, A. Polymerization from the surface of single-walled carbon nanotubes - Preparation and characterization of nanocomposites[J]. Journal of the American Chemical Society. 2003, 125(51): 16015-16024.
    [122] Liu, Y. Q.; Adronov, A. Preparation and utilization of catalyst-functionalized single-walled carbon nanotubes for ring-opening metathesis polymerization[J]. Macromolecules. 2004, 37(13): 4755-4760.
    [123] Kong, H.; Gao, C; Yan, D. Y. Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization[J]. Journal of the American Chemical Society. 2004,126(2): 412-413.
    [124] Hill, D. E.; Lin, Y; Rao, A. M.; Allard, L. F.; Sun, Y. P. Functionalization of carbon nanotubes with polystyrene[J]. Macromolecules. 2002, 35(25): 9466-9471.
    [125] Riggs, J. E.; Guo, Z. X.; Carroll, D. L.; Sun, Y. P. Strong luminescence of solubilized carbon nanotubes[J]. Journal of the American Chemical Society. 2000,122(24): 5879-5880.
    [126] Sano, M.; Kamino, A.; Okamura, J.; Shinkai, S. Self-organization of PEO-graft-single-walled carbon nanotubes in solutions and Langmuir-Blodgett films[J]. Langmuir. 2001,17(17): 5125-5128.
    [127]Wu, W.; Zhang, S.; Li, Y; Li, J. X.; Liu, L. Q.; Qin, Y. J.; Guo, Z. X.; Dai, L. M.; Ye, C.; Zhu, D. B. PVK-modified single-walled carbon nanotubes with effective photoinduced electron transfer[J]. Macromolecules. 2003,36(17): 6286-6288.
    [128] Lin, Y; Zhou, B.; Fernando, K. A. S.; Liu, P.; Allard, L. F.; Sun, Y. P. Polymeric carbon nanocomposites from carbon nanotubes functionalized with matrix polymer[J]. Macromolecules. 2003,36(19): 7199-7204.
    [129] Czerw, R.; Guo, Z. X.; Ajayan, P. M.; Sun, Y. P.; Carrol], D. L. Organization of polymers onto carbon nanotubes: A route to nanoscale assembly[J]. Nano Letters. 2001,1(8): 423-427.
    [130] Lin, Y; Rao, A. M.; Sadanadan, B.; Kenik, E. A.; Sun, Y. P. Functionalizing multiple-walled carbon nanotubes with aminopolymers[J]. Journal of Physical Chemistry B. 2002,106(6): 1294-1298.
    [131] Huang, W. J.; Lin, Y; Taylor, S.; Gaillard, J.; Rao, A. M.; Sun, Y. P. Sonication-assisted functionalization and solubilization of carbon nanotubes[J]. Nano Letters. 2002, 2(3): 231-234.
    [132] Li, H. M.; Cheng, F. O.; Duft, A. M.; Adronov, A. Functionalization of single-walled carbon nanotubes with well-defined polystyrene by "click" coupling[J]. Journal of the American Chemical Society. 2005, 127(41): 14518-14524.
    [133] Xie, L.; Xu, F.; Qiu, R; Lu, H. B.; Yang, Y. L. Single-Walled Carbon Nanotubes Functionalized with High Bonding Density of Polymer Layers and Enhanced Mechanical Properties of Composites[J]. Macromolecules. 2007.
    [134] Bahr, J. L.; Tour, J. M. Highly functionalized carbon nanotubes using in situ generated diazonium compounds [J]. Chemistry of Materials. 2001, 13(11): 3823-3824.
    [135] Calvert, P. Nanotube composites - A recipe for strength[J]. Nature. 1999, 399(6733): 210-211.
    [136] Iijima, S.; Brabec, C; Maiti, A.; Bernholc, J. Structural flexibility of carbon nanotubes[J]. Journal of Chemical Physics. 1996,104(5): 2089-2092.
    [137] Desai, A. V.; Haque, M. A. Mechanics of the interface for carbon nanotube-polymer composites [J]. Thin-walled Structures. 2005, 43(11): 1787-1803.
    [138] Ding, W.; Eitan, A.; Fisher, R T.; Chen, X.; Dikin, D. A.; Andrews, R.; Brinson, L. C; Schadler, L. S.; Ruoff, R. S. Direct observation of polymer sheathing in carbon nanotube-polycarbonate composites [J]. Nano Letters. 2003, 3(11): 1593-1597.
    [139] Belytschko, T.; Xiao, S. P.; Schatz, G. C; Ruoff, R. S. Atomistic simulations of nanotube fracture[J]. Physical Review B. 2002, 65(23).
    [140] Cadek, M.; Coleman, J. N.; Barron, V.; Hedicke, K.; Blau, W. J. Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites [J]. Applied Physics Letters. 2002, 81(27): 5123-5125.
    [141]Ruan, S. L.; Gao, P.; Yang, X. G; Yu, T. X. Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes [J]. Polymer. 2003, 44(19): 5643-5654.
    [142] Chang, T. E.; Jensen, L. R.; Kisliuk, A.; Pipes, R. B.; Pyrz, R.; Sokolov, A. P. Microscopic mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposite[J]. Polymer. 2005, 46(2): 439-444.
    [143] Dalton, A. B.; Collins, S.; Munoz, E.; Razal, J. M.; Ebron, V. H.; Ferraris, J. E; Coleman, J. N.; Kim, B. G.; Baughman, R. H. Super-tough carbon-nanotube fibres-These extraordinary composite fibres can be woven into electronic textiles[J]. Nature. 2003, 423(6941): 703-703.
    [144] Sandier, J.; Shaffer, M. S. P.; Prasse, T.; Bauhofer, W.; Schulte, K.; Windle, A. H. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties[J]. Polymer. 1999, 40(21): 5967-5971.
    [145] Shaffer, M. S. P.; Windle, A. H. Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites[J]. Advanced Materials. 1999, 11(11): 937-+.
    [146] Wagner, H. D.; Lourie, O.; Feldman, Y.; Tenne, R. Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix[J]. Applied Physics Letters. 1998, 72(2): 188-190.
    [147] Salvetat, J. P.; Briggs, G. A. D.; Bonard, J. M.; Bacsa, R. R.; Kulik, A. J.; Stockli, T.; Burnham, N. A.; Forro, L. Elastic and shear moduli of single-walled carbon nanotube ropes[J]. Physical Review Letters. 1999, 82(5): 944-947.
    [148] Ajayan, P. M.; Schadler, L. S.; Giannaris, C.; Rubio, A. Single-walled carbon nanotube-polymer composites: Strength and weakness[J]. Advanced Materials. 2000, 12(10): 750-751.
    [149] Liu, L. Q.; Wagner, H. D. Rubbery and glassy epoxy resins reinforced with carbon nanotubes[J]. Composites Science and Technology. 2005, 65(11-12): 1861-1868.
    [150] Gojny, F.H.; Nastalczyk, J.; Roslaniec, Z.; Schulte, K. Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites[J]. Chemical Physics Letters. 2003, 370(5-6): 820-824.
    [151] Skakalova, V.; Dettlaff-Weglikowska, U.; Roth, S. Electrical and mechanical properties of nanocomposites of single wall carbon nanotubes with PMMA[J]. Synthetic Metals. 2005, 152(1-3): 349-352.
    [152] Viswanathan, G.; Chakrapani, N.; Yang, H. C.; Wei, B. Q.; Chung, H. S.; Cho, K. W.; Ryu, C. Y.; Ajayan, P. M. Single-step in situ synthesis of polymer-grafted single-wall nanotube composites[J]. Journal of the American Chemical Society. 2003, 125(31): 9258-9259.
    [153] Blake, R.; Gun'ko, Y. K.; Coleman, J.; Cadek, M.; Fonseca, A.; Nagy, J. B.; Blau, W. J. A generic organometallic approach toward ultra-strong carbon nanotube polymer composites[J]. Journal of the American Chemical Society. 2004, 126(33): 10226-10227.
    [154] Bhattacharyya, S.; Sinturel, C.; Salvetat, J. P.; Saboungi, M. L. Protein-functionalized carbon nanotube-polymer composites[J]. Applied Physics Letters. 2005, 86(11).
    [1] Iijima, S. Helical microtubules of Graphitic carbon[J]. Nature. 1991, 354(6348): 56-58.
    
    [2] Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-Nm diameter[J]. Nature. 1993, 363(6430): 603-605.
    [3] Rao, A. M.; Richter, E.; Bandow, S.; Chase, B.; Eklund, P. C; Williams, K. A.; Fang, S.; Subbaswamy, K. R.; Menon, M.; Thess, A.; Smalley, R. E.; Dresselhaus, G.; Dresselhaus, M. S. Diameter-selective Raman scattering from vibrational modes in carbon nanotubes[J]. Science. 1997, 275(5297): 187-191.
    [4] Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Ballistic carbon nanotube field-effect transistors [J]. Nature. 2003,424(6949): 654-657.
    [5] LeRoy, B. J.; Lemay, S. G; Kong, J.; Dekker, C. Electrical generation and absorption of phonons in carbon nanotubes[J]. Nature. 2004, 432(7015): 371-374.
    [6] Smalley, R. E.; Li, Y. B.; Moore, V. C; Price, B. K.; Colorado, R.; Schmidt, H. K.; Hauge, R. H.; Barron, A. R.; Tour, J. M. Single wall carbon nanotube amplification: En route to a type-specific growth mechanism[J]. Journal of the American Chemical Society. 2006,128(49): 15824-15829.
    [7] Romero, H. E.; Bolton, K.; Rosen, A.; Eklund, P. C. Atom collision-induced resistivity of carbon nanotubes[J]. Science. 2005,307(5706): 89-93.
    [8] Pasquier, A. D.; Unalan, H. E.; Kanwal, A.; Miller, S.; Chhowalla, M. Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells[J]. Applied Physics Letters. 2005, 87(20).
    [9] Li, N.; Huang, Y; Du, F.; He, X. B.; Lin, X.; Gao, H. J.; Ma, Y. F.; Li, F. F.; Chen, Y S.; Eklund, P. C. Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites [J]. Nano Letters. 2006, 6(6): 1141-1145.
    [10] Yi, B.; Rajagopalan, R.; Foley, H. C; Kim, U. J.; Liu, X. M.; Eklund, P. C. Catalytic polymerization and facile grafting of poly(furfuryl alcohol) to single-wall carbon nanotube: Preparation of nanocomposite carbon[J]. Journal of the American Chemical Society. 2006,128(34): 11307-11313.
    
    [11] Keren, K.; Berman, R. S.; Buchstab, E.; Sivan, U.; Braun, E. DNA-templated carbon nanotube field-effect transistor [J]. Science. 2003, 302(5649): 1380-1382.
    [12] Narayan, K. S.; Rao, M.; Zhang, R.; Maniar, P. Control of single-wall-nanotube field-effect transistors via indirect long-range optically induced processes[J]. Applied Physics Letters. 2006, 88(24).
    [13] Smith, D. L.; Ruden, P. P. Analytic device model for light-emitting ambipolar organic semiconductor field-effect transistors [J]. Applied Physics Letters. 2006, 89(23).
    [14] Huang, N. Y.; Liang, S. D.; Deng, S. Z.; Xu, N. S. Signature of the Aharonov-Bohm phase in field emission of carbon nanotubes under magnetic fields[J]. Physical Review B. 2005,72(7).
    [15] Marty, L.; Adam, E.; Albert, L.; Doyon, R.; Menard, D.; Martel, R. Exciton formation and annihilation during 1D impact excitation of carbon nanotubes[J]. Physical Review Letters. 2006, 96(13).
    [16] Dyke, C. A.; Tour, J. M. Overcoming the insolubility of carbon nanotubes through high degrees of sidewall functionalization[J]. Chemistry-A European Journal. 2004,10(4): 813-817.
    [17] Dyke, C. A.; Tour, J. M. Solvent-free functionalization of carbon nanotubes[J]. Journal of the American Chemical Society. 2003, 125(5): 1156-1157.
    [18] Bahr, J. L.; Yang, J. P.; Kosynkin, D. V.; Bronikowski, M. J.; Smalley, R. E.; Tour, J. M. Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: A bucky paper electrode[J]. Journal of the American Chemical Society. 2001,123(27): 6536-6542.
    [19] Liu, Y. Q.; Yao, Z. L.; Adronov, A. Functionalization of single-walled carbon nanotubes with well-defined polymers by radical coupling[J]. Macromolecules. 2005,38(4): 1172-1179.
    [20] Hawker, C. J.; Wooley, K. L. The convergence of synthetic organic and polymer chemistries[J]. Science. 2005,309(5738): 1200-1205.
    [21] Qin, S. H.; Oin, D. Q.; Ford, W. T; Resasco, D. E.; Herrera, J. E. Polymer brushes on single-walled carbon nanotubes by atom transfer radical polymerization of n-butyl methacrylate[J]. Journal of the American Chemical Society. 2004,126(1): 170-176.
    [22] Qin, S. H.; Qin, D. Q.; Ford, W. T.; Herrera, J. E.; Resasco, D. E.; Bachilo, S. M.; Weisman, R. B. Solubilization and purification of single-wall carbon nanotubes in water by in situ radical polymerization of sodium 4-styrenesulfonate[J]. Macromolecules. 2004, 37(11): 3965-3967.
    [23] Kong, H.; Gao, C; Yan, D. Y. Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization [J]. Journal of the American Chemical Society. 2004,126(2): 412-413.
    [24] Kong, H.; Gao, C; Yan, D. Y. Functionalization of multiwalled carbon nanotubes by atom transfer radical polymerization and defunctionalization of the products[J]. Macromolecules. 2004, 37(11): 4022-4030.
    [25] Liu, Y. Q.; Adronov, A. Preparation and utilization of catalyst-functionalized single-walled carbon nanotubes for ring-opening metathesis polymerization[J]. Macromolecules. 2004, 37(13): 4755-4760.
    [26] Lou, X. D.; Detrembleur, C; Sciannamea, V.; Pagnoulle, C; Jerome, R. Grafting of alkoxyamine end-capped (co)polymers onto multi-walled carbon nanotubes[J]. Polymer. 2004,45(18): 6097-6102.
    [27] Riggs, J. E.; Guo, Z. X.; Carroll, D. L.; Sun, Y. P. Strong luminescence of solubilized carbon nanotubes[J]. Journal of the American Chemical Society. 2000,122(24): 5879-5880.
    [28] Sano, M.; Kamino, A.; Okamura, J.; Shinkai, S. Self-organization of PEO-graft-single-walled carbon nanotubes in solutions and Langmuir-Blodgett films[J].Langmuir. 2001,17(17): 5125-5128.
    [29] Lin, Y; Zhou, B.; Fernando, K. A. S.; Liu, P.; Allard, L. F.; Sun, Y. P. Polymeric carbon nanocomposites from carbon nanotubes functionalized with matrix polymer[J]. Macromolecules. 2003, 36(19): 7199-7204.
    [30] Fernando, K. A. S.; Lin, Y.; Sun, Y. P. High aqueous solubility of functionalized single-walled carbon nanotubes [J]. Langmuir. 2004, 20(11): 4777-4778.
    [31] Chen, G. X.; Kim, H. S.; Park, B. H.; Yoon, J. S. Controlled functionalization of multiwalled carbon nanotubes with various molecular-weight poly(L-lactic acid)[J]. Journal of Physical Chemistry B. 2005,109(47): 22237-22243.
    [32] Li, H. M.; Cheng, F. O.; Duft, A. M.; Adronov, A. Functionalization of single-walled carbon nanotubes with well-defined polystyrene by "click" coupling[J]. Journal of the American Chemical Society. 2005, 127(41): 14518-14524.
    [33] Bahr, J. L; Tour, J. M. Highly functionalized carbon nanotubes using in situ generated diazonium compounds[J]. Chemistry of Materials. 2001, 13(11): 3823-3824.
    [34] Laue, C. Method to produce 3-aryl-propinen and new 3-aryl-propinen. 4402915, 1995.
    [35] Hawker, C. J.; Barclay, G. G.; Orellana, A.; Dao, J.; Devonport, W. Initiating systems for nitroxide-mediated "living" free radical polymerizations: Synthesis and evaluation[J]. Macromolecules. 1996, 29(16): 5245-5254.
    [36] Diaz-Camacho, F.; Lopez-Morales, S.; Vivaldo-Lima, E.; Saldivar-Guerra, E.; Vera-Graziano, R.; Alexandrova, L. Effect of regime of addition of initiator on TEMPO-mediated polymerization of styrene[J]. Polymer Bulletin. 2004, 52(5): 339-347.
    [37] Tsoukatos, T.; Pispas, S.; Hajichristidis, N. Complex macromolecular architectures by combining TEMPO living free radical and anionic polymerization[J]. Macromolecules. 2000, 33(26): 9504-9511.
    [38] Chen, S. M.; Shen, W. M.; Wu, G. Z.; Chen, D. Y.; Jiang, M. Anew approach to the functionalization of single-walled carbon nanotubes with both alkyl and carboxyl groups[J]. Chemical Physics Letters. 2005,402(4-6): 312-317.
    [39] Xu, F. Comb-coil diblock copolymers: Synthesis, characterization and morphology [D]. Fudan University, 2006.
    [40] Xie, L.; Xu, F.; Qiu, R; Lu, H. B.; Yang, Y. L. Single-Walled Carbon Nanotubes Functionalized with High Bonding Density of Polymer Layers and Enhanced Mechanical Properties of Composites [J]. Macromolecules. 2007.
    [41] Bachilo, S. M.; Strano, M. S.; Kittrell, C; Hauge, R. H.; Smalley, R. E.; Weisman, R. B. Structure-assigned optical spectra of single-walled carbon nanotubes[J]. Science. 2002,298(5602): 2361-2366.
    [42] Strano, M. S.; Doom, S. K.; Haroz, E. H.; Kittrell, C; Hauge, R. H.; Smalley, R. E. Assignment of (n, m) Raman and optical features of metallic single-walled carbon nanotubes[J]. Nano Letters. 2003,3(8): 1091-1096.
    [43] Socrates, G. Infrared Characteristic Group Frequencies[M]. John Wiley & Son, 1980:38-39.
    [44] Koloski, T. S.; Dulcey, C. S.; Haralson, Q. J.; Calvert, J. M. Nucleophilic displacement-Reactions at benzyl halide self-assembled monolayer film surfaces[J].Langmuir. 1994,10(9): 3122-3133.
    [45] Chen, J.; Liu, H. Y; Weimer, W. A.; Halls, M. D.; Waldeck, D. H.; Walker, G. C. Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers[J]. Journal of the American Chemical Society. 2002, 124(31): 9034-9035.
    [46] Liu, A. H.; Honma, I.; Ichihara, M; Zhou, H. S. Poly(acrylic acid)-wrapped multi-walled carbon nanotubes composite solubilization in water: definitive spectroscopic properties[J]. Nanotechnology. 2006,17(12): 2845-2849.
    [47] Haddon, R. C. Magnetism of the carbon allotropes[J]. Nature. 1995, 378(6554): 249-255.
    [48] Bieri, S.; Marriott, P. J. Generating multiple independent retention index data in dual-secondary column comprehensive two-dimensional gas chromatography[J]. Analytical Chemistry. 2006, 78(23): 8089-8097.
    [49] Baskaran, D.; Mays, J. W.; Bratcher, M. S. Noncovalent and nonspecific molecular interactions of polymers with multiwalled carbon nanotubes [J]. Chemistry of Materials. 2005,17(13): 3389-3397.
    [50] Shvartzman-Cohen, R.; Levi-Kalisman, Y.; Nativ-Roth, E.; Yerushalmi-Rozen, R. Generic approach for dispersing single-walled carbon nanotubes: The strength of a weak interaction [J]. Langmuir. 2004, 20(15): 6085-6088.
    [51] Yang, M. J.; Koutsos, V.; Zaiser, M. Interactions between polymers and carbon nanotubes: A molecular dynamics study[J]. Journal of Physical Chemistry B. 2005,109(20): 10009-10014.
    [1] Iijima, S. Helical Microtubules of graphitic carbon[J]. Nature. 1991, 354(6348): 56-58.
    [2] Bethune, D. S.; Kiang, C. H.; Devries, M. S.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R. Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layerwalls[J]. Nature. 1993, 363(6430): 605-607.
    [3] Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter[J]. Nature. 1993, 363(6430): 603-605.
    [4] Ebbesen, T. W.; Ajayan, P. M. Large-scale synthesis of carbon nanotubes[J]. Nature. 1992, 358(6383): 220-222.
    [5] Qian, C.; Qi, H.; Gao, B.; Cheng, Y.; Qiu, Q.; Qin, L. C.; Zhou, O.; Liu, J. Fabrication of small diameter few-walled carbon nanotubes with enhanced field emission property[J]. Journal of Nanoscience and Nanotechnology. 2006, 6(5): 1346-1349.
    [6] Hutchison, J. L.; Kiselev, N. A.; Krinichnaya, E. P.; Krestinin, A. V.; Loutfy, R. O.; Morawsky, A. P.; Muradyan, V. E.; Obraztsova, E. D.; Sloan, J.; Terekhov, S. V.; Zakharov, D. N. Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method[J]. Carbon. 2001, 39(5): 761-770.
    [7] Flahaut, E.; Peigney, A.; Laurent, C. Double-walled carbon nanotubes in composite powders[J]. Journal of Nanoscience and Nanotechnology. 2003, 3(1-2): 151-158.
    [8] Saito, R.; Matsuo, R.; Kimura, T.; Dresselhaus, G; Dresselhaus, M. S. Anomalous potential barrier of double-wall carbon nanotube[J]. Chemical Physics Letters. 2001, 348(3-4): 187-193.
    [9] Grzelczak, M.; Correa-Duarte, M. A.; Salgueirino-Maceira, V; Giersig, M.; Diaz, R.; Liz-Marzan, L. M. Photoluminescence quenching control in quantum dot-carbon nanotube composite colloids using a silica-shell spacer[J], Advanced Materials. 2006,18(4): 415-416.
    [10] Li, N.; Huang, Y; Du, F.; He, X. B.; Lin, X.; Gao, H. J.; Ma, Y. E; Li, F. E; Chen, Y. S.; Eklund, P. C. Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites[J]. Nano Letters. 2006, 6(6): 1141-1145.
    [11] Coleman, J. N.; Khan, U.; Blau, W. J.; Gun'ko, Y. K. Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites[J]. Carbon. 2006,44(9): 1624-1652.
    [12] Xiao, X. C; Elam, J. W.; Trasobares, S.; Auciello, O.; Carlisle, J. A. Synthesis of a self-assembled hybrid of ultrananocrystalline diamond and carbon nanotubes[J]. Advanced Materials. 2005,17(12): 1496-1500.
    [13] Coleman, J. N.; Cadek, M.; Blake, R.; Nicolosi, V.; Ryan, K. P.; Belton, C; Fonseca, A.; Nagy, J. B.; Gun'ko, Y. K.; Blau, W. J. High-performance nanotube-reinforced plastics: Understanding the mechanism of strength increase[J]. Advanced Functional Materials. 2004,14(8): 791-798.
    [14] Blond, D.; Barron, V.; Ruether, M.; Ryan, K. P.; Nicolosi, V.; Blau, W. J.; Coleman, J. N. Enhancement of modulus, strength, and toughness in poly(methyl methacrylate)-based composites by the incorporation of poly(methyl methacrylate)-functionalized nanotubes[J]. Advanced Functional Materials. 2006,16(12): 1608-1614.
    [15] Sen, R.; Zhao, B.; Perea, D.; Itkis, M. E.; Hu, H.; Love, J.; Bekyarova, E.; Haddon, R. C. Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning[J]. Nano Letters. 2004, 4(3): 459-464.
    [16] Blake, R.; Gun'ko, Y. K.; Coleman, J.; Cadek, M.; Fonseca, A.; Nagy, J. B.; Blau, W. J. A generic organometallic approach toward ultra-strong carbon nanotube polymer composites [J]. Journal of the American Chemical Society. 2004, 126(33): 10226-10227.
    [17] Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chemistry of carbon nanotubes[J]. Chemical Reviews. 2006,106(3): 1105-1136.
    [18] Tjong, S. C. Structural and mechanical properties of polymer nanocomposites[J]. Materials Science & Engineering R-Reports. 2006, 53(3-4): 73-197.
    [19] Li, H. M.; Cheng, F. O.; Duft, A. M.; Adronov, A. Functionalization of single-walled carbon nanotubes with well-defined polystyrene by "click" coupling[J]. Journal of the American Chemical Society. 2005, 127(41): 14518-14524.
    [20] Kong, H.; Gao, C; Yan, D. Y. Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization[J]. Journal of the American Chemical Society. 2004,126(2): 412-413.
    
    [21] Chen, R. J.; Zhang, Y. G.; Wang, D. W.; Dai, H. J. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization[J]. Journal of the American Chemical Society. 2001, 123(16): 3838-3839.
    [22] Coleman, J. N.; Khan, U.; Gun'ko, Y. K. Mechanical reinforcement of polymers using carbon nanotubes[J]. Advanced Materials. 2006,18(6): 689-706.
    [23] Moniruzzaman, M.; Winey, K. I. Polymer nanocomposites containing carbon nanotubes[J]. Macromolecules. 2006, 39(16): 5194-5205.
    [24] Frankland, S. J. V.; Harik, V. M. Analysis of carbon nanotube pull-out from a polymer matrix[J]. Surface Science. 2003, 525(1-3): L103-L108.
    [25] Qian, D.; Dickey, E. C; Andrews, R.; Rantell, T. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites[J]. Applied Physics Letters. 2000, 76(20): 2868-2870.
    [26] Frankland, S. J. V.; Caglar, A.; Brenner, D. W.; Griebel, M. Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube-polymer interfaces [J]. Journal of Physical Chemistry B. 2002, 106(12): 3046-3048.
    [27] Liao, K.; Li, S. Interfacial characteristics of a carbon nanotube-polystyrene composite system[J]. Applied Physics Letters. 2001, 79(25): 4225-4227.
    [28] Desai, A. V.; Haque, M. A. Mechanics of the interface for carbon nanotube-polyrner composites [J]. Thin-walled Structures. 2005, 43(11): 1787-1803.
    [29] Garg, A.; Sinnott, S. B. Effect of chemical functionalization on the mechanical properties of carbon nanotubes[J]. Chemical Physics Letters. 1998, 295(4): 273-278.
    [30] Cadek, M.; Coleman, J. N.; Ryan, K. P.; Nicolosi, V.; Bister, G; Fonseca, A.; Nagy, J. B.; Szostak, K.; Beguin, E; Blau, W. J. Reinforcement of polymers with carbon nanotubes: The role of nanotube surface area[J]. Nano Letters. 2004, 4(2): 353-356.
    [31] Barber, A. H.; Cohen, S. R.; Wagner, H. D. Measurement of carbon nanotube-polymer interfacial stxength[J]. Applied Physics Letters. 2003, 82(23): 4140-4142.
    [32] Gao, J. B.; Zhao, B.; Itkis, M. E.; Bekyarova, E.; Hu, H.; Kranak, V.; Yu, A. P.; Haddon, R. C. Chemical engineering of the single-walled carbon nanotube-nylon 6 interface[J]. Journal of the American Chemical Society. 2006, 128(23): 7492-7496.
    [33] Lou, X. D.; Detrembleur, C; Sciannamea, V.; Pagnoulle, C; Jerome, R. Grafting of alkoxyamine end-capped (co)polymers onto multi-walled carbon nanotubes[J]. Polymer. 2004,45(18): 6097-6102.
    [34] Liu, Y. Q.; Yao, Z. L.; Adronov, A. Functionalization of single-walled carbon nanotubes with well-defined polymers by radical coupling[J]. Macromolecules. 2005, 38(4): 1172-1179.
    [35] Qin, S. H.; Qin, D. Q.; Ford, W. T.; Resasco, D. E.; Herrera, J. E. Functionalization of single-walled carbon nanotubes with polystyrene via grafting to and grafting from methods[J]. Macromolecules. 2004, 37(3): 752-757.
    [36] Wu, W.; Zhang, S.; Li, Y; Li, J. X.; Liu, L. Q.; Qin, Y. J.; Guo, Z. X.; Dai, L. M.; Ye, C; Zhu, D. B. PVK-modified single-walled carbon nanotubes with effective photoinduced electron transfer[J]. Macromolecules. 2003, 36(17): 6286-6288.
    [37] Blake, R.; Coleman, J. N.; Byrne, M. T.; McCarthy, J. E.; Perova, T. S.; Blau, W. J.; Fonseca, A.; Nagy, J. B.; Gun'ko, Y. K. Reinforcement of poly(vinyl chloride) and polystyrene using chlorinated polypropylene grafted carbon nanotubes[J]. Journal Of Materials Chemistry. 2006,16(43): 4206-4213.
    [38] Lin, Y.; Zhou, B.; Fernando, K. A. S.; Liu, P.; Allard, L. E; Sun, Y. P. Polymeric carbon nanocomposites from carbon nanotubes functionalized with matrix polymer[J]. Macromolecules. 2003, 36(19): 7199-7204.
    [39] Chen, S. M.; Shen, W. M; Wu, G Z.; Chen, D. Y; Jiang, M. Anew approach to the functionalization of single-walled carbon nanotubes with both alkyl and carboxyl groups[J]. Chemical Physics Letters. 2005, 402(4-6): 312-317.
    [40] Bahr, J. L.; Tour, J. M. Highly functionalized carbon nanotubes using in situ generated diazonium compounds[J]. Chemistry of Materials. 2001, 13(11): 3823-+.
    [41] Gong, X. Y.; Liu, J.; Baskaran, S.; Voise, R. D.; Young, J. S. Surfactant-assisted processing of carbon nanotube/polymer composites [J]. Chemistry of Materials. 2000,12(4): 1049-1052.
    [42] Shi, X. E; Hudson, J. L.; Spicer, P. P.; Tour, J. M.; Krishnamoorti, R.; Mikos, A. G Rheological behaviour and mechanical characterization of injectable poly(propylene fumarate)/single-walled carbon nanotube composites for bone tissue engineering[J]. Nanotechnology. 2005,16(7): S531-S538.
    [43] Coleman, J. N.; Blau, W. J.; Dalton, A. B.; Munoz, E.; Collins, S.; Kim, B. G; Razal, J.; Selvidge, M.; Vieiro, G; Baughman, R. H. Improving the mechanical properties of single-walled carbon nanotube sheets by intercalation of polymeric adhesives[J]. Applied Physics Letters. 2003; 82(11): 1682-1684.
    [44] Chang, T. E.; Kisliuk, A.; Rhodes, S. M.; Brittain, W. J.; Sokolov, A. P. Conductivity and mechanical properties of well-dispersed single-wall carbon nanotube/polystyrene composite[J]. Polymer. 2006, 47(22): 7740-7746.
    [45] Ogasawara, T; Ishida, Y; Ishikawa, T.; Yokota, R. Characterization of multi-walled carbon nanotube/phenylethynyl terminated polyimide composites [J]. Composites Part A-Applied Science and Manufacturing. 2004, 35(1): 67-74.
    [46] Satapathy, B. K.; Weidisch, R.; Potschke, P.; Janke, A. Tough-to-brittle transition in multiwalled carbon nanotube (MWNT)/polycarbonate nanocomposites[J]. Composites Science and Technology. 2007, 67(5): 867-879.
    [47] Xiong, J. W.; Zheng, Z.; Qin, X. M.; Li, M.; Li, H. Q.; Wang, X. L. The thermal and mechanical properties of a polyurethane/multi-walled carbon nanotube composite[J]. Carbon. 2006,44(13): 2701-2707.
    [48] Bhattacharyya, S.; Sinturel, C.; Salvetat, J. P.; Saboungi, M. L. Protein-functionalized carbon nanotube-polymer composites[J]. Applied Physics Letters. 2005, 86(11).
    [1] Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter [J]. Nature. 1993, 364(6439): 737-737.
    
    [2] Ouyang, M.; Huang, J. L.; Cheung, C. L.; Lieber, C. M. Energy gaps in "metallic" single-walled carbon nanotubes[J]. Science. 2001, 292(5517): 702-705.
    [3] Collins, P. G; Bradley, K.; Ishigami, M.; Zettl, A. Extreme oxygen sensitivity of electronic properties of carbon nanotubes[J]. Science. 2000, 287(5459): 1801-1804.
    [4] Derycke, V.; Martel, R.; Appenzeller, J.; Avouris, P. Carbon nanotube inter- and intramolecular logic gates[J]. Nano Letters. 2001,1(9): 453-456.
    [5] Javey, A.; Wang, Q.; Ural, A.; Li, Y. M.; Dai, H. J. Carbon nanotube transistor arrays for multistage complementary logic and ring oscillators[J]. Nano Letters. 2002,2(9): 929-932.
    [6] Liu, L.; Jayanthi, C. S.; Tang, M. J.; Wu, S. Y.; Tombler, T. W.; Zhou, C. W.; Alexseyev, L.; Kong, J.; Dai, H. J. Controllable reversibility of an sp(2) to sp(3) transition of a single wall nanotube under the manipulation of an AFM tip: A nanoscale electromechanical switch?[J]. Physical Review Letters. 2000, 84(21): 4950-4953.
    [7] Tombler, T. W.; Zhou, C. W.; Alexseyev, L.; Kong, J.; Dai, H. J.; Lei, L.; Jayanthi, C. S.; Tang, M. J.; Wu, S. Y. Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation [J]. Nature. 2000,405(6788): 769-772.
    [8] Choi, W. B.; Chung, D. S.; Kang, J. H.; Kim, H. Y; Jin, Y. W.; Han, I. T; Lee, Y. H.; Jung, J. E.; Lee, N. S.; Park, G. S.; Kim, J. M. Fully sealed, high-brightness carbon-nanotube field-emission display[J]. Applied Physics Letters. 1999, 75(20): 3129-3131.
    [9] Coleman, J. N.; Khan, U.; Gun'ko, Y. K. Mechanical reinforcement of polymers using carbon nanotubes[J]. Advanced Materials. 2006,18(6): 689-706.
    [10] Futaba, D. N.; Hata, K.; Yamada, T; Hiraoka, T.; Hayamizu, Y; Kakudate, Y; Tanaike, O.; Hatori, H.; Yumura, M.; Iijima, S. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes[J]. Nature Materials. 2006, 5(12): 987-994.
    [11] Li, X. L.; Liu, Y. Q.; Fu, L; Cao, L. C; Wei, D. C; Wang, Y. Efficient synthesis of carbon nanotube-nanoparticle hybrids[J]. Advanced Functional Materials. 2006, 16(18): 2431-2437.
    [12] Wei, B. Q.; Vajtai, R.; Jung, Y.; Ward, J.; Zhang, R.; Ramanath, G.; Ajayan, P. M. Organized assembly of carbon nanotubes-Cunning refinements help to customize the architecture of nanotube structures[J]. Nature. 2002, 416(6880): 495-496.
    [13] Rueckes, T.; Kim, K.; Joselevich, E.; Tseng, G. Y.; Cheung, C. L.; Lieber, C. M. Carbon nanotube-based nonvolatile random access memory for molecular computing[J]. Science. 2000, 289(5476): 94-97.
    [14] Dai, L. M.; Patil, A.; Gong, X. Y.; Guo, Z. X.; Liu, L. Q.; Liu, Y.; Zhu, D. B. Aligned nanotubes[J]. Chemphyschem. 2003, 4(11): 1150-1169.
    [15] Huang, Y.; Duan, X. F.; Wei, Q. Q.; Lieber, C. M. Directed assembly of one-dimensional nanostructures into functional networks[J]. Science. 2001, 291(5504): 630-633.
    [16] Tasis, D.; Tagmatarchis, N.; Georgakilas, V.; Prato, M. Soluble carbon nanotubes[J]. Chemistry-A European Journal. 2003, 9(17): 4001-4008.
    [17] Banerjee, S.; Hemraj-Benny, T.; Wong, S. S. Covalent surface chemistry of single-walled carbon nanotubes[J]. Advanced Materials. 2005, 17(1): 17-29.
    [18] Yao, Z. L.; Braidy, N.; Botton, G. A.; Adronov, A. Polymerization from the surface of single-walled carbon nanotubes - Preparation and characterization of nanocomposites[J]. Journal of the American Chemical Society. 2003, 125(51): 16015-16024.
    [19] Qin, S. H.; Qin, D. Q.; Ford, W. T.; Resasco, D. E.; Herrera, J. E. Functionalization of single-walled carbon nanotubes with polystyrene via grafting to and grafting from methods[J]. Macromolecules. 2004, 37(3): 752-757.
    [20] Yang, Y. K.; Xie, X. L.; Wu, J. G.; Yang, Z. F.; Wang, X. T.; Mai, Y. W. Multiwalled carbon nanotubes functionalized by hyperbranched poly(urea-urethane)s by a one-pot polycondensation[J]. Macromolecular Rapid Communications. 2006, 27(19): 1695-1701.
    [21] Chen, R. J.; Zhang, Y. G.; Wang, D. W.; Dai, H. J. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization[J]. Journal of the American Chemical Society. 2001, 123(16): 3838-3839.
    [22] Star, A.; Liu, Y; Grant, K.; Ridvan, L; Stoddart, J. F.; Steuerman, D. W.; Diehl, M. R.; Boukai, A.; Heath, J. R. Noncovalent side-wall functionalization of single-walled carbon nanotubes[J]. Macromolecules. 2003, 36(3): 553-560.
    [23] Shin, H. I.; Min, B. G.; Jeong, W. Y; Park, C. M. Amphiphilic block copolymer micelles: New dispersant for single wall carbon nanotubes[J]. Macromolecular Rapid Communications. 2005, 26(18): 1451-1457.
    [24] Sun, Y. P.; Fu, K. E; Lin, Y; Huang, W. J. Functionalized carbon nanotubes: Properties and applications[J]. Accounts of Chemical Research. 2002, 35(12): 1096-1104.
    [25] Hill, D. E.; Lin, Y; Rao, A. M.; Allard, L. E; Sun, Y P. Functionalization of carbon nanotubes with polystyrene [J]. Macromolecules. 2002, 35(25): 9466-9471.
    [26] Kong, H.; Gao, C; Yan, D. Y. Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization[J]. Journal of the American Chemical Society. 2004,126(2): 412-413.
    [27] Kong, H.; Gao, C; Yan, D. Y Functionalization of multiwalled carbon nanotubes by atom transfer radical polymerization and defunctionalization of the products[J]. Macromolecules. 2004, 37(11): 4022-4030.
    [28] Qin, S. H.; Oin, D. Q.; Ford, W. T.; Resasco, D. E.; Herrera, J. E. Polymer brushes on single-walled carbon nanotubes by atom transfer radical polymerization of n-butyl methacrylate[J]. Journal of the American Chemical Society. 2004,126(1): 170-176.
    [29] Qin, S. H.; Qin, D. Q.; Ford, W. T.; Herrera, J. E.; Resasco, D. E.; Bachilo, S. M.; Weisman, R. B. Solubilization and purification of single-wall carbon nanotubes in water by in situ radical polymerization of sodium 4-styrenesulfonate[J]. Macromolecules. 2004, 37(11): 3965-3967.
    [30] Liu, Y. Q.; Adronov, A. Preparation and utilization of catalyst-functionalized single-walled carbon nanotubes for ring-opening metathesis polymerization[J]. Macromolecules. 2004, 37(13): 4755-4760.
    [31] Lou, X. D.; Detrembleur, C; Sciannamea, V.; Pagnoulle, C; Jerome, R. Grafting of alkoxyamine end-capped (co)polymers onto multi-walled carbon nanotubes[J]. Polymer. 2004, 45(18): 6097-6102.
    [32] Riggs, J. E.; Guo, Z. X.; Carroll, D. L.; Sun, Y. P. Strong luminescence of solubilized carbon nanotubes[J]. Journal of the American Chemical Society. 2000,122(24): 5879-5880.
    [33] Lin, Y.; Zhou, B.; Fernando, K. A. S.; Liu, P.; Allard, L. F.; Sun, Y. P. Polymeric carbon nanocomposites from carbon nanotubes functionalized with matrix polymer[J]. Macromolecules. 2003,36(19): 7199-7204.
    [34] Sano, M.; Kamino, A.; Okamura, J.; Shinkai, S. Self-organization of PEO-graft-single-walled carbon nanotubes in solutions and Langmuir-Blodgett films[J]. Langmuir. 2001, 17(17): 5125-5128.
    [35] Chen, G. X.; Kim, H. S.; Park, B. H.; Yoon, J. S. Controlled functionalization of multiwalled carbon nanotubes with various molecular-weight poly(L-lactic acid)[J]. Journal of Physical Chemistry B. 2005,109(47): 22237-22243.
    [36] Li, H. M.; Cheng, F. O.; Duft, A. M.; Adronov, A. Functionalization of single-walled carbon nanotubes with well-defined polystyrene by "click" coupling[J]. Journal of the American Chemical Society. 2005, 127(41): 14518-14524.
    [37] Xie, L.; Xu, F.; Qiu, F.; Lu, H. B.; Yang, Y. L. Single-Walled Carbon Nanotubes Functionalized with High Bonding Density of Polymer Layers and Enhanced Mechanical Properties of Composites [J]. Macromolecules. 2007.
    [38] DeBell; Goggin; Gloor. German Plastics Practice[M]. The Department of Commerce, Springfield, Mass., 1946: 457.
    [39] Moad, G; Solomon, D. H.; Johns, S. R.; I., W. R. Fate of the initiator in the azobis(isobutyronitrile)-initiated polymerization of styrene[J]. Macromolecules. 1984,17(5): 1094-1099.
    [40] Hawker, C. J.; Barclay, G. G.; Orellana, A.; Dao, J.; Devonport, W. Initiating systems for nitroxide-mediated "living" free radical polymerizations: Synthesis and evaluation[J]. Macromolecules. 1996,29(16): 5245-5254.
    [41] Diaz-Camacho, F.; Lopez-Morales, S.; Vivaldo-Lima, E.; Saldivar-Guerra, E.; Vera-Graziano, R.; Alexandrova, L. Effect of regime of addition of initiator on TEMPO-mediated polymerization of styrene[J]. Polymer Bulletin. 2004, 52(5): 339-347.
    [42] Bamford, C. H.; Jenkins, A. D. Termination reaction in vinyl polymerization: preparation of block copolymers[J]. Nature. 1955,176: 78-78.
    [43] Martinez, A. G; Fernandez, A. F.; Alvarez, R. M.; Losada, M. C. S.; Vilchez, D. M.; Subramanian, L. R.; M., H. Stericqlly hindered bases. Synthesis of 2,4,6-trisubstituted pyrimidines[J]. Synthesis. 1990: 881-882.
    [44] Bahr, J. L.; Tour, J. M. Highly functionalized carbon nanotubes using in situ generated diazonium compounds[J]. Chemistry of Materials. 2001, 13(11): 3823-3824.
    [45] Devonport, W.; Michalak, L.; Malmstrom, E.; Mate, M.; Kurdi, B.; Hawker, C. J.; Barclay, G. G; Sinta, R. "Living" free-radical polymerizations in the absence of initiators: Controlled autopolymerization[J]. Macromolecules. 1997, 30(7): 1929-1934.
    [46] Malmstrom, E. E.; Hawker, C. J. Macromolecular engineering via 'living' free radical polymerizations[J]. Macromolecular Chemistry and Physics. 1998, 199(6): 923-935.
    [47] Tohji, K.; Takahashi, H.; Shinoda, Y.; Shimizu, N.; Jeyadevan, B.; Matsuoka, I.; Saito, Y.; Kasuya, A.; Ito, S.; Nishina, Y. Purification procedure for single-walled nanotubes[J]. Journal of Physical Chemistry B. 1997, 101(11): 1974-1978.
    [48] Xu, Y. Q.; Peng, H. Q.; Hauge, R. H.; Smalley, R. E. Controlled multistep purification of single-walled carbon nanotubes[J]. Nano Letters. 2005, 5(1): 163-168.
    [49] Itkis, M. E.; Perea, D. E.; Jung, R.; Niyogi, S.; Haddon, R. C. Comparison of analytical techniques for purity evaluation of single-walled carbon nanotubes [J]. Journal of the American Chemical Society. 2005,127(10): 3439-3448.
    [50] Tobias, G.; Shao, L. D.; Salzmann, C. G; Huh, Y; Green, M. L. H. Purification and opening of carbon nanotubes using steam[J]. Journal of Physical Chemistry B. 2006,110(45): 22318-22322.
    [51] Binder, W. H.; Sachsenhofer, R. 'Click' chemistry in polymer and materials science[J]. Macromolecular Rapid Communications. 2007, 28(1): 15-54.
    [52] Pore, V. S.; Aher, N. G; Kumar, M.; Shukla, P. K. Design and synthesis of fluconazole/bile acid conjugate using click reaction[J]. Tetrahedron. 2006, 62(48): 11178-11186.
    [53] Gacal, B.; Durmaz, H.; Tasdelen, M. A.; Hizal, G; Tunca, U.; Yagci, Y; Demirel, A. L. Anthracene-maleimide-based Diels-Alder "click chemistry" as a novel route to graft copolymers[J]. Macromolecules. 2006, 39(16): 5330-5336.
    [54] Bieri, S.; Marriott, P. J. Generating multiple independent retention index data in dual-secondary column comprehensive two-dimensional gas chromatography[J]. Analytical Chemistry. 2006, 78(23): 8089-8097.
    [55] Lu, J.; Yin, S.; Peng, L. M.; Sun, Z. Z.; Wang, X. R. Proximity and anomalous field-effect characteristics in double-wall carbon nanotubes[J]. Applied Physics Letters. 2007, 90(5).
    [56] Papagelis, K.; Arvanitidis, J.; Christofilos, D.; Andrikopoulos, K. S.; Takenobu, T.; Iwasa, Y.; Kataura, H.; Ves, S.; Kourouklis, G. A. Second-order Raman study of double-wall carbon nanotubes under high pressure[J]. Physica Status Solidi B-Basic Solid State Physics. 2007, 244(1): 116-120.
    [57] Ivanchenko, G. S.; Lebedev, N. G. Phonon spectrum of double-wall carbon nanotubes[J]. Physics of the Solid State. 2006, 48(12): 2354-2358.
    [58] Qi, H.; Qian, C.; Liu, J. Synthesis of high-purity few-walled carbon nanotubes from ethanol/methanol mixture[J]. Chemistry of Materials. 2006, 18(24): 5691-5695.
    [1] Iijima, S. Helical Microtubules Of Graphitic Carbon[J]. Nature. 1991, 354(6348): 56-58.
    [2] Treacy, M. M. J.; Ebbesen, T. W.; Gibson, J. M. Exceptionally high Young's modulus observed for individual carbon nanotubes[J]. Nature. 1996, 381 (6584): 678-680.
    [3] Gao, R. P.; Pan, Z. W.; Wang, Z. L. Work function at the tips of multiwalled carbon nanotubes[J]. Applied Physics Letters. 2001, 78(12): 1757-1759.
    [4] Ko, F.; Gogotsi, Y.; Ali, A.; Naguib, N.; Ye, H. H.; Yang, G. L.; Li, C.; Willis, P. Electrospinning of continuons carbon nanotube-filled nanofiber yarns[J]. Advanced Materials. 2003, 15(14): 1161-1162.
    [5] Tanaka, H.; Yajima, T.; Matsumoto, T.; Otsuka, Y.; Ogawa, T. Porphyrin molecular nanodevices wired using single-walled carbon nanotubes[J]. Advanced Materials. 2006, 18(11): 1411-1412.
    [6] Woodside, M. T.; McEuen, P. L. Scanned probe imaging of single-electron charge states in nanotube quantum dots[J]. Science. 2002, 296(5570): 1098-1101.
    [7] Choi, W. B.; Chung, D. S.; Kang, J. H.; Kim, H. Y.; Jin, Y. W.; Han, I. T.; Lee, Y. H.; Jung, J. E.; Lee, N. S.; Park, G. S.; Kim, J. M. Fully sealed, high-brightness carbon-nanotube field-emission display[J]. Applied Physics Letters. 1999, 75(20): 3129-3131.
    [8] Huang, N. Y.; Liang, S. D.; Deng, S. Z.; Xu, N. S. Signature of the Aharonov-Bohm phase in field emission of carbon nanotubes under magnetic fields[J]. Physical Review B. 2005, 72(7).
    [9] Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Ballistic carbon nanotube field-effect transistors[J]. Nature. 2003, 424(6949): 654-657.
    [10] Yoon, B.; Wai, C. M. Microemulsion-templated synthesis of carbon nanotube-supported Pd and Rh nanoparticles for catalytic applications[J]. Journal of the American Chemical Society. 2005, 127(49): 17174-17175.
    [11] Lee, Y.; Song, H. J.; Shin, H. S.; Shin, H. J.; Choi, H. C. Spontaneous formation of transition-metal nanoparticles on single-walled carbon nanotubes anchored with conjugated molecules[J]. Small. 2005, 1(10): 975-979.
    [12] Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A. Carbon nanotubes-the route toward applications[J]. Science. 2002, 297(5582): 787-792.
    [13] Pop, E.; Mann, D.; Wang, Q.; Goodson, K.; Dai, H. J. Thermal conductance of an individual single-wall carbon nanotube above room temperature[J]. Nano Letters. 2006, 6(1): 96-100.
    [14] Xiao, X. C.; Elam, J. W.; Trasobares, S.; Auciello, O.; Carlisle, J. A. Synthesis of a self-assembled hybrid of ultrananocrystalline diamond and carbon nanotubes[J]. Advanced Materials. 2005, 17(12): 1496-1500.
    [15] Salvetat, J. E; Bonard, J. M.; Thomson, N. H.; Kulik, A. J.; Forro, L.; Benoit, W.; Zuppiroli, L. Mechanical properties of carbon nanotubes[J]. Applied Physics A-Materials Science & Processing. 1999, 69(3): 255-260.
    [16] Potschke, P.; Fomes, T. D.; Paul, D. R. Rheological behavior of multiwalled carbon nanotube/polycarbonate composites[J]. Polymer. 2002, 43(11): 3247-3255.
    [17] Lourie, O.; Cox, D. M.; Wagner, H. D. Buckling and collapse of embedded carbon nanotubes[J]. Physical Review Letters. 1998, 81(8): 1638-1641.
    [18] Sandler, J.; Shaffer, M. S. P.; Prasse, T.; Bauhofer, W.; Schulte, K.; Windle, A. H. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties[J]. Polymer. 1999, 40(21): 5967-5971.
    [19] Ajayan, P. M.; Schadler, L. S.; Giannaris, C.; Rubio, A. Single-walled carbon nanotube-polymer composites: Strength and weakness[J]. Advanced Materials. 2000, 12(10): 750-751.
    [20] Barber, A. H.; Cohen, S. R.; Kenig, S.; Wagner, H. D. Interfacial fracture energy measurements for multi-walled carbon nanotubes pulled from a polymer matrix[J]. Composites Science and Technology. 2004, 64(15): 2283-2289.
    [21] Li, Y. B.; Wei, B. Q.; Liang, J.; Yu, Q.; Wu, D. H. Transformation of carbon nanotubes to nanoparticles by ball milling process[J]. Carbon. 1999, 37(3): 493-497.
    [22] Kim, Y. A.; Hayashi, T.; Fukai, Y.; Endo, M.; Yanagisawa, T.; Dresselhaus, M. S. Effect of ball milling on morphology of cup-stacked carbon nanotubes[J]. Chemical Physics Letters. 2002, 355(3-4): 279-284.
    [23] Shelimov, K. B.; Esenaliev, R. O.; Rinzler, A. G.; Huffman, C. B.; Smalley, R. E. Purification of single-wall carbon nanotubes by ultrasonically assisted filtration[J]. Chemical Physics Letters. 1998, 282(5-6): 429-434.
    [24] Hilding, J.; Grulke, E. A.; Zhang, Z. G.; Lockwood, F. Dispersion of carbon nanotubes in liquids[J]. Journal Of Dispersion Science and Technology. 2003, 24(1): 1-41.
    [25] Ajayan, P. M. Nanotubes from carbon[J]. Chemical Reviews. 1999, 99(7): 1787-1799.
    [26] Hirsch, A. Functionalization of single-walled carbon nanotubes[J]. Angewandte Chemie-International Edition. 2002, 41(11): 1853-1859.
    [27] Bahr, J. L.; Tour, J. M. Covalent chemistry of single-wall carbon nanotubes[J]. Journal of Materials Chemistry. 2002,12(7): 1952-1958.
    [28] Niyogi, S.; Hamon, M. A.; Hu, H.; Zhao, B.; Bhowmik, P.; Sen, R.; Itkis, M. E.; Haddon, R. C. Chemistry of single-walled carbon nanotubes[J]. Accounts of Chemical Research. 2002,35(12): 1105-1113.
    [29] Sun, Y. P.; Fu, K. F.; Lin, Y.; Huang, W. J. Functionalized carbon nanotubes: Properties and applications[J]. Accounts of Chemical Research. 2002, 35(12): 1096-1104.
    [30] Banerjee, S.; Kahn, M. G. C; Wong, S. S. Rational chemical strategies for carbon nanotube functionalization[J]. Chemistry-A European Journal. 2003, 9(9): 1899-1908.
    [31] Tasis, D.; Tagmatarchis, N.; Georgakilas, V.; Prato, M. Soluble carbon nanotubes[J]. Chemistry-A European Journal. 2003, 9(17): 4001-4008.
    [32] Dyke, C. A.; Tour, J. M. Covalent functionalization of single-walled carbon nanotubes for materials applications[J]. Journal of Physical Chemistry A. 2004, 108(51): 11151-11159.
    [33] Curran, S. A.; Ajayan, P. M.; Blau, W. J.; Carroll, D. L.; Coleman, J. N.; Dalton, A. B.; Davey, A. P.; Drury, A.; McCarthy, B.; Maier, S.; Strevens, A. A composite from poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and carbon nanotubes: A novel material for molecular optoelectronics[J]. Advanced Materials. 1998,10(14): 1091-1092.
    [34] Hamon, M. A.; Chen, J.; Hu, H.; Chen, Y. S.; Itkis, M. E.; Rao, A. M.; Eklund, P. G; Haddon, R. C. Dissolution of single-walled carbon nanotubes [J]. Advanced Materials. 1999,11(10): 834-835.
    [35] Tang, B. Z.; Xu, H. Y. Preparation, alignment, and optical properties of soluble poly(phenylacetylene)-wrapped carbon nanotubes[J]. Macromolecules. 1999, 32(8): 2569-2576.
    [36] Coleman, J. N.; Dalton, A. B.; Curran, S.; Rubio, A.; Davey, A. P.; Drury, A.; McCarthy, B.; Lahr, B.; Ajayan, P. M.; Roth, S.; Barklie, R. C; Blau, W. J. Phase separation of carbon nanotubes and turbostratic graphite using a functional organic polymer[J]. Advanced Materials. 2000,12(3): 213-214.
    [37] Dalton, A. B.; Stephan, C.; Coleman, J. N.; McCarthy, B.; Ajayan, P. M.; Lefrant, S.; Bernier, P.; Blau, W. J.; Byrne, H. J. Selective interaction of a semiconjugated organic polymer with single-wall nanotubes [J]. Journal Of Physical Chemistry B. 2000,104(43): 10012-10016.
    [38] Stephan, C; Nguyen, T. P.; de la Chapelle, M. L; Lefrant, S.; Journet, G; Bernier, P. Characterization of singlewalled carbon nanotubes-PMMA composites[J]. Synthetic Metals. 2000,108(2): 139-149.
    [39] Star, A.; Stoddart, J. E; Steuerman, D.; Diehl, M.; Boukai, A.; Wong, E. W.; Yang, X.; Chung, S. W.; Choi, H.; Heath, J. R. Preparation and properties of polymer-wrapped single-walled carbon nanotubes[J]. Angewandte Chemie-International Edition. 2001,40(9): 1721-1725.
    [40] Chen, J.; Liu, H. Y.; Weimer, W. A.; Halls, M. D.; Waldeck, D. H.; Walker, G. C. Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers[J]. Journal of the American Chemical Society. 2002, 124(31): 9034-9035.
    [41] Star, A.; Stoddart, J. F. Dispersion and solubilization of single-walled carbon nanotubes with a hyperbranched polymer[J]. Macromolecules. 2002, 35(19): 7516-7520.
    [42] Dieckmann, G. R.; Dalton, A. B.; Johnson, P. A.; Razal, J.; Chen, J.; Giordano, G. M.; Munoz, E.; Musselman, I. H.; Baughman, R. H.; Draper, R. K. Controlled assembly of carbon nanotubes by designed amphiphilic peptide helices [J]. Journal of the American Chemical Society. 2003,125(7): 1770-1777.
    [43] Guldi, D. M.; Taieb, H.; Rahman, G. M. A.; Tagmatarchis, N.; Prato, M. Novel photoactive single-walled carbon nanotube-porphyrin polymer wraps: Efficient and long-lived intracomplex charge separation[J]. Advanced Materials. 2005, 17(7): 871-872.
    [44] Hamon, M. A.; Hu, H.; Bhowmik, P.; Niyogi, S.; Zhao, B.; Itkis, M. E.; Haddon, R. C. End-group and defect analysis of soluble single-walled carbon nanotubes[J]. Chemical Physics Letters. 2001, 347(1-3): 8-12.
    [45] Pompeo, F.; Resasco, D. E. Water solubilization of single-walled carbon nanotubes by functionalization with glucosarnine[J]. Nano Letters. 2002, 2(4): 369-373.
    [46] Strano, M. S.; Dyke, C. A.; Usrey, M. L.; Barone, P. W.; Allen, M. J.; Shan, H. W.; Kittrell, C; Hauge, R. H.; Tour, J. M.; Smalley, R. E. Electronic structure control of single-walled carbon nanotube functionalization [J]. Science. 2003, 301(5639): 1519-1522.
    [47] Dyke, C. A.; Tour, J. M. Unbundled and highly functionalized carbon nanotubes from aqueous reactions[J]. Nano Letters. 2003, 3(9): 1215-1218.
    [48] Bahr, J. L.; Tour, J. M. Highly functionalized carbon nanotubes using in situ generated diazonium compounds[J]. Chemistry of Materials. 2001, 13(11): 3823-3824.
    [49] Qin, S. H.; Oin, D. Q.; Ford, W. T; Resasco, D. E.; Herrera, J. E. Polymer brushes on single-walled carbon nanotubes by atom transfer radical polymerization of n-butyl methacrylate[J]. Journal of the American Chemical Society. 2004,126(1): 170-176.
    [50] Qin, S. H.; Qin, D. Q.; Ford, W. T; Resasco, D. E.; Herrera, J. E. Functionalization of single-walled carbon nanotubes with polystyrene via grafting to and grafting from methods[J]. Macromolecules. 2004, 37(3): 752-757.
    [51] Kong, H.; Gao, C; Yan, D. Y. Functionalization of multiwalled carbon nanotubes by atom transfer radical polymerization and defunctionalization of the products[J]. Macromolecules. 2004, 37(11): 4022-4030.
    [52] Bahr, J. L.; Tour, J. M. Highly functionalized carbon nanotubes using in situ generated diazonium compounds [J]. Chemistry of Materials. 2001, 13(11): 3823-3824.
    [53] Jia, Z. J.; Wang, Z. Y.; Xu, C. L.; Liang, J.; Wei, B. Q.; Wu, D. H.; Zhu, S. W. Study on poly(methyl methacrylate)/carbon nanotube composites[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing. 1999, 271(1-2): 395-400.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700