氟碳烷基取代噁二唑、三唑的合成及在准外消旋合成中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,含氟有机化合物得到广泛的应用,这主要是因为氟原子或含氟链段导致化合物物理、化学和生物学性质产生很大的变化。而1,3,4-噁二唑-2-硫酮具有广谱的生物活性如抗HIV病毒,抗细菌及防止低血糖昏迷等;另一类杂环1,2,4-三唑-5-硫酮也具有抗血压,植物生长调节活性以及舒张血管活性等。关于它们唑环NH上的氢原子的反应已有较多的研究,比较典型的就是Mannich反应,但是对于该氢原子被多氟烷基取代的化合物,却未有文献报道。本文的第二章先用芳香羧酸与氨基酸形成酰胺,然后进行关环得到相应的1,3,4-噁二唑-2-硫酮(2-5)及1,2,4-三唑-5-硫酮(2-8),再利用N-烷基化反应引入多氟烷基,结合唑类杂环化合物良好的生物活性,为筛选出具有活性的多氟唑类化合物做准备,通过改变不同的取代基合成了24个新的目标化合物2-6a ~ 2-6l和2-9a ~ 2-9l。对于化合物2-5a在多氟烷基化反应时,唑环NH和CONH上的氢原子与KOH反应可能分别形成反应中间体2-5a-I、2-5a-II,用Materials Studio 3.0中的Dmol3计算模块理论计算表明了唑环上的NH较之CONH中的NH更易进行烷基化反应,部分化合物的生物活性测试正在进行之中。
     光学活性化合物广泛地分布在有机,医药和天然产物中,现在合成旋光对映体有两种方法:外消旋合成随后手性拆分与不对称合成。而本文的第三章介绍第三种方法:准外消旋合成。外消旋合成可同步合成一对对映异构体混合物,但是对它们的分离相当困难。不对称合成用光学纯化合物为原料,但产物的光学纯度小于要求的纯度,产物仍需作进一步的光学拆分。然而,对于两个对映异构体都有应用价值的情况下,例如,要分别研究新手性化合物R-型与S-型的生物特性,必须分别进行两个系列的不对称合成来获得R-型与S-型手性化合物。准外消旋合成如同不对称合成一样,准外消旋合成法以光学纯原料直接合成手性化合物,但是其反应过程又类似外消旋合成,可以同步合成一对纯的对映异构体,特别适合于由氟碳基战略来合成,分离和鉴定一对新的对映异构体。
     论文的第三章由对碘苯甲酸作为起始原料,经过酯化,酰肼化,关环,再进行N-多氟烷基化反应,制得两个N-多氟烷基-4-苯基-3-对碘苯基-1,2,4-三唑-5-硫酮,多氟标记分别为C6F13和C8F17;将D、L-构型的丙氨酸酯化,并与对碘苯甲酰氯反应得到酰胺,再运用苯环上的碘原子与三甲基硅烷基乙进行第一次Sonogashira偶联得到化合物3-9,然后脱去三甲基硅烷基再释放出基,得到两个对乙基苯甲酰胺基丙氨酸甲酯。将L-对乙基苯甲酰胺基丙氨酸甲酯再与多氟标记是C6F13的N-多氟烷基1,2,4-三唑-5-硫酮进行又一次的Sonogashira偶联,D-构型的则与多氟标记是C8F17的进行偶联,分别得到各自的偶联产物,再把两者等量的均匀混合,得到准外消旋体。将准外消旋体酰肼化,再进行关环,得到2-甲基-4-(4-N-多氟烷基-4-苯基-1,2,4-三唑-5-硫酮苯基)乙基苯甲酰胺基1,3,4-噁二唑-2-硫酮;随后再进行准外消旋拆分,得到两个对映异构体。
     论文的第四章侧重于席夫碱的合成,也是前面两章研究工作的继续。在杂环化合物合成研究中,使具有不同生物活性的官能团在同一分子中聚集,实现活性叠加,有望开发新的具有高效、广谱活性的新杂环化合物。有鉴于此,我们先将一些含不同取代基的芳香醛引入1,2,4-三唑,合成了一系列1,2,4-三唑-5-硫酮类席夫碱,利用N-烷基化反应在1,2,4-三唑上引入多氟烷基和溴代四乙酰基葡萄糖,根据活性叠加原理,预测得到一系列具有更广谱生物活性的新目标化合物。
     糖基化修饰可以显著降低某些天然药物的毒性并改善其吸收,因而目前合成糖基化合物来修饰天然药物已成为药物化学发展的一个重要领域。类维生素A在脊椎动物的生长、发育、以及繁殖等过程中发挥十分重要的作用。但类维生素A在高剂量使用时毒性太强。为提高其药物活性,寻找有更好治疗效果类维A酸衍生物,本文第五章合成两类异维A酸糖衍生物:一类是异维A酸与溴代全乙酰基糖在碱性条件下以4-二甲氨基吡啶做相转移催化剂,直接合成异维A酸糖酯;另外一类是选取香草醛等三个羟基苯甲醛作为双官能团媒介物,将这些分子中的酚羟基与糖基反应,之后再将醛基还原成醇羟基官能团,再与异维A酸相连,合成三个异维A酸糖苷,并将化合物5-2a和5-9a进行脱去乙酰基反应。最后,采用MTT法检测肺癌细胞(A549)对所有化合物耐药性。生物活性测试结果表明,通过双官能团媒介物桥连的异维A酸糖苷较之直接相连的异维A酸糖酯具有更好的活性,而脱乙酰基保护后的含游离羟基的异维A酸糖酯(5-3)或糖苷(5-11)同未脱保护的糖酯(5-2a)或糖苷(5-9a)相比,抗肿瘤活性又进一步增强。
Recently, fluorinated functional compounds have been gained to chemist’s attentions since it was found that the introduction of fluorine atoms or fluorous alkyl into organic molecules could lead to significant changes in biological activities. It has been reported that 1,3,4-oxadiazole and 1,2,4-triazole derivatives having substituted aryl group, such as the 5-substituted phenyl group or a 3,5-disubstituted aryl group, exhibit bactericidal, antiinflammatory, tuberculostatic, anticonvulsion, and fungicidal activities. There a few papers reported the reactivity of the hydrogen of NH group in heterocycle, for example, Mannich base reaction. However, the same hydrogen substituted by perfluoroalkyl is not reported in the literature. Compound 3 was synthesized by reaction of acid chloride with amino acid ester in the presence of Et3N and DMF. After several steps synthesizing, the 1,3,4-oxadiazole-2-thiones(2-5) and 1,2,4-triazole-5-thiones(2-8) were obtained. Combining the oxadiazole and triazole with good activities, two series of N-2-perfluoroalkylethyl-substituted 1,3,4-oxadiazole-2-thiones(2-6a ~ 2-6l) and 1,2,4-triazole-5-thiones(2-9a ~ 2-9l) were synthesized in the second chapter this paper and their structures were confirmed by 1H-NMR, 19F-NMR, IR, mass spectra and elemental analysis. The experimental results and the calculation showed that the hydrogen of NH group in heterocycle was more active than the hydrogen on CONH to finish alkyl-substitution reaction on nitrogen through the computing module Dmol3 of Materials Studio 3.0. Some compounds biological activities are testing.
     Chiral compounds abound in organic, medicinal, and natural products chemistry. Today, there are two ways to make enantiopure (or enantioenriched) organic molecules: racemic synthesis followed by resolution, or asymmetric synthesis. The third chapter in this paper introduces herein a third method, quasiracemic synthesis.
     Classical racemic synthesis makes both enantiomers of a target compound in a single synthesis, but separation (resolution) and identification of the final enantiomers pose large hurdles. Asymmetric synthesis employs enantiopure compounds, but two separate syntheses are needed if both enantiomers are desired. quasiracemic synthesis unites some of the key advantages of racemic and asymmetric synthesis. However, given two enantiomers with high application, especially, the R- and S- configuration products must studied their biological, chemical properties respectively. Therefore, two series assymetrically synthesis are carried out in order to obtain R- and S- configuration products. It is obviously that the method for original research is a very complicated and difficult when only relying on asymmetric synthesis. Like asymmetric synthesis, quasiracemic synthesis starts and finishes with enantiopure compounds, but like racemic synthesis it provides both enantiomers in a single synthesis.“Quasienantiomers”are used in place of enantiomers, and the separation and identification of the final quasienantiomers is ensured by a tagging strategy.
     The third chapter in the present paper using 4-iodine benzoic acid as starting material, two N-perfluoroalkyl-4-phenyl-3-(4-iodinephenyl)-1,2,4-triazole-5-thione are synthesized, the fluorous tagging is C6F13 and C8F17, respectively. The amide are obtained reacts D, L-configuration of the alanine ester with 4-iodinebenzoyl chloride. Two 4-acetylene alaninemethylesters are synthesized after deprotection compounds 3-9 which using the iodine atom on the benzene ring coupled with trimethyl silicon alkyl acetylene. Again Sonogashira coupling are happened between L-configuration 4-acetylene benzamidoalanine methylesters with N-perfluoroalkyl 1,2,4-triazole- 5-thione which the fluorous tagging is C6F13. In similarly, the D-configuration is coupled with triazole which the fluorous tagging is C8F17. Both two products are equal to mix and gain Quasienantiomers. After hydrazide and cyclization, the 2-methly-4-(4-N-perfluoroalkyl-4-phenyl-1,2,4-triazole-5-thione-phenyl)acetylenebenzamido-1,3,4-oxadiazoline-thione are synthesized. Lastely, two enantiopure are obtained after demix.
     The forth chapter in the present paper focuses on the synthesis of Schiff-base, in other words, the research is the continuation of the second and third research works. The different biological activity functional group to gather in the identical molecule can realize the active superimposition and develop newly highly-efficient heterocyclic compounds with broad-spectrum activity. Accordingly, the 1,2,4-triazole-5-thione Schiff bases are synthesized by some different substituted aromatic aldehydes react with 1,2,4-triazole. Then, the hydrogen of NH group in heterocycle is substituted by perfluoroalkyl and tetraethyl acyl-glucose, respectively. Based on the activity superposition principle, the compounds with more potential biological activities are hoped to obtain.
     Sugar modification can decrease the toxicity and increase absorption of some nature drugs. Nowadays, synthesis of sugar compounds to modify nature drugs has become an important field of pharmaceutical chemistry. Retinoids play an essential role in vertebrate growth and development, supporting cell differentiation; embryonic development, vision, the immune response and reproduction. Retinoids has been found to be too toxic at high dosage levels to be of practical value for cancer prevention in higher mammals. In order to enhance pharmacal effects and gain the relative derivatives with better curing effect and selectivity, structures of retinoic acids were modified by inducing glycosyl groups in this paper. Nine glucuronide conjugates of 13-cis-retinoic acid acid were synthesized in two ways and not reported in literatures until now. A new retinoylation method using of DCC as reagent under catalysis DMAP was developed after evaluated various reaction conditions. The O-glycosylation method was investigated using of DMAP as phase-transfer catalyst. Furthermore, deacetylation of glycosyl retinoates was studied using catalytic amount of dibutyltin oxide as catalyst in methanol. Finally all compounds were determined in vitro by MTT assay using human cancer lines including A549 cells lines etc. Results showed that glucoside derivatives exhibited interesting cytotoxic activities and were stronger than glycosyl esters. Deactylation of 5-3 and 5-11 also improved their bioactivities than those 5-2a and 5-9a, respectively.
引文
[1] Luo Z Y, Zhang Q S, Oderaotoshi Y. et al. Fluorous Mixture Synthesis: A Fluorous-Tagging Strategy for the Synthesis and Separation of Mixtures of Organic Compounds. Science, 2001, 291: 1766-1769
    [2] Zhang Q S, Rivkin A, Curran D P. Quasiracemic Synthesis: Concepts and Implementation with a Fluorous Tagging Strategy to Make Both Enantomers of Pyridovericin and Mappicine. J. Am. Chem. Soc., 2002, 124: 5774-5781
    [3] Curran D P, Strategy-Level Separation in Organic Synthesis:From Planning to Practice. Angew. Chem. Int. Ed. Engl., 1998, 37(9): 1174-1196
    [4] Zhang W, Luo Z Y. Christine Hiu-Tung Chen. Solution-Phase Preparation of a 560-Compound Library of Individual Pure Mappicine Analogues by Fluorous Mixture Synthesis. J. Am. Chem. Soc., 2002, 124: 10443-10450
    [5] Zhang Q S, Lu H J, Cyrille R. Fluorous Mixture Synthesis of Stereoisomer Libraries: Total Syntheses of (+)-Murisolin and Fifteen Diastereoismomers. J. Am. Chem. Soc., 2004, 126: 36-37
    [6] Curran D P, Amatore M, Guthrie D. Synthesis and Reactions of Fluorous Carbobenzyloxy(FCbz) Derivatives of α-Amino Acids. J. Org. Chem., 2003, 68: 4643-4647
    [7] Manku S, Curran D P. Fluorous Mixture Synthesis of 4-Alkylidene Cclopentenones via a Rhodium-Catalyzed [2+2+1] Cycloaddition of Alkynyl Allenes. J. Comb. Chem., 2005, 7: 63-68
    [8] Manku S, Curran D P. Fluorous Mixture Synthesis of Fused-Tricyclic Hydantions. Use of a Redundant Tagging Strategy on Fluorinated Sustrates. J. Org. Chem., 2005, 70: 4470-4473
    [9] 庞 华, 张君人, 刘培曼等. 5-(4-羟基苯基)-1,3,4-噁二唑-2-硫酮及 4 种Mannich 碱的合成. 中国医药工业杂志, 1996,27(7): 299-300
    [10] 庞 华, 张君仁, 李 忠等. 5-(β-萘氧甲基)-1,3,4-噁二唑-2-硫酮和两种曼尼希碱的合成及抑菌活性. 华西药学杂志, 1999, 14(1): 27-28
    [11] 刘方明, 于建新, 鲁文杰等. 3-取代胺甲基-5-连三唑基-1,3,4-噁二唑-2-硫酮的合成. 有机化学, 1999, 19: 157-161
    [12] 刘方明, 鲁文杰, 张正方等. 含 2-三氟甲基苯并咪唑杂环化合物的合成. 高等学校化学学报, 1999, 20(8): 1242-1247
    [13] 刘素燕, 惠新平, 许鹏飞等. 6-硝基苯并咪唑杂环衍生物的合成. 高等学校化学学报, 2000, 21(9): 1386-1390
    [14] Mekuskiene G, Burbuliene M M, Jakubkiene V. 5-(4,6-Diphenyl-2- Pyrimidinyl)- 1,3,4-Oxadiazole-2-Thione with some C-electrophilies and N-nucleophiles. Chem. Heterocyclic Comp., 2003, 39(10): 1364-1368
    [15] 王厚勇, 刘方明, 阎 琴等. 5-甲基-3-喹喔啉-2-基-4-乙氧羰基异噁唑及其衍生物的合成. 有机化学, 2005, 25(1): 75-80
    [16] 刘方明, 王宝雷, 张正方. 1-(2’-苯基-1’,2’,3'-三唑-4’-甲酰基)-4-芳基氨基硫脲及其环化产物的合成. 有机化学, 2001, 21(12): 1126-1131
    [17] Kane J M, Dudley M W, Sorensen S M. 2,4-Dihydro-3H-1,2,4-triazole- 3-thiones as Potential Antidepressant Agents. J. Med. Chem., 1988, 31(6): 1253-1258
    [18] Masatoshi T, Tetsuro M, Intetsu K. Emergence of in vitro resistance to fluoroquinolones in Neisseria gonorrhoeae isolated in Japan. Antimicrob. Agents&Chemother. 1995, 39: 2367-2370
    [19] Konishi H, Nishio S, Tsutamoto T. Serum carvedilol concentration and its relation to change in plasma brain natriuretic peptide level in the treatment of heart failure: a preliminary study. 2003, 41(12): 578-586
    [20] Giovanni M, Daniela U, Raul S. Selective Interaction of the Human Immunodeficiency Virus Type 1 Reverse Transcriptase Nonnucleoside Inhibitor Efavirenz and Its Thio-Substituted Analog with Different Enzyme-Substrate Complexes. Antimicrob. Agents & Chemother, 2000, 44: 1186-1194
    [21] 郎玉成, 柏亚罗. 吡唑类农药品种的研究开发进展. 现代农药, 2006, 5(5): 6-12
    [22] Maxwell, B. D. The radiolabeled syntheses of JV 485, a herbicide candidate for winter wheat. J labelled. Compd. Radiopharm. 2000, 43(7): 645-654
    [23] Goldman, P. The carbon-fluorine bond in compounds of biological interest. Science 1969(3884), 164: 1123-1130
    [24] Terrett N K, Gardner M, Gordon D W. Combinatorial Synthesis - The Design of Compound Libraries and their Application to Drug Discovery. Tetrahedron, 1995, 51(30): 8135-8173
    [25] Kumadaki I. Synthesis of enantiomerically pure phenylalanine analogues. J. Synth. Org. Chem. Japan. 1984, 42: 809-812
    [26] 彭卫民, 朱仕正. 用环加成反应合成含氟杂环化合物的研究. 化学学报,2003, 61(4): 455-468
    [27] 张欣, 覃章兰. 噻二唑的合成及生物活性. 有机化学, 2006, 26(6): 870-873
    [28] 王彩芳, 曹玲华. 含 1, 6-二氢-6-哒嗪酮的 1,3,4-噁二唑啉和噻唑烷-4-酮类化合物的合成. 有机化学, 2005, 25(10): 1287-1290
    [29] Fukuda H, Endo T, Suyama M. Preparation of Polymers Containing the 1,3,4- Oxadiazoline-5-thione Structure and Their Application to the Activation of N-Protected at-Amino Acids. J. Polymer Sci.: Polymer Chem. Edition, 1978, 16: 457-468
    [30] Saegusa Y, Nakamura S, Chau N. Synthesis of Polyamides from Active 4,4’-Diacylbis-2-aryl-1,3,4-Oxadiazoline-5-thiones and -ones and Diamines under Mild Conditions J. Polymer Sci.: Polymer Chem. Edition, 1983, 21: 637-649
    [31] Saegusa Y, Ogawa T, Kondo H. Novel synthetic approach to poly(p-benzene sulfonamide): Self-polycondensation of active p-aminobenzenesulfonic acid derivatives under mild conditions. Makromol. Chem., 1987, 188: 2839-2846
    [32] Saegusa Y, Ozeki Y, Harada S. Synthesis and characterization of poly(1-benzoylthio semicarbazide) and poly(l,3,4-thiadiazole amine) from 2-(p-aminophenyl)-1,3,4- oxadiazoline-5-thionvei a ring-opening process. Macromol. Chem. Phys., 1994, 195: 3189-3198
    [33] 陈寒松, 李正名, 王忠文. 2-取代苯氧乙硫基-5-吡唑基-1,3,4-噁二唑和 1, ω-二(5-吡唑基-1, 3, 4-噁二唑-2-硫代)烷烃的合成及生物活性. 合成化学, 1999, 7(2): 164-169
    [34] Galust'yan G G, Ziyaev A A. Interaction of 5-Aryl-1,3,4-oxadiazoline-2 (3H)-thiones with N-substituted Chloroacetamides. Chem. Heterocyclic Comp., 2002, 38(9): 1104-1109
    [35] 冯小明, 陈 荣, 黄光燕. 1-(α-萘乙酰基)-4-芳酰基氨基硫脲及 3-(α-萘亚甲基)-4-芳酰基-1,2,4-三唑啉-5-硫酮的合成. 应用化学, 1992, 9(2): 89-95
    [36] 覃兆海, 李明磊, 王明安. 吡啶衍生物研究(II)3-(4-吡啶基)-4-烃基-1,2,4-三唑啉-5-硫酮的合成及生物活性. 农药学学报, 1999, 1(1): 25-29
    [37] 覃兆海, 李明磊, 金淑惠等. 吡啶衍生物研究(IV): 4-烃基-3-[(2-氯吡啶)-4-基]-1,2,4-三唑啉-5-硫酮的合成及抑制棉花立枯菌活性. 农药学学报, 1999, 1(3): 85-87
    [38] 刘方明, 张正方, 刘育亭. N-(3-苯基-2,3,4-三唑甲酰氨基)-N’-芳酰基硫脲及其环化产物的合成. 合成化学, 2000, 8(1): 46-50
    [39] 王多志, 曹玲华. 2’-芳基-3-(1,4,5,6-四氢-6-哒嗪酮-3-羰基)氨基硫脲及其环化产物的合成. 有机化学, 2004, 24(9): 1045-1051
    [40] 李新芝, 司宗兴. 3-(2-呋喃基)-4-芳基-1,2,4-三唑啉-5-硫酮的合成及生物活性. 有机化学, 2002, 22(3): 178-182
    [41] 胡国强, 黄文龙, 张惠斌等. 含三唑啉硫酮槟榔碱衍生物的合成和生物活性. 有机化学, 2002, 22(9): 667-671
    [42] Senthilvelan A, Ramakrishnan V T. Photodesulfurization of 2,4-Diaryl- 1,2,4- triazole-3-thiones. Heteroatom Chem., 2003, 14(3): 269-272
    [43] Romine J L, Martin S W, Gribkoff V K. 4,5-Diphenyltriazol-3-ones: Openers of Large-Conductance Ca2+-Activated Potassium (Maxi-K) Channels. J. Med. Chem., 2002, 45: 2942-2952
    [44] 褚长虎, 张 艳, 惠新平等. 5-(1-苯基-5-甲基-1, 2, 3-三唑-4-基)-4-芳基-1,2,4-三唑-3-硫基乙酸的合成和抗菌活性. 兰州大学学报(自然科学版), 2001, 37(2): 91-94
    [45] Vasil’eva E B, Sevenard D V, Khomutov O G, et al. Synthesis of Trifluoroalkyl-and Fluoroaryl-Substituted 4,5-Dihydro-1H-1,2,4-triazole-5- thiones. Russ. J. Org. Chem., 2004, 40(6): 874–878
    [46] Villard A L, Warrington B H, Ladlow M. A Fluorous-Tagged, Acid-Labile Protecting Group for the Synthesis of Carboxamides and Sulfonamides. J. Comb. Chem., 2004, 6: 611-622
    [47] Aviram A, Zimra Y, Shaklai M, et al. Comparison between the effect of butyric acid and its prodrugs pivaloxymethyl butyrate on hyperactylation of histones in HL-60 cell lines. Int. J. Cancer, 1994, 56(6): 906-90
    [48] Pallassana V, Neurock M. Electronic Factors Governing Ethylene Hydrogenation and Dehydrogenation Activity of Pseudomorphic PdML/Re(0001), PdML/Ru(0001), Pd(111), and PdML/Au(111) Surfaces. J. Catal., 2000, 191(2): 301-317
    [49] Freund H J, Klimenkov M, Nepijko S, et al. The structure of Pt-aggregates on a supported thin aluminum oxide film in comparison with unsupported alumina: A transmission electron microscopy study. Surf. Sci., 1997, 391(1): 27-36
    [50] Nepijko S, Klimenkov M, Kuhlenbeck H, et al. TEM study of tantalum clusters on Al[2]O[3]/NiAl(110). Surf. Sci., 1998, 412-13: 192-201
    [51] Giorgio S, Nihoul G, Henry C R, et. al. High-resolution transmission electron microscopy study of gold particles (greater than 1nm), epitaxially grown on clean MgO microcubes. Philosophical Magazine. Pt.A.,1991, 64: 87-96
    [52] Hammer B, Nielsen O H, Nrskov J K. Structure sensitivity in adsorption: CO interaction with stepped and reconstructed Pt surfaces. Catal. Lett., 1997, 46: 31-35
    [53] Kratzer P, Hammer B, N?rskov J K. Geometric and electronic factors determining the difference in reactivity of H2 on Cu(110) and Cu(111). Surf. Sci., 1996, 359: 45-51
    [54] Hammer B. Adsorption, diffusion, and dissociation of NO, N and O on flat and stepped Ru(0001) . Surf. Sci., 2000, 459(3): 323-348
    [55] Feibelman P J, Esch S, Mavrikakis T. Binding Sites on Stepped Pt(111) Surfaces. Phys. Rev. Lett., 1996, 77: 2257-2261
    [56] Hammer B. Reactivity of a stepped surface NO dissociation on Pd(211). Faraday Discuss, 1998, 110: 323-333
    [57] Krapcho T, Turk C F. Bicyclic pyrazolines,potential central nervous system depressants and anti-inflammatory agents. J. Med. Chem.,1979, 22: 207-211
    [58] Parmar S S, Pandey B R, Dwivedi C, et al. Anticonvulsant activity and monoamines inhibitory properties of 1,3,5-trisubstituted pyrazoles from 2-Hydroxy-chalcones. J Heterocyclic Chem., 1981, 18: 1293-1295
    [59] Hireemath S P, Shivaramayya K, Sekhar K R, et al. Synthesis of substiued 2,5-bis(1,1,3-oxadiazolyl/thiazolyl/1,2,4-triazolyl) indole and study of their biological activities. Indian J Chem Sect. b, 1990, 29(12): 1118-1122
    [60] Sadana G, Saluja J G. Synthesis of S,N-acetals elerived from saccharin as potential antibacterial agents. Indian Drugs, 1990, 28(1): 29-33
    [61] Grenda V J, Jones R E, Gel G. et al. Novel Preparation of Benzimidazoles from N-Arylamidines New Synthesis of Thiabendazole J. Org. Chem., 1965, 30: 259-261
    [62] Bond W. Effect of Herbicides on Field Violet (Viola arvensis) in Direct-Seeded Spring Wheat. Tests Agrochem. Cultiv., 1987, 8: 106-107
    [63] 陈寒松,李佳风,李正名等. 含吡唑环的双杂环化合物的合成及其生物活性. 高等学校化学学报, 2002, 1(10): 1520-1523
    [64] 韩玉芬,陈寒松. 应用稻苗离体叶片法筛选水稻纹枯病新农药活性的研究. 植物保护, 1999, 25(5): 13-14
    [65] 胡利明, 李学恕, 陈致远等. 含 1H-吡唑和噻(二)唑的新型双杂环化合物的合成及其生物活性. 有机化学, 2003, 23(10): 1131-1134
    [66] 谭成侠, 沈德隆, 翁建全等. 1-(吡唑-5-酰基)-1H -取代吡唑的合成及生物活性. 农药学学报, 2005, 7(1): 69-72
    [67] 谭成侠, 沈德隆, 王成等. 含 1H-吡唑和咪唑的新型双杂环化合物的合成与生物活性.合成化学. 13(4): 372-374
    [68] 陈 悟, 陈 琼, 吴琼友等. 含噁二唑杂环取代的新型三唑并嘧啶衍生物的合成及其生物活性. 有机化学, 2005, 25(11): 1477-1481
    [69] 张自义, 陈新. 3-(4-吡啶基)-6-芳基-均三唑并[3,4-b]-1,3,4-噻二唑合成及抗菌性能.化学学报, 1992, 10: 59-60
    [70] 张自义, 李明, 赵岚等. 3-芳基-6-苯甲酰氨基均三唑并[3,4,b]-1,3,4-噻二唑. 高等学校化学学报, 1994, 15(2): 220-223
    [71] 李德江, 傅和青. 1,3-双[3-芳基-1,2,4-三唑并[3,4-b]-1,3,4-噻二唑-6-基]丙烷类化合物的合成. 有机化学, 2006, 26(8): 1140-1143
    [72] Kleschich W A, Costales M J, Dunbar J E. et al. New herbicidalderivatives of 1,2,4 -triazolo [1,5-a] pyrimidine. Pestic. Sci., 1990, 29: 341-355
    [73] Kleschich W A, Costales M J, Gerwick B C, et al. 1,2,4-Triazolo[1,5-a] pyrimidine-2- sulfonanilide herbicides: influence of alkyl, haloalkyl and halogen heterocyclic sub stitution on in vitro and in vivobiological activity [A]. In Synthesis and Chemistur of Agrochemicals(Part Ⅲ) [C] . J. Am. Chem. Soc., 1992, 114: 10-16
    [74] Kleschich W A, Carson C M, Costales M J, et al. 1,2,4-Triazolo[1,5-a] pyrimidine-2-sulfonanilide herbicides: influence of alkoxyl hetero-cyclic substitution on in vitro and in vivo biological activity and soid composition[A]. In Synthesis and Chemistry of Agrochemicals (PartⅢ) [C]. J. Am. Chem. Soc., 1992, 114: 17-25
    [75] 刘波,高惠强. 苯并噻唑偶氮吡唑和苯并噻唑偶氮嘧啶的合成. 有机化学, 1994, 14(2): 206-210
    [76] 周世臣. 对称 1,1-双杂芳基烷的合成. 山东师范大学学报(自然科学版), 1997, 12( 2): 160-163
    [77] 周世臣, 王文思. 不对称的双(杂芳基)烷类的合成. 东北师大学报:自然科学版, 1997, 3: 47-53
    [78] Curran D P, Fluorous Reverse Phase Silica Gel. A New Tool for Preparative Separations in Synthetic Organic and Organofluorine Chemistry. Synlett., 2001, 9: 1488-1496
    [79] Zhang W, Curran D P. Synthetic applications of fluorous solid-phase extraction (F-SPE). Tetrahedron, 2006, 62: 11837–11865
    [80] Curran D P, Haida S, He M. Thermal Allylations of Aldehydes with a Fluorous Allylstannane. Separation of Organic and Fluorous Products by SolidPhase Extraction with Fluorous Reverse Phase Silica Gel. J. Org. Chem. 1997, 62: 6714-6715
    [81] Negishi E-I, Anastasia L. Palladium-catalyzed alkynylation. Chem. Rev., 2003, 103(5): 1979-2017
    [82] Tucker C E, Vries J G D. Homogeneous catalysis for the production of fine chemicals. Palladium- and nickel-catalysed aromatic carbon- carbon bond formation. Topics in Catalysis, 2002, 19(1): 111-118
    [83] Sonogashira K. Development of Pd–Cu catalyzed cross-coupling of terminal acetylenes with sp2-carbon halides. J. Organomet. Chem., 2002, 653(1-2): 46-49
    [84] Mori A, Kawashima J, Shimada T, et al. Non-sonogashira-type palladium- catalyzed coupling reactions of terminal alkynes assisted by silver(I) oxide or tetrabutylammonium fluoride. Org. Lett., 2000, 2(19): 2935-2937
    [85] 杜英娟. 国外杀菌剂发展近况. 农药, 1989, 28(1): 48-52
    [86] 李正名. 农药化学现状与发展动向. 应用化学, 1993, 10(5): 14-19
    [87] 史记. 新型植物生长调节剂——BAS11104. 农药, 1989, 28(2): 44-47
    [88] Erast B, Bend Z, Norbert M. Prepartaion of threo dichlorophenyltriazolyl ethanols as fungicides and plant growth regulators. DE, 3, 604, 569, 20, Aug, 1987
    [89] Klaus L. Synergiatic cereal growth inhibitors comprising a triazole derivative and chlormequat chloride. DE 3, 627, 404, 10, Feb, 1988.
    [90] Ernest H. Increasing the yield of soyabeans. GB 2, 078, 212, 06, Jan, 1982
    [91] Awad I M A, Rahman A E A, Bakite E A. Synthesis and application of some new heterocyclo-s-triazole derivatives as antimicrobial agents. J. Chem. Tech. Biotechnol., 1991, 51 (44): 483-495
    [92] Wu T, Li Z, Zhao J. A Facile Method for the Synthesis of 4-Amino-5- hydrocarbon -2,4-dihydro-3H-1,2,4-triazole-3-thione Schiff Bases. Chem. J. Chin. Univ., 1998, 19 (10):1617-1619
    [93] 王 英, 杨风岭, 刘钊杰. 新型咪唑啉酮类Schiff 碱的合成及其生物活性. 应用化学, 2004, 21(11) : 1105-1108
    [94] 胡国强 , 候莉莉 , 黄文龙 . 水杨醛缩 3-(5-取代苯基 -1,3,4-二唑 -2-亚甲硫基)-5-吡啶-3-基-1,2,4-三唑-4-胺席夫碱的合成及抗菌活性. 化学试剂, 2006, 28(5): 296-297
    [95] 张 欣, 覃章兰, 肖 蒙. 含三氮唑环和噻吩环希夫碱的合成及其杀菌活性. 农药学学报, 2005, 7 (4) : 353-356
    [96] 张安将, 张力学, 丁金昌. 3-巯基-5-芳香基-4-芳基亚甲胺基-4H-1,2,4-三唑的合成及波谱研究. 有机化学, 2005, 25 (4) : 442-444
    [97] 曹玲华, 张 林. 3-杂环取代色酮Schiff碱的合成(I). 新疆大学学报(自然科学版), 2003, 20 (2) : 151-154
    [98] Holla B S, Veerendra B, Shivananda M K. Synthesis characterization and anticancer activity studies Mannich bases derived from 1,2,4-triazoles. Euro. J. Med. Chem., 2003, 38: 759-767
    [99] Karthikeyan M S, Prasad D J, Poojary B. Synthesis and biological activity of Schiff and Mannich bases bearing 2,4-dichloro-5-fluorophenyl moiety. Bio. & Med. Chem., 2006, 14: 7482-7489
    [100] Gudasi K B, Patil S A, Vadavi R S. Synthesis and spectral characterization of some transition metal complexes containing pentadentate SNNNS donor heterocyclic Schiff base ligands. Trans. Metal Chem., 2005, 30: 1014-1019
    [101] Avaji P G, Reddy B N, Patil S A. Synthesis, spectral characterization, biological and fluorescence studies of lanthanum(III) complexes with 3-substituted-4-amino- 5-hydrazino-1,2,4-triazole Schiff bases. Trans. Metal Chem., 2006, 31: 842-848
    [102] YU H, MA J, U G. Syntheses and crystal structures of four new organotin complexes with Schiff bases containing triazole. J. Organomet. Chem., 2006, 691: 3531-3539
    [103] Finar, I. L. Organic Chemistry, 6th ed., Longman Singapore Publishers (Pte) Ltd., 1986, p.130
    [104] 李 雯, 罗德林, 刘宏民. 葡萄糖香草醛的相转移催化合成法. 河南科学, 1999, 17(3): 250-253
    [105] 曹克广, 王忠卫, 赵信歧. 2-芳基-5-(2’,3’,4’,6’-四-O-乙酰基-β-D-吡喃葡萄糖基)亚胺基-1,3,4-噻二唑化合物的合成及其生物活性. 石油大学学报(自然科学版), 2004, 28(1): 100-102
    [106] 李 雯,刘宏民. 对位取代苯酚氧甙类化合物的相转移催化合成与结构表征. 有机化学, 2002, 22(12): 1034-1039
    [107] 张爱武, 刘乐乐. 对羟基苯甲醛葡萄糖苷氨基酸酯席夫碱化合物的合成. 内蒙古医学院学报, 2005, 27 (2): 99-101
    [108] Sung C H, Kung L R, Hsu C S. Induced Twisting in the Self-Assembly of Chiral Schiff-based Rod-Coil Amphiphiles. Chem. Mater., 2006, 18: 352-359
    [109] Wang Sh, Liu D, Zhang X. Study on glycosylated prodrugs of toxoflavins for antibody-directed enzyme tumor therapy. Carbohydr. Res., 2007(in press)
    [110] Czollner L, Szilagyi G, Lango J. et al. Synthesis of new 1,5-diphenyl-3-1H- 1,2,4-triazoles substituted with H-, alkyl, or carboxyl groups at C-3. Arch. Pharm (Weinheim), 1990, 323(4): 225-227
    [111] Lindig M, Findeisen K, Muller K H. et al. Substituted triazolinones. Eur Pat. Appl., EP 294 666, 1988-12-14
    [112] Crofton K M. A structure-activity relationship for the neurotoxicity of triazole fungicides. Toxicol. Lett., 1996, 84: 155-159
    [113] 侯 宁, 徐丽君. 新型缩氨基硫脲衍生物—氨基巯三唑Schiff碱的合成与抗菌活性. 药学学报, 1992, 27(10): 738-742
    [114] 徐进宜, 贺乾辉, 魏 臻等. 4-取代-3-烷基-4, 5-二氢-1-(3-氯-4-氟苯基)-1, 2, 4-三唑-5-酮的合成及生物活性. 有机化学, 2006, 26 (1):123-128
    [115] 赵生敏 , 潘鑫复 , 张功成等 . 相转移催化法合成 1-O-酰基 -四 -O-乙酰基-β-D-吡喃己糖,有机化学, 1998, 18: 324-327
    [116] 蒋历辉, 李治章, 陈超越等. N-多氟烷基取代1,3,4-噁二唑-2-硫酮及1,2,4-三唑-5-硫酮类化合物的合成和密度泛函理论研究. 有机化学, 2007, 27: (in press)
    [117] 向建南,陈超越,蒋历辉等. 异维 A 酸糖基衍生物的合成及其细胞毒活性的研究.高等学校化学学报, 2007, 28(8):1-4
    [118] 郭宗儒. 药物分子设计的模拟原理. 药学学报, 1997, 32(12): 950-955
    [119] Meijere, ADieck H. “Organometallics in Organic Synthesis, Aspects of a modern interdisciplonary”. Springererlag, Berlin, 1988
    [120] Larsen C S, Johansen M, Harboe E, et al. Sustained release prodrugs comp- rising inflammation inhibitors linked to polysaccharides. Eur Pat. Appl, EP 331471, 1989-9-6
    [121] 王真,陈西广,郎刚华. 甲壳质及其衍生物生理活性研究进展. 海洋科学, 2000, 24(9): 30-32
    [122] 郭忠武, 王来曦. 糖化学研究进展. 化学进展, 1995, 7(1): 10-29
    [123] 唐有祺. 生命的化学. 长沙:湖南科学技术出版社, 1998, 1-3
    [124] 陈晓明 , 田庚元 . 多糖磷酸酯化的研究进展 . 有机化学 , 2002, 22(11): 835-839
    [125] 张惟杰. 糖复合物生化研究技术. 杭州: 浙江大学出版社, 1999, 3-5
    [126] 黄 鸣, 黎锡流. 糖类生命机理及在医药中应用. 广西轻工业, 2001, 17(4): 10-12
    [127] 付新梅, 江涛, 王奎旗等. 糖类对先导化合物的化学修饰及其在药学中的应用. 中国海洋药物, 2001, 13(3): 54-62
    [128] Nishikawa Y, Yoshimoto K, Okabe M. et al. Chemical and biochemical studies on carbohydrate esters Ⅲ. Chem. Pharm. Bull., 1976, 24(4): 756-762
    [129] Greber G, Gruber H. Carbohydrate esters of acetyl salicylic acid, process for their preparation and pharmaceutical compositions containing them. PCT Int. WO 8603206, 1986-6-5
    [130] 余诚方, 刘 倩, 蔡孟深. Koenigs-Knorr 反应合成桂皮酸己糖基酯. 科学通报, 1989, 34(20): 1550-1553
    [131] 孙昌俊, 王义贵, 李洪祥等. 1-β-D - (5-取代-2-呋喃甲酸)-糖酯的合成及其抗肿瘤活性. 中国药物化学杂志, 1996, 6(3): 162-166.
    [132] 曲 峰, 李英霞, 宋 妮. 氢化可的松氨基糖衍生物的合成. 有机化学, 2003, 23(4): 361-367
    [133] Wang T C, Kakegawa H, Nakaishi S. Inhibitory effects of (4-alkoxy-2, 3, 6-trimethyl- phenyl)glycopyranosides on histamine release induced by antigen-antibody reaction. Chem. Pharm. Bull (Tokyo), 1994, 42(4): 1002- 1004
    [134] 孙昌俊, 王义贵, 陈再成等. 糖苷合成研究(Ⅳ)──氟脲嘧啶 N-葡萄糖醛酸苷的合成及其抗肿瘤活性. 高等学校化学学报, 1994, 15(8): 1168-1171
    [135] 孙昌俊, 王义贵, 李洪祥等. 糖苷合成研究(Ⅺ):2-取代氟脲嘧啶β-D-乙酰基木糖苷类化合物的合成及其抗肿瘤活性. 中国药物化学杂志, 1997, 7(6): 84-87
    [136] 狄 维, 王 林, 彭 涛等. 知母菝葜皂苷元 3-位糖基化衍生物的合成. 中国药物化学杂志, 2003, 13(6): 324-328
    [137] Roos T C, Jugert F K, Merk H F, et al. Retinoid metabolism in the skin. Pharmacol. Rev., 1998, 50(2): 315-333
    [138] Napoli J L. Biochemical pathways of retinoid transport, metabolism, and signal transduction. Clin. Immunol. Immunopathol., 1996, 80(3): S52-S62
    [139] Bates C J. Vitamin A. Lancet., 1995, 345(1): 31-35
    [140] Niles R M. Recent advances in the use of Vitamin A(retinoids) in the prevention and treatment of cancer. Nutrition, 2000, 16(11-12): 1084-1090
    [141] Giguere V, Onf S, Segui P, et al. Identification of a receptor for the morphogen retinoid acid. Nature, 1987, 330(6149): 624-629
    [142] Petkovich M, Brand N J, Krust A, et al. A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature, 1987, 330(6147): 444-450
    [143] Nagpal S, Roshantha A S. Recent developments in receptor-selective retinoids. Current Pharmaceutical Design, 2000, 6(9): 919-931
    [144] 王儒鹏. 维 A 酸与癌症的化学预防. 临床皮肤科杂志, 2001, 30(2): 129-131
    [145] Ahn M J, Langenfeld J, Moasser M M, et al. Growth suppression of transformed human bronchial epithelial cells by all-trans-retinoic acid occurs through specific retinoid receptors. Oncogene, 1995, 11(11): 2357-2364
    [146] Lee H Y, Dohu D F, Kim Y H, et al. All-trans-retinoic acid converts E2F into a transcripitional suppressor and inhibits the growth of normal human bronchial epithelial cells through retinoic acid receptor-dependent signaling pathway. J. Clin. Invest., 1998, 101(5): 1012-1019
    [147] Monczak Y, Trudel M, Lamph W W, et al. Induction of apoptosis without differentiation by retinoic acid in PLB-985 cells requires the activation of both RAR and RXR. Blood, 1997, 90(9): 3345-3355
    [148] Li Y, Dawson M, Agadir A, et al. Regulation of RAR beta expression by RAR-and RXR-selective retinoids in human lung cancer cell lines: effect on growth inhibition and apoptosis induction. Int. J. Cancer., 1998, 75(1): 88-95
    [149] Nagy L, Thomaxy V A, Shipley G L, et a1. Activation of retnoid X receptors induces apoptosis in HL-60 cell lines. Mol. Cell. Biol., 1995, 15(7): 3540-355l
    [150] Boelim M F, Zhang L, Zhi L, et al. Design and synthesis of potent retinoid X receptor selective ligands that induce apoptosis in leukemia cells. J. Med. Chem., 1995, 38(6): 3146-3155
    [151] Widschwendter M, Culig Z, Activity of retinoic acid receptor-gamma selectively binding retinoids alone and in coordination with interferon-gamma in breast cancer cell lines. Int. J. Cancer, 1997, 7l(3): 497-504
    [152] Samokyszyn V M, Gall W E, Zawada G. et al. Radominska-Pandya, A. 4-Hydroxyretinoic acid, a novel substrate for human liver microsomal UDP-glucuronosyl -transferase(s) and recombinant UGT2B7. J. Biol. Chem., 2000, 275: 6908-6914
    [153] Kren V, Martinkova L. Glycosides in medicine: "The role of glycosidic residue in biological activity". Curr. Med. Chem., 2001, 8: 1313-1338
    [154] Barua A B, Sidell N. Retinoyl-glucuronide: A biologically active interesting retinoid. J. Nutr., 2004, 134: 286-289
    [155] Gunning D B, Barua A B. Lloyd R A, et al. Retinoyl β-glucuronide: A nontoxic retinoid for the topical treatment of acne. J. Dermatol Treat., 1994, 5: 181-185
    [156] Winum J Y, Leydet A, Seman M. Synthesis and biological activity of glycosyl conju-gates of N-(4-hydroxyphenyl)retinamide. Il Farmaco, 2001, 56: 319-324
    [157] Barua A B, Olson J A. Synthesis of 4, 4-difluoro analogs of retinol and retinoic acid. J. Lipid Res., 1984, 25: 304-309
    [158] Maryanoff C A, New H P. Process for the preparation of N-(4-hydroxyphenyl) -retinamide. US. Pat. No. 5399757, 1995-3-21.
    [159] 李 庆,蔡孟深,李中军. 糖类研究(ⅩⅩⅪ)——连接臂的乳糖衍生物及二聚体的合成. 高等学校化学学报, 2000, 21(1): 70-73
    [160] 陈 勇, 韩国防, 刘惠英. 3-二茂铁基-2-丁烯酸糖酯的合成及其抗贫血活性. 江苏工业学院学报, 2004, 16(2): 8-10
    [161] Xiang J, Toyoshima S, Orita A et al. A pratical and Green Chemical Process: Fluoroalkyldistannoxane - Catalyzed Biphasic Transesterification. Angew. Chem. Int. Ed., 2001, 40(19): 3670-3672
    [162] Xiang J, Orita A, Otera J. Fluorous Biphasic Esterification Directed towards Ultimate Atom Efficiency. Angew. Chem. Int. Ed., 2002, 41(21): 4117-4119
    [163] Li W, Liu H, You Q. Application of Dibutyltin Oxide to Deacetylation of Glucosides. Acta Chim. Sinica., 2003, 61: 1516-1520
    [164] 陈洪, 戴志群, 曲凡歧等. N, N-二(邻硝基苯氨基乙基)甘氨酸糖酯的合成. 高等学校化学学报, 1999, 20(11): 1725-1728
    [165] 连召斌, 黄 艳, 曹玲华. 相转移催化法合成七-O-乙酰基-β-麦芽糖基芳香酸酯. 应用化学, 2003, 20(3): 287-289
    [166] 李祥安, 孙昌俊, 张延良等. N-乙酰基硫杂脯氨酸糖酯衍生物的合成. 有机化学, 1988, 8(3): 224-226
    [167] 彭师奇, 李立朴, 吴建伟等. 苷类化合物研究(Ⅰ)——天麻苷类似物的合成. 高等学校化学学报, 1988, 9(1): 47-50
    [168] Xiang J, Jiang L, Chen C, et al. Studies on the Synthesis and Antiproliferative Activities of Retinoyl Sugar Derivatives. J. Carbohy. Chem., 2006, 25: 595-614
    [169] Christie E D, Sean P H, Christina L A, Supplementation with l-carnitine does not reduce the efficacy of epirubicin treatment in breast cancer cells Cancer Lett., 2007, 252(2): 195-207

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700