用户名: 密码: 验证码:
基于同步辐射的CCl_3H、CF_2Cl_2和CFCl_3分子的正负离子对解离动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正负离子对光解离是一种比较特殊的单分子反应过程,存在于几个到几百个电子伏特较广泛的能量范围内。本文利用合肥国家同步辐射实验室原子分子物理线站上的实验设备完成了对氯仿(CCl_3H),二氯二氟甲烷(CF_2Cl_2),三氯一氟甲烷(CFCl_3)分子的正负离子对解离质谱与效率谱的测量和分析,在真空紫外较宽的能量区间研究了上述分子的正负离子对解离动力学。
     本文包含五个章节:
     第一章主要介绍了光与分子作用反应动力学的基本知识和概念,着重介绍了正负离子对解离谱学实验研究和离子对解离动力学理论计算方法。
     第二章为基于同步辐射的正负离子对解离实验方法。基于合肥国家同步辐射实验室原子分子线站光电离正离子质谱装置,我们进行了改进,使其能够探测正负离子对解离过程中产生的负离子,并能采集负离子效率谱。另外,基于质量分辨的阈值电离实验思想,我们对阈值正负离子解离实验的可行性进行了研究,进行了大量模拟工作,并完成了机械设计。
     第三章为氯仿分子的正负离子对解离动力学研究。我们使用同步辐射光检测了氯仿分子解离产生的负离子及其同位素质谱,首次得到了能量范围在10.0―21.5 eV的离子对负离子效率谱,并进行了初步标识。其中,~(35)Cl~ˉ和~(37)Cl~ˉ效率谱还显示出由多体解离产生的一些特殊的谱峰结构;Cl~ˉ效率谱在14.55 eV位置有一个峰,我们认为它是由串联反应导致的,即CCl_3H光解产生Cl_2 (D′2~3Пg)离子对态,在脉冲场作用下,该离子对态发生正负离子对解离产生Cl++Clˉ。在C 2E和D 2E附近分别观察到了两个振动激发系列nν_2~+,nν_2~++ν_3~+和nν_4~+,nν_4~++ν_2~+。
     第四章为CF2Cl2的离子对解离动力学研究。我们观测到了~(35)Cl~ˉ, ~(37)Cl~ˉ和F~ˉ负离子,获得了8.00― 20.50 eV能量范围的效率谱,除了根据标准热力学数据对离子对解离通道计算外,我们还用从头算计算了离子对解离能量和解离碎片的激发态能量。检测到第一电离阈值之下的离子对解离产生的Clˉ效率曲线,并对其价态-Rydberg态跃迁进行了归属,给出了第一解离阈CF_2Cl_2+hν→Cl~ˉ+CF_2Cl~+的实验值,8.20±0.04 eV。在17.30– 20.50 eV能量范围得到Fˉ负离子效率谱,并观测到Cl~ˉ和F~ˉ的竞争解离过程,对这个能量下Cl~ˉ和F~ˉ效率谱中的里Rydberg系列跃迁和多体解离通道进行尝试性标识。
     第五章是CFCl3的离子对解离动力学研究。我们观测到了~(35)Cl~ˉ, ~(37)Cl~ˉ和F~ˉ负离子,获得了~(35)Cl~ˉ和~(37)Cl~ˉ在7.75―22.00 eV能量范围的效率谱。实验测得第一解离通道CFCl_3→CFCl_2~+ + Cl~ˉ的阈值为7.94±0.04 eV。参考高分辨光吸收谱文献对Cl~ˉ负离子效率谱中的价态到Rydberg系列跃迁进行了归属和标识。讨论了多体解离通道产生Cl~ˉ的过程。
     最后对我们的工作进行了总结和展望。
Ion-pair photodissociation, established as a novel unimolecular process, occurs rather commonly in a wide energy range of several to hundreds eV and for various molecules from diatomic molecules to the complicated polyatomic molecules. Vacuum ultraviolet synchrotron radiation is a suitable photon source for the ion-pair dissociation studies, owing to the distinguished merits of synchrotron radiation such as the high brilliance and tunnability in a wide range of photon energy. We carried out a series of photodissociation studies on CCl_3H (chloroform), dichloro- difluoromethane (CF_2Cl_2) and trichloromonofluoromethane (CFCl_3) using synchrotron radiation at the atomic and molecular physics end-station of National Synchrotron Radiation Laboratry at Hefei, China.
     This dissertation is consisted of five chapters.
     In the first chapter, the basic physics of the photon-molecule reactions, especially of ion-pair photodissociations, and the experimental and theoretical methods used are introduced briefly.
     The second chapter is the intoduction of the ion-pair photodissociation method using synchrotron radiation. To record the ion-pair anion production efficiency curves, the mass spectrometer was successfully modified. Moreover, we’ve developed the threshold ion pair production spectroscopy (TIPPS) on the basis of the mass analyzed threshold ionization (MATI). The final design drawings are presented after a lot of simulation work and calculations.
     The third chapter is the ion-pair dissociation dynamics study of molecule CHCl3. Negative ions and their isotope species are observed for the first time in the photoexcitations of CCl3H in the energy range of 10.0-21.5 eV and tentatively assigned according to literatures.The spectra of two isotopes ~(35)Cl~ˉand ~(37)Cl~ˉshow some additional peaks due to the energetically accessible multi-body fragmentations. A distinct peak at 14.55 eV may be owing to a cascade process. Two vibrational excitation progressions, nν2~+ and nν2~++ν3~+, nν4~+ and nν4~++ν2~+, are observed around C2E and D 2E ionization states, respectively.
     The forth chapter is the ion-pair dissociation dynamics study of molecule CF_2Cl_2. Negative ions 35Cl~ˉ, 37Cl~ˉ, and F~ˉare observed in the VUV photo-dissociations of CF_2Cl_2 using synchrotron radiation and their ion production efficiency curves are recorded in the wide photon energy range of 8.00― 20.50 eV. The fragmentation enthalpies are estimated on the basis of the high-level G3MP2 calculations performed in this work. The Cl~ˉproduction curve is recorded below the first ionization threshold and assigned. The energetic threshold for CF_2Cl_2 + hν→Cl~ˉ+ CF_2Cl+ is determined to be 8.20±0.04 eV. The F~ˉanionic fragment is observed in the energy range of 17.30– 20.50 eV, and we find a novel competition between the ion-pair photodissociations to Cl~ˉand F~ˉ. A series of Rydberg transitions together the multi-body fragmentation channels are tentatively assigned in the spectra of Cl~ˉand F~ˉin this energy range.
     The fifth chapter is the ion-pair dissociation dynamics study of molecule CFCl3. Anionic fragments, F~ˉand Cl~ˉ(two isotope species 35Cl~ˉand 37Cl~ˉ), are observed. The ion-pair anion efficiency spectra of 35Cl~ˉand 37Cl~ˉare recorded in the photon energy range of 7.75― 22.00 eV. The threshold of ion-pair dissociation CFCl3→CFCl2+ + Cl~ˉis experimentally determined to be 7.94±0.04 eV. With the references of the high-resolution photoabsorption spectra, the electron transitions from the valence to Rydberg orbitals are assigned in the Cl~ˉefficiency spectrum. The multi-body ion-pair fragmentation processes to produce Cl~ˉare discussed in this text.
     The conclusions and the research plans in future are given at the last of this thesis.
引文
[1]张允武,陆庆正,刘玉申,分子光谱学,中国科学技术大学出版,(1988).
    [2]马兴孝,孔繁敖,激光化学,中国科学技术大学出版社,(1990).
    [3] M. I. AI-Joboury, D. W. Turner, J. Chem. Phys. 37, 3007(1962)
    [4] D. W. Turner, A. D. Baker, C. Barker, C. R. Brundle, Molecular Photoelectron Spectroscopy: A handbook of He 584A Spectra, London: Interscience, 1970.
    [5] M. I. AI-Joboury, D. W. Turner, Diss. Chem. Soc., Part V, 5141(1963).
    [6] K. Siegbahn, C. Nordling, G. Johansson, J. Hedman, P. F. Heden, K. Famrin, U. Gelius, T. Bergmark, L. O. Werme, R. Manne, Y. Baer, ESCA Applied to Free Molecules, NorthHolland, Amsterdam-London, 1969.
    [7] P. Rademacher , Chem. Rev. 103, 935(2003)
    [8] F. I. Vilrsov, B. L. Kurbatov, A. N. Terenin, Sov. Phys. Doklady 6, 490(1961)
    [9] A. Terenin, F. Vilessov, Adv. Photochem. 2, 385(1964).
    [10] D. Villarejo, R. R. Herm, M. G. Inghram, J. Chem. Phys. 46, 4495(1967).
    [11] W. B. Peatman, T. B. Borne, E. W. Schlag, Chem. Phys. Lett. 3, 492(1969).
    [12] T. Baer, W. B. Peatman, E. W. Schlag, Chem. Phys. Lett. 4, 243(1969).
    [13] R. Spohr, R. M. Guyon, W. A. Chupka, H. Berkowitz, Rev. Sci. Instrum. 42, 1872(1971).
    [14] R. M. Guyon, R. Spohr, W. A. Chupka, H. Berkowitz, J. Chem. Phys. 65, 1650(1976).
    [15] K. Muller-Dethlefs, M. Sander, E. W. Schlag, Chem. Phys. Lett. 112, 291(1984).
    [16] K. Muller-Dethlefs, O. Dopfer, T. G. Wright, Chem. Rev. 94, 1845(1994).
    [17] K. Müller-Dethlefs, E. W. Schlag, Annu. Rev. Phys. Chem. 42, 109(1991).
    [18] I. Fischer, R. Lindner, K. Müller-Dethlefs, J. Chem. Soc. Faraday. Trans. 90, 2425(1994).
    [19] R. Lindner, H. Sekiya, B. Beyl, K. Müller-Dethlefs, Angew. Chem. Int. Ed. Engl. 32, 603 (1993).
    [20] R. Lindner, H. Sekiya, B. Beyl, K. Müller-Dethlefs, Angew. Chem. 105, 1384(1993).
    [21] R. Lindner, H. Sekiya, B. Beyl, K. Müller-Dethlefs, ibid. 105, 631 (1993).
    [22] K. Watanabe, J. Chem. Phys. 22, 1564(1954).
    [23] S. C. Kuo, Z. Y. Zhang, S. K. Ross, R. B. Klemm, R. D. Johnson, P. S. Monks, R. P. Thorn, and L. J. Stief, J. Phys. Chem. A 101, 4035(1997).
    [24] J. E. Braun, Th. Mehnert, and H. J. Neusser, Int. J. Mass Spectrom. 203, 1(2002).
    [25] Langchi Zhu and Philip Johnson. J. Chem. Phys. 94, 5769(1991).
    [26] H. Krause, H. J. Neusser, J. Chem. Phys. 97, 5923(1992).
    [27] E. W. Schlag,张冰译,《零动能光谱学》,北京:化学工业出版社。
    [28] H. S. W. Massey, in Negative Ions (Cambridge University, London,1976).
    [29] V. H. Dibeler and J. A. Walker, J. Opt. Soc. Am. 57, 1007(1967).
    [30] P. M. Dehmer and W. A. Chupka, J. Chern. Phys. 62, 4525(1975).
    [31] H. Oertel, H. Schenk, and H. Baumgiirtel, Chern. Phys. 46, 251(1980).
    [32] J. Berkowitz, W. A. Chupka, and T. A. Walter, J. Chem. Phys. 50, 1497(1969).
    [33] M. Krauss, J. A. Walker, and V. H. Dibeler, J. Res. of Natl. Bur. Stand. Sect. A 72, 281 (1968).
    [34] Arthru G. Suits, John W. Hepburn, Annu. Rev. Phys. Chem. 57, 431(2006).
    [35] W. A. Chupka, J. Berkowitz, J. Chem. Phys. 47, 2921(1967).
    [36] J. Berkowitz, W. A. Chupka, P. M. Guyon, J. H. Holloway, R. Spohr, J. Phys. Chem. 75, 1461 (1971).
    [37] W. A. Chupka, P. M. Dehmer, W. T. Jivery, J. Chem. Phys. 63, 3929(1975).
    [38] A. H. Kung, R. H. Page, R. J. Larkin, Y. R. Shen, Y. T. Lee, Phys. Rev. Lett. 56, 328(1986).
    [39] K. Mitsuke, S. Suzuki, T. Imamura, I. Koyano, J. Chem. Phys. 92, 6556(1990).
    [40] K. Mitsuke, S. Suzuki, T. Imamura, I. Koyano, J. Chem. Phys. 93, 1710(1990).
    [41] K. Mitsuke, S. Suzuki, T. Imamura, I. Koyano, J. Chem. Phys. 93, 8717(1990).
    [42] K. Mitsuke, S. Suzuki, T. Imamura, I. Koyano, J. Chem. Phys. 94, 6003(1991).
    [43] K. Mitsuke, S. Suzuki, T. Imamura, I. Koyano, J. Chem. Phys. 95, 2398(1991).
    [44] S. Suzuki, K. Mitsuke, T. Imamura, I. Koyano, J. Chem. Phys. 96, 7500(1992).
    [45] K. Mitsuke, S. Suzuki, T. Imamura, I. Koyano, Org. Mass Spectrosc. 28, 335.
    [46] Y. Hikosaka, J. H. D. Eland, Rapid Commun. Mass Spectrom. 14, 2305(2000).
    [47] D. W. Chandler, P. L. Houston, J. Chem. Phys. 6, 79(1987).
    [48] A . T. J. Eppink, D. H. Parker, Rev. Sci. Instrum. 68, 3477(1997).
    [49] Yu LH, Babzien M, Ben-Zvi I, DiMauro LF, Doyuran A, et al., Science 289, 932(2000).
    [50] Yu L. H., DiMauro L., Doyuran A., Graves W. S., Johnson E. D., et al.. Phys. Rev. Lett. 91, 074801(2003).
    [51] Ahmed M., Peterka D. S., Regan P., Liu X. H., Suits A. G., Chem. Phys. Lett. 339, 203 (2001).
    [52] J. Li, Y. S. Hao, J. Yang, C. Zhou and Y. Mo, J. Chem. Phys. 127, 104307(2007).
    [53] S. M. Gao and Y. X. Mo, J. Phys. Chem. A 115, 1781(2011).
    [54] Y. Hao, C. Zhou, Y. Mo, J. Phys. Chem. A 109, 5832(2005).
    [55] C. Zhou, Y. Mo, J. Chem. Phys. 129, 064312(2008).
    [56] K. Liu, D. Song, F. A. Kong, J. Li, Y. Mo, J. Phys. Chem. A 114, 9999(2010).
    [57] Y. Hao, C. Zhou, Y. Mo, J. Phys. Chem. A 111, 10887(2007).
    [58] C. Zhou, Y. Mo, J. Phys. Chem. A 112, 8263(2008).
    [59] Y. Hao, C. Zhou, Y. Mo, J. Phys. Chem. A, 113, 2294(2009).
    [60] D. Song, K. Liu, F. A. Kong, J. Li, Y. X. Mo, J. Phys. Chem. A 113, 4919(2009).
    [61]张卫华,莫宇翔,李家明,分子超激发态结构的理论研究: F2离子对解离效率谱研究,《物理》2006年第5期
    [62] K. KOllmann, J. Chem. Phys., 63, 1(1975).
    [63] A. Larson, J. B. Roos, M. Stenrup, and A. E. Orel, Journal of Physics: Conference Series, 88, 012065(2007).
    [64] W. Zong, G. H. Dunn, N. Djuric, M. Larsson, C. H. Greene, A. A. Khalili, A. Neau, A. M. Derkatch, L. Vikor, W. Shi, A. Le Padellec, S. Rosén, H. Danared, and M. af Ugglas, Phys. Rev. Lett. 83, 951(1999).
    [65] J. D. D. Martin and J. W. Hepburn, Phys. Rev. Lett. 79, 3154(1997).
    [66] K. Mistuke, H. Hottori and H. Yoshita, J. Chem. Phys. 99, 6642(1993).
    [67] M. J. Simpson, R. P. Tuckett, K. F. Dunn, C. A. Hunniford and C. J. Latimer, J. Chem. Phys. 130, 194302(2009).
    [68] M. J. Simpson and R. P. Tuckett, J. Phys. Chem. A 114, 8043(2010).
    [69]徐光宪,黎乐民.量子化学基本原理和从头计算法.第一版.北京:科学出版社,2001.1.502.
    [70] P. O. Lowdin, Adv. Chem. Phys. 2, 207(1959).
    [71] E. A. Hylleraas, Z. Physik 48, 469(1928).
    [72] M. J. Seaton, Proc. Phys. Soc. 88, 801(1996).
    [73] J. P.康纳德著;詹明生;王瑾译.高激发原子.第一版.北京:科学出版社,2003.1
    [74] J. Berkowitz, in VUV and Soft X-Ray Photoionization, Ed. U. Becker and D. A. Shirley. (Plenum Press, New York, 1996) p263.
    [75] J. Berkowitz, Photoabsorption, Photoionization, and Photoelectron Spectroscopy (Academic Press, London, 1979), p14.
    [76] Q. Feng, Y. F. Xu, J. D. Sun, S. X. Tian, X. B. Shan, F. Y. Liu, and L. S. Sheng, Chin. Phys. Lett. 26, 103401(2009).
    [77] J. H. Eland, R. Frey, A. Kuestler, H. Schulte, and B. brehm, Int. J. Mass SpectromIon Phys. 22, 155(1976).
    [78] T. Munakata and T. Kasuya, Chen. Phys. Lett. 154, 604(1989)。
    [79] K. P. Lawley and R. J. Donovan, J. Chem. Soc., Faraday Transactions 89, 1885(1993).
    [80] M. J. Simpson, PH.D. Thesis, School Of Chemistry University Of Birmingham, UK, 2010.
    [81] A. G. Suits and J. W. Hepburn, Annu. Rev. Phys. Chem. 57, 431(2006).
    [82] J. C. Traeger and R. G. McLoughlin, J. Am. Chem. Soc. 103, 3647(1981).
    [83]冯强,中国科学技术大学硕士学位论文, (2010).
    [1] F. R. Elder, A. M. Gurewitsch, R. VLallgmuir and H. D. Pollack,Phys. Rev. 71, 829(1947).
    [2] K. Codling, P. Madden, J. Appl. Phys. 36, 380(1965).
    [3] T. Sagawa and Y. Iguchi, J. Phys. Soe. Japan 21, 258(1966).
    [4] R. Haenscl and C. Kunz, Z. Angew. Phys. 23, 276(1967).
    [5] H. Winik and S. Doniach, Synchrotron Radiation Research. (Plenum Press, 1980).
    [6] L. M. Zhang and Y. W. Zhang, Development of Physics(Chinese) 12, 198(1992).
    [7] X. Ju, C. S. Shi and X. W. Tang,Development of Physics(Chinese) 12, 226(1992).
    [8] X. X. Zhang and Y. A. Wang, Development of Physics(Chinese) 12, 211(1992).
    [9] Y. P. Chert,Analytical Chemistry(Chinese) 18, 974(1990).
    [10] A. A. Marmkowiczand, R. C. VGrieken, Anal. Cbem. 60, 28(1988).
    [11] R. P. Madden and K. Codling, Phys. Rev. Lett. 10, 516(1963).
    [12] J. W. Cooper, U. Fano and F. Prats, Phys. Rev. Lett. 10, 518(1963).
    [13] L. C. Lee, R. W. Carlson,D. L. Jud and M. Ogawa, J. Quant. Spectrosc. Radiat. Transfer 13,1023(1973).
    [14] I. H. Munro and N. Schwentrer, Nucl. Instrum. Methods 208, 819(1983).
    [15] C. T. Chen, Nucl. Instrum. Methods A 256, 595(1987).
    [16] M. Domke, T. Mande, A. Puschmann, C. Xue, D. A. Shirley and G. Kaindl, Rev. Sci. Instrum. 63, 80(1992).
    [17] K. Maeda, K. Ueda, K. Ito, J. Phys. B: At. Mol. Opt. Phys. 26, 1541(1993).
    [18] C. W. Hsu, K. T. Lu, M. Evans, Y. J. Chen, C. Y. Ng, P. Heimarm, J. Chem. Phys. 105, 3950(1996).
    [19] P. M. Dehmer, R. J. Miller, W. A. Chupka, J. Chem. Phys. 80, 1030(1984).
    [20] E. W. Schlag Time-of-Flight Mass Spectrometry and Its Applications. 1994; PP. iX.
    [21] B. A. Mamyrin, Int. J. Mass Spectrom. 206, 251(2001).
    [22] X. B. Shan, Y. W. Zhang and L. S. Sheng, J. At. Mol. Phys. 22, 414(2005).
    [23] Q. Feng, S. X. Tian, Y. J. Zhao, F. Y. Liu, X. B. Shan and L. S. Sheng, Chin. Phys. Lett. 26, 053402(2009).
    [24] Q. Feng, Y. F. Xu, J. D. Sun, S. X. Tian, F. Y. Liu, X. B. Shan and L. S. Sheng, Chin. Phys. Lett. 26, 103401(2009).
    [25] K. Mistuke, S. Suzuki, T. Imamura and I. Koyana, J. Chem. Phys. 93, 1710(1990).
    [26]冯强,中国科学技术大学硕士学位论文, (2010).
    [27] Y. S. Hao, C. Zhou, Y. X. Mo, J. Phys. Chem. A. 109, 5832(2005).
    [28] J. D. D. Martin and J. W. Hepburn, Phys. Rev. Lett. 79, 3154(1997).
    [29] S. Zhang, Y. Wang, Z. Z. Cao, B. Zhang, S. S. Wang, R. H. Kong, Y. J. Zhao, X. B. Shan, and L. S. Sheng, Rev. Sci. Instrum. 78, 043104(2007).
    [30] E. W. Schlag,张冰译,《零动能光谱学》,北京:化学工业出版社。
    [1] M. L. Aucott, A. McCulloch, T. E. Graedel, G. Kleiman, P. Migdeley, Y. F. Li, J. Geophys. Res. D 104, 8405(1999).
    [2] M. A. K. Khalil, R. M. Moore, D. B. Harper, J. M. Lobert, D. J. Erickson, V. Koropalov, W. T. Sturges, W.C. Keene, J. Geophys. Res. 104, 8333(1999).
    [3] P. C. Simon, D. Gillotay, N. Vanlaethem-Meuree, J. Wisemberg, J. Atmos. Chem. 7, 107(1988).
    [4] S. O’Doherty, P. G. Simmonds, D. M. Cunnold, H. J. Wang, G. A. Sturrock, P. J. Fraser, D. Ryall, R. G. Derwent, R. F. Weiss, P. Salameh, B. R. Miller, R. G. Prinn, J. Geophys. Res. 106 20429(2001).
    [5] X. F. Yang, P. Felder and J. R. Huber, Chem. Phys. 189, 127(1994).
    [6] L. C. Lee and M. Suto, Chem. Phys. 114, 423(1987).
    [7] S. Denifl, A. Mauracher, P. Sulzer, A. Bacher, T. D. M?rk, P. Scheier, Int. J. Mass Spectrom. 265, 139(2007).
    [8] A. W. Potts, H. J. Lempka, D. G. Streets and W. C. Price, Phil. Trans. Rol. Soc. London, Ser. A 59, 268(1970).
    [9] W. Von Niessen, L. Asbrink and G. Bieri, J. Electron Spectrosc. Relat Phenomen., 26, 173(1982).
    [10] D. P. Seccombe, R. P. Tuckett, H. Baumg?rtel and H. W. Jochims, Phys. Chem. Chem. Phys., 1, 773(1999).
    [11] D. P. Seccombe, R. Y. L. Chim, G. K. Jarvis and R. P. Tuckett, Phys. Chem. Chem. Phys. 2, 769(2000).
    [12] S. Werner, B. P. Tsai, T. Baer, J. Chem. Phys. 60, 3650(1974).
    [13] J. Berkowitz, in VUV and Soft-Ray Photoionization, edited by U. Becker and D. A. Shirley (Plenum, New York, 1996), p. 263.
    [14] M. J. Simpson, R. P. Tuckett, K. F. Dunn, C. A. Hunniford and C. J. Latimer, J. Chem. Phys. 130, 194302(2009).
    [15] M. J. Simpson and R. P. Tuckett, J. Phys. Chem. A 114, 8043(2010).
    [16] J. C. Traeger and R. G. McLoughlin, J. Am. Chem. Soc. 103, 3647(1981).
    [17] M. W. Chase, J. Phys. Chem. Ref. Data Monogr. 9, (1998)
    [18] S. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Lerin and W. G. Mallard, J. Phys. Chem. Ref. Data Suppl. 17, 1(1988).
    [19] A. J. Yencha,; A. Hopkirk, A. Hiraya,; R. J. Donovan,; J. G. Goode, R. R. J. Maier, G. C. Kingand A. Kvaran, J. Phys. Chem. 99, 7231(1995).
    [20] M. J. Weiss, G. M. Lawrence and R. A. Young, J. Chem. Phys. 52, 2867(1970).
    [21] K. H. Bowen, G. W. Liesegang, R. A. Sanders and D. W. Herschbach, J. Phys. Chem. 87, 557(1983).
    [22] R. L. Schwartz, G. E. Davico, T. M. Ramond, and W. C. Lineberger, J. Phys. Chem. A 103, 8213(1999).
    [23] C. J. Reid, Chem. Phys. 210, 501(1996).
    [24] M. K. Gilles, K. M. Ervin, J. Ho and W.C. Lineberger, J. Phys. Chem. 96, 1130(1992).
    [25] M. E. Jacox, J. Phys. Chem. Ref. Data Monogr. 3, (1994).
    [26] M. Tsuji, T. Mizuguchi, K. Shinohara and Y. Nishimura, Can. J. Phys. 61, 838(1983).
    [27] J. D. D. Martin and J. W. Hepburn, J. Chem. Phys. 109, 8139(1998).
    [28] A. M. Grisogono, R. Pascual, W. Von Nissen, E. Weigold, Chem. Phys. 135, 317(1989).
    [29] Jadrny, R.; Karlsson, L.; Mattsson, L.; Siegbahn, K. Phys. Scr. 16, 235(1977).
    [30] Shimanouchi, T. Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1-160.
    [31] W. Fuβ, S. Weizbauer, Ber. Bunsenges. Phys. Chem. 99, 289(1995).
    [32] A. Ruoff, H. Bürger, Spectrochim. Acta A 26, 989(1970).
    [33] M. Tsuji, T. Mizuguchi, K. Shinohara, Y. Nishimura, Can. J. Phys. 61, 838(1983).
    [1] K. K. Iricura, M. A. Ali, Y. K. Kim, Int. J. Mass. Spectrom. 222, 189 (2003).
    [2] S. F. Zhang, G. L. Su, Acta Phys. Sin. 54, 1552 (2005) (in chinese).
    [3] M. J. Moiina, F. S. Rowland, Nature 249, 810 (1974).
    [4] E. S. Rowland, M. J. Molina, Rev. Geophys. Space Phys. 13, 1 (1975).
    [5] J. Berkowitz, in VUV and Soft-Ray Photoionization, edited by U. Becker and D. A. Shirley (Plenum, New York, 1996), p. 263.
    [6] A. G. Suits and J. W. Hepburn, Annu. Rev. Phys. Chem. 57, 431 (2006).
    [7] S. W. Scully, J. R. A. Mackie, R. Browning, K. F. Dunn, and C. J. Latimer, Phys. Rev. A 70, 042707 (2004).
    [8] K. Mistuke, H. Hottori, and H. Yoshita, J. Chem. Phys. 99, 6642(1993).
    [9]S. Suzuki, K. Mistuke, T. Imamura, and I. Koyano, J. Chem. Phys. 96, 7500(1992).
    [10]M. J. Simpson, R. P. Tuckett, K. F. Dunn, C. A. Hunniford, and C. J. Latimer, J. Chem. Phys. 130, 194302(2009).
    [11]D. A. Shaw, D. M. P. Holland, and I. C. Walker, J. Phys. B 39, 3549(2006).
    [12]S. X. Tian, Y. F. Xu, Y. F. Wang, Q. Feng, L. L. Chen, J. D. Sun, F. Y. Liu, X. B. Shan, and L. S. Sheng, Chem. Phys. Lett. 496, 254(2010).
    [13]H. Hotop, M. W. Ruf, and I. I. Fabrikant, Phys. Scri. T110, 22(2004).
    [14] W. A. Chupka, P. M. Dehmer, and W. T. Jivery, J. Chem. Phys. 63, 3929(1975).
    [15] P. M.Dehmer and W. A. Chupka, J. Chem. Phys. 62, 4525 (1975).
    [16] M. J. Molina and F. S. Rowland, Rev. Geophys. Space 13, I(1975).
    [17] C. R. Zobel and A. B. F. Duncan, J. Am. Chem. Soc. 77, 2611(1955).
    [18] J. Doucet, P. Sauvageau, and C. Sandorfy, J. Chem. Phys. 58, 3708(1973).
    [19] T. Ibuki, A. Hiraya, and K. Shobatake, J.Chem.Phys. 90, 6290(1989).
    [20] D. P. Seccombe, R. Y. L. Chim, R. P. Tuckett, H. W. Jochims, and H. Baumgartel, J. Chem. Phys. 114, 4058(2001).
    [21] P. Lim?o Vieira, S. Eden, P. A. Kendall, N. J. Mason, and S. V. Hoffmann, Chem. Phys. Lett. 364, 535(2002).
    [22] D. P. Seccombe, R. P. Tuckett, and B. O. Fisher, J. Chem. Phys. 114, 4074(2001).
    [23] T. Cvita?, H. Güsten, and L. Klasinc, J. Chem. Phys. 67, 2687(1977).
    [24] T. Pradeep and D. A. Shirley, J. Electron Spectrosc. Relat Phenomen. 1993, 66, 125(1993).
    [25] X. shan, X. J. chen, L. X. Zhou, Z. J. Li, T. liu, X. X. Xue, and K. Z. Xu, J. Chem. Phys. 125, 154307(2006).
    [26] H. Schenk and H. Oertel, H. Baumg?rtel, Ber. Bunsenges. Phys. Chem. 83, 683(1979).
    [27] Q. Feng, S. X. Tian, Y. J. Zhao, F. Y. Liu, X. B. Shan, and L. S. Sheng, Chin. Phys. Lett. 26, 053402(2009).
    [28] L. L. Chen, Y. F. Xu, Q. Feng, S. X. Tian, F. Y. Liu, X. B. Shan, and L. S. Sheng, Phys. Chem. Chem. Phys. J. Phys. Chem. A 115, 4248(2011).
    [29] N. J. Rogers, M. J. Simpson, R. P. Tuckett, K. F. Dunn, and C. J. Latimer, Phys. Chem. Chem. Phys. 12, 10971(2010).
    [30] J. C. Traeger and R. G. McLoughlin, J. Am. Chem. Soc. 103, 3647 (1981).
    [31] M. W. Chase, J. Phys. Chem. Ref. Data Monogr. 9 (1998).
    [32] S. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Lerin, and W. G. Mallard, J. Phys. Chem. Ref. Data Suppl. 17, 1(1988).
    [33] H. Van Lonkhuyzen and C. A. De Lange, Chem. Phys. 89, 313(1984).
    [34] R. L. DeKock, B. R. Higginson, D. R. Lloyd, A. Breeze, D. W. J. Cruickshank, and D. R. Armstrong, Mol. Phys. 24, 1059(1972).
    [35] A. J. Yencha, A. Hopkirk, A. Hiraya, R. J. Donovan, J. G. Goode, R. R. J. Maier, G. C. King, and A. Kvaran, J. Phys. Chem. 99, 7231(1995).
    [36] C. F. Rodriquez and A. C. Hopkinson, J. Phys. Chem. 97, 849(1993).
    [37] M. E. Jacox, J. Phys. Chem. Ref. Data Monogr. 3 (1994).
    [38] M. Tsuji, T. Mizuguchi, K. Shinohara, and Y. Nishimura, Can. J. Phys. 61, 838(1983).
    [39] L. A. Curtiss,; P. C. Redfern, K. Raghavachari, V. Rassolov, and J. A. Pople, J. Chem. Phys. 110, 4703(1999).
    [40] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, (2003).
    [41] B. Sierra, R. Martínez, and F. Casta?o, J. Phys. B: At. Mol. Opt. Phys. 37, 295(2004).
    [42] A. W. Potts, I. Novak, F. Quinn, G. V. Marr, B. Dobson, I. H. Hillier, J. B. West, J. Phys. B: At. Mo1. Opt. Phys. 18, 3177(1985).
    [43] G. Cooper, W. Z. Zhang, C. E. Brion, Chem. Phys. 145, 117(1990).
    [1] M. J. Molina and F. S. Rowland, Rev. Geophys. Space 13, 1(1975).
    [2] J. Doucet, P.Sauvageau and C. Sandorfy, J. Chem. Phys. 58, 3708(1973).
    [3] F. T. Chau and C. A. McDowell, J. Electron Spectrosc. Relat. Phenom. 6, 357(1975).
    [4] R. Jadrny, L. Karlsson, L. Mattsson and Siegbahn, Phys. Script. 16, 235(1977).
    [5] T. Cvita?, H. Güsten and L. Klasinc, J. Chem. Phys. 67, 2687(1977).
    [6] R. Gilbert, P. Sauvageau and C. Sandorfy, J. Chem. Phys. 60, 4820(1974).
    [7] G. C. King and J. W. McConkey, J. Phys. B, 11, 1861(1978).
    [8] T. Ibuki, A.Hiraya and K. Shobatake, J. Chem. Phys. 90, 6290(1989).
    [9] D. P. Seccombe, R. R.Tuckett, H. Baumg?rtel and H. W. Jochims, Phys. Chem. Chem. Phys. 1, 773(1999).
    [10] H. W. Jochims, W. Lohr and H. Baumg?rtel, Ber. Bunsen-Ges. Phys. Chem. 80, 130(1976).
    [11] H. Schenk, H. Oertel and H. Baumg?rtel, Ber. Bunsen-Ges. Phys. Chem. 83, 683(1979).
    [12] J. M. Ajello, W. T. Jr. Huntress and P. Rayermann, J. Chem. Phys. 64, 4746(1976).
    [13] W. Kischlat and H. Morgner, J. Electron Spectrosc. Relat. Phenom. 35, 273(1984).
    [14] D. P. Seccombe, R. Y. L. Chim, G. K. Jarvis and R. R. Tuckett, Phys. Chem. Chem. Phys. 2, 769(2000).
    [15] J. M. Ajello and P. Rayermann, J. Chem. Phys. 71, 1512(1979).
    [16] S. Suzuki, K. Mistuke, T. Imamura and I. Koyano, J. Chem. Phys. 96, 7500(1992). [17)] M. J. Simpson and R. P. Tuckett, J. Phys. Chem. A 114, 8043(2010).
    [18] S. X. Tian, Y. F.Xu, Y. F. Wang, Q. Feng, L. L. Chen, J. D. Sun, F. Y. Liu, X. B. Shan and L. S. Sheng, Chem. Phys. Lett. 496, 254(2010).
    [19] Q. Feng, S. X. Tian, Y. J. Zhao, F. Y. Liu, X. B. Shan and L. S. Sheng, Chin. Phys. Lett. 26, 053402(2009).
    [20] L. L. Chen, Y. F. Xu, Q. Feng, S. X. Tian, F. Y. Liu, X. B. Shan and L. S. Sheng, J. Phys. Chem. A 115, 4248(2011).
    [21] J. C. Traeger and R. G. McLoughlin, J. Am. Chem. Soc. 103, 3647(1981).
    [22] M. W. Chase, J. Phys. Chem. Ref. Data Monogr. 9, (1998)
    [23] S. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Lerin and W. G. Mallard, J. Phys. Chem. Ref. Data Suppl. 17, 1(1988).
    [24] The enthalpies of formation for FCl+ and Cl2+ were estimated indirectly using the IPa values of FCl (12.66±0.01 eV, R. L. DeKock, B. R. Higginson, D. R. Lloyd, A. Breeze, D. W. J. Cruickshank, D. R. Armstrong, Mol. Phys. 24, 1059 (1972)) and Cl2 (11.4864±0.00012 eV, J.Li, Y. S. Hao, J. Yang, C. Zhou and Y. X. Mo, J. Chem. Phys. 127, 104307 (2007).), and the 0 KΔfHo values of FCl and Cl2 (from ref. 22).
    [25] C. F. Rodriquez and A. C. Hopkinson, J. Phys. Chem. 97, 849(1993).
    [26] M. E. Jacox, J. Phys. Chem. Ref. Data Monogr. 3, (1994).
    [27] M. Tsuji, T. Mizuguchi, K. Shinohara and Y. Nishimura, Can. J. Phys. 61, 838(1983).
    [28] The IPa of Cl2 ((11.4864±0.00012 eV) and EA of Cl (3.6144 eV, J. D. D. Martin and J. W. Hepburn, J. Chem. Phys. 109, 8139(1998)) were also used.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700