不同厌氧环境中四氯乙烯生物降解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
四氯乙烯(PCE)是一种广泛用于干洗和脱脂的有机溶剂,是地下水中常见的污染物。关于PCE的处理引起了广泛关注,目前有物理、化学和生物三种处理方法。生物法最大的优点是可以实现无害化,无二次污染,处理成本低,是一种较经济的污染处理措施。PCE只能在厌氧条件下发生共代谢降解,本文主要对较弱的还原环境,包括硫酸盐还原、铁还原、反硝化、混和电子受体和天然地下水环境的PCE脱氯性能进行研究。
     本实验采用的是室内培养微生物的方式,当系统中的微生物活性较高时,以醋酸为共代谢基质,进行驯化实验,为了消除地下水中硝酸根和硫酸根的干扰,同时以实验配水和天然地下水为基础培养液,加入相应的电子受体营造不同的还原环境。
     当所营造的还原环境已经形成,而且微生物可以适应浓度为120.0μg/L的PCE之后,对PCE在不同厌氧条件下的降解情况进行研究。研究结果表明,铁还原环境比天然地下水环境的PCE脱氯效果要好,到实验的第13天,去除率分别为90.00%以上和84.71%。在这两个环境中,可以使PCE很快转化为三氯乙烯(TCE),并可以进一步转化为二氯乙烯(DCEs)。根据实验结果进行拟合,PCE的降解和TCE的产生均符合准一级反应动力学方程。
     在混和电子受体环境、硫酸盐还原环境和反硝化环境,PCE的去除率主要都以挥发为主,降解只占很小的比例,而且最终的降解产物只有TCE。根据实验第13天PCE的去除率来衡量其它各个环境的PCE降解性能,反硝化环境PCE的降解能力最差;混和电子受体环境次之;硫酸盐还原环境最好。相比较而言,硫酸盐初始浓度低的微环境比硫酸盐初始浓度高的微环境,PCE的降解效果好一些。
     在以实验配水营造的铁还原环境PCE的降解性能最好,选择该环境作PCE的影响因素分析,结果表明,PCE在脱氯过程中受温度、pH值、电子受体的影响。温度为20℃时脱氯能力较强,半衰期为2.78天,温度为12℃时PCE仍可以脱氯,半衰期为6.45天;到实验结束时,初始pH值在6.00~8.00之间的微环境,PCE的去除率达到90.00%以上;pH值在5.00左右,铁还原作用较强烈,产生的Fe(Ⅱ)浓度为67.71mg/L,PCE的去除率为34.52%;而当pH值>9.00时,铁还原作用不明显,产生的Fe(Ⅱ)浓度为4.52mg/L,而且PCE的去除率不足20.00%。加入硝酸盐和硫酸盐后,会使PCE的脱氯受到抑制,而且抑制作用与加入的硝酸盐和硫酸盐浓度成正比。实验结束时,未加N__3~-的微环境中,PCE的反应速率常数是NO_3~-浓度为500.0mg/L的环境中的5.12倍;未加入SO_4~(2-)的微环境中,PCE去除率达到了100.0%,而在SO_4~(2-)初始浓度为100.0mg/L的微环境中,PCE的去除率仅为47.79%。
Tatrachloroethylene(PCE), which is a chlorinated aliphatic compound essentially used as a degreasing and dry-cleaning solvent, has become a major contaminant of soil and groundwater due to leakages from storage tanks and improper handling and disposal. The suspicion that this contaminant is a carcinogen led to an urgent necessity to efficiently remove this compound from contaminated sites. So far, physical, chemical and biological techniques are three PCE removal methods, and the most cost-efficient way to remove PCE is biological method, that is biodegradation. The bioremediation technique has a great potential to replace physical and chemical techniques, which are processes that do not destroy the harmful contaminant, but instead transfer it from one part of the environment to another.PCE does not appear to be biodegradable under aerobic conditions, but it can be reductively dechlorinated into trichloroethylene(TCE), dichloroethylene(DCE) isomers, vinyl chloride(VC) and/or ethene under anaerobic conditions. Since PCE can be biodegraded only in anaerobic conditions, the research aims at dechlorination efficiency in different redox environments, including denitrifying, iron reducing, sulfate reducing, mixing electron acceptors and natural groundwater condition.Microorganisms were cultured in the lab;anaerobic sewage was inoculated to mixture of groundwater and soil, which was from a garden. When there was enough microorganism population, acclimation experiment was carried out with acetate acid as co metabolism substrate, and different electron acceptors were added to create corresponding reducing environment. When the reducing environments have been created, and microorganism can adapt target contaminant of 120.0μg/L, the degradation experiment was carried out. The best environment for PCE dechlorination was chose to carry out effect factors experiment.According to the results, iron reducing environment is the best condition for PCE dechlorination, followed with natural groundwater condition. The degradation products are TCE and DCEs. It is difficult for PCE dechlorination in denitrifying, sulfate reducing, and mixing electron acceptors conditions, and the degradation product is TCE.The results showed that PCE was dechlorinated to TCE and DCEs in the presence of-ferric iron. The degradation rate of PCE is 0.2489d~(-1) and the half life was 2.78 days when the temperature is 20℃. Since the temperature in groundwater is about 12℃, the
    experiment was carried out in 12°C. The half life is 6.45 days, and the degradation rates 0.1073d'1 when the temperature is 12"C, which was lower than that in 20°C. The optimal pH and temperature during this experiment was 7 and 20 °C respectively in this experiment. When pH>9.00, extra anaerobic mix-culture consortia were added in the bottle, PCE dechlorination rate was still very slow, which shows that the microorganism can not adapt the environment. PCE dechlorination rate in microcosm with pH=5.00±0.1 was faster slightly than that with pH>9.00.Since nitrate is a strong oxidant and can form a high ORP in the microcosm, nitrate effects on PCE dechlorination was evaluated. Different initial nitrate concentrations were added into the microcosms. When nitrate concentration was 5.00mg/L, degradation rate of PCE was 0.1899d'', while nitrate concentration was 500.0mg/L, degradation rate of PCE was 0.0486d'1, which shows that the PCE dechlorination rates are decreased with increasing nitrate concentrations, which indicates that for PCE dechlorination bacteria the low ORP conditions are favorable. The removal efficiency of PCE is 100.0% in the environment without SO42", while the removal efficiency is 47.79% in the environment added SO42" with initial concentration of lOO.Omg/L.
引文
Adamson D.T., and Parkin G. F. Biortransformation of mixtures of chlorineated aliphatic hydrocarbons by an acetate-grown methanogenic enrichment culture[J]. Wat. Res.1999,33(6): 1482-1494
    Albrechtsen H.J., Heron G. and Christensen T.H. Limiting factors for microbial Fe(Ⅲ)-reducing in a landfill leachate polluted aquifer(Veien, Demmark)[J]. FEWS Microbiol. Ecol. 1995, 16(3):233
    Aulenta F. Majone M., and Verbo P. et al. Comeplete dechlorination of tetrarchloroethene to ethene in presence of methanogenesis and acetogenesis by an anaerobic sediment microcosm[J]. Biodegradation. 2002,13:411-424
    Aulenta F., Bianchi A., and Majone M. et al. Tandoi V. Assessment of natural or enhanced in situ bioremediation at a chlorinated solvent-contaminated aquifer in Italy: a microcosm study[J]. Environmental International. 2005,31: 185-190
    Aulenta F., Rossetti S., and Majone M. et al. Detection and quantitative estimation of Dehalococcoides spp. in a dechlorinating bioreactor by a combination of fluorescent in situ hybridization (FISH) and kinetic analysis[J]. Appl Microbiol Biotechnol. 2004,64:206-212
    Bagley D.M., and Gossett J.M. Tetrachloroethene transformation to trichloroethene and cis-dichloroethene by sulfate-reducing enrichment cultures[J]. Appl. Environ. Microbiol. 1990,56:2511-2516
    Bagley D.M., Laionde M., and Kaseros V. et al. Acclimation of anaerobic systems to biodegrade tetrachloroethene in the presence of carbon tetrachloride and chloroform[J]. Wat. Res. 2000,34(1):171-178
    Beeman R.E., and Bleckmann C.A. Sequential anaerobic-aerobic treatment of an aquifer contaminated by halogenated organics: field results[J]. Journal of Contaminant Hydrology. 2002, 57:147-159
    Blue J. E. and Srivastava R. Simulating trace and resident contaminant transport to investigate the reduced efficiency of a pump and treat operation[J]. Iahs Publication(International Association of Hydrological Sciences). 1998,250:537-543
    Boopathy R. Anaerobic biotransformation of carbon tetrarchloride under various electron acceptor conditions[J]. Bioresource Technology. 2002,84:69-73
    Botch T., Ambus P., and Laturnus F. et al. Biodegradation of chlorinated solvents in a water unsaturated topsoil[J]. Chemoshpere. 2003, 51: 143-152
    Bouwer E. J. and McCarty P.L. Transformation of 1- and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions[J]. Appl. Environ. Microbiol. 1983,45:1286-1294
    Bradley EM. and Chapelle F.H. Methane as a product of chloroethene biodegradation under methanogenic conditions[J]. Enriron. Sci. Technol. 1999,33:653-656
    Bradley P. M. Microbial degradation of chloroethenes in groundwater systems[J]. Hydrogeology Journal. 2000,8:104-111
    Cabirol N., Jacob F., and Perrier J. et al. Complete degradation of high concentrations of tetrachloroethylene by a methanogenic consortium in a fixed-bed reactor[J]. Journal of Biotechnology. 1998,62:133-141
    Carter S. R. and Jewell W.J. Biotransformation of tetrarchioroethylene by anaerobic attached-films at low temperatures[J]. Wat. Res. 1993,27:607-615
    Chang Y. C., Hatsu Masahiro., and Jung K. et al. Degradation of a variety of halogenated aliphatic compounds by an anaerobic mixed culture[J]. Journal of Fermentation and Bioengineering. 1998,86(4): 410-412
    Chang Y. C., Okeke B.C., and Hatsu M. et al. In vitro dehalogenation of tetrarchloroethylene (PCE) by cell-free extracts of Clostridium bifermentans DPH-1 [J]. Bioresource Technology. 2001,78:141-147
    Chapelle F. H. Identifying redox conditions that favor the natural attenuation of chlorinated ethenes in contaminated groundwater systems[C]. In: Symposium on Natural Attenuation of Chlorinated Organics in Groundwater. EPA/540/R-96/509. US EPA, Washington, DC. 1996:17-20
    De Bruin W. P., Kotterman M.J.J., and Posthumus M.A. et al. Complete biological reductive transformation of tetrachloroethene to ethane[J]. Appl Environ Microbiol. 1992,58(6), 1996-2000
    Devlin J. F., Katic D., and Barker J. F. In situ sequenced bioremediation of mixed contaminants in groundwater[J]. Journal of Contaminant Hydrology. 2004, 69:233-261
    Distefano T. D., Gossett J. M., and Zinder S. H. Reductive dechlorination of high concentrations of tetrachloroethene to ethene by an anaerobic enrichment culture in the absence of methanogenesis[J]. Appl. Environ Microbiol. 1991,57(8):2287-2292.
    Distefano T. D. The Effect of Tetrachloroethene on Biological Dechlorination of Vinyl Chloride: Potential Implication for Natural Bioattenuation[J]. Wat. Res. 1999,33(7):1688-1694
    Doong R. A. and Wu S.C. Substrate effects on the enhanced biotransformation of polychlorinated hydrocarbons under anaerobic condition[J]. Chemoshpere. 1995, 30(8): 1499-1511
    Doong R. A., Wu S. C. and Chen T.F. Anaerobic biotransformation of polychlorinated methane and ethene under various redox conditions[J]. Chemoshpere. 1996, 32(2):377-390
    Duhamel M., Wehr S.D., and Yu L. et al. Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene, trichloroethene, cis-dichloroethene and vinyl chloride[J]. Water Research. 2002,36:4193-4202
    Eisenbeis M, Bauer-Kreisel P. and Scholz-Muramatsu H. Studies on the dechlorination of tetrachloroethene to cis-1,2-dichloroethene by dehalospirillum multivorans in biofilms[J]. Wat Sci Tech. 1997,36(1): 191-198
    Fathepure B. Z. and Boyd S. A.. Dependence of tetrachloroethylene dechlorination on methanogenic substrate consumption by Methanosarcina sp. strain DCM[J]. Appl. Environ. Microbiol. 1988,54:2926-2980
    Fathepure B. Z. and Vogel T. M. Complete degradation of polychlorinated hydrocarbons by a two-stage biofilm reactor[J]. Appl. Environ. Microbiol. 1991,57:3418-3422
    Fathepure, B.Z. In situ bioremediation of chlorinated hydrocarbons under field aerobic-anaerobic environments[C]. In: Bioremediation of Chlorinated Solvents. Eds., R.E. Hinchee, A. Leeson, and L. Semprini. Battelle Press. Columbus. 1995,169-186
    Fay R. M. and Mumtaz M. M. Development of a priority list of chem..ical mixtures occurring at 1188 hazardous waste sites, using the HazDat Database[J]. Food and Chemistry Toxicology. 1996, 34(11-12):1163-1165
    Fennel D. E., Gossett J. M., and Zindler S. H. Comparison of butyric acid ethanol, lactic acid, and propionic acid as hydrogen donors for the reductive dechlorination of tetrarchloroethene[J]. Environ. Sci. Technol. 1997, 31:919-926
    Ferguson J. F. and Pietari J.M.H. Anaerobic transformations and bioremediation of chlorinated solvents[J]. Environmental Pollution. 2000,107:209-215
    Freedman D. L. and Gossett J. M.. Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions[J]. Appl Environ Microbiol. 1989,55:2144-2151
    Gerritse J. Renard V., and Pedro G.T.M. et al. Desulfitovacterium sp. Strain PCEI, and anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols[J]. Arch Microbiol. 1996,165:132-140
    Gerritse J., Drzyzga O., and Kloetstra G. et al. Influence of different electron donors and acceptors on dehalorespiration of tetrachloroethene by Desulfitobacterium frappieri TCEI[J]. Appl. Enviorn. Microbiol., 1999, 65(12):5212-5221
    Gillham R. W. and O'hannesin S. F. Enhanced degradation of halogenated aliphatics by zero-Valent iron[J]. Ground Water 1994,32(6):958-967
    Gossett J. M., and Zinder S.H. Microbiological aspects relevant to natural attenuation of chlorineated ethenes[C]. In: Preceedings of the symposium on natural attenuation of chlorinated organics in groundwater, Dallas, TX, EPA/540/R-96/509, U.S. EPA, Washington, DC. Sept. 1996:11-13
    Haley J. L., Hanson B., and Enfield C. et al. Evaluating the e.ectiveness of groundwater extraction systems[J]. Ground Water Monitoring and Review Winter. 1991,10:119-124
    Haston Z. C., and McCarty P.L. Chlorinated ethene half-velocity coefficients(Ks) for reductive dehalogenation[J]. Environ. Sci. Technol. 1999,33:223-226
    He J.Z. Complete reductive dechlorination of chloroethenes to ethene and isolation of Dehalococcoides sp. strain BAV1 [D].U.S.: Georgia Institute of Technology. 2003:11-78
    Hemond H. F., and Fechner-Levy E. J. Chemical fate and transport in the environment[C] In: 2nd ed. Academic Press. San Diego, CA,2000
    Hirl P. L. and Irvine R.L. Reductive dechlorination of perchloroethylene using anaerobic sequencing batch biofilm reactors(AnSBBR)[J]. Water Sci. Tchnol. 1997,35:49-56
    Holliger C. The anaerobic microbiology and biotreatment of chlorinated ethenes[J]. Environmental Biotechnology. 1995, 6:347-351
    Holliger C., and Schraa G. Physiological meaning and potential for application of reductive dechlorination by anaerobic bacteria[J]. FEMS Microbiology Reviews. 1994,15:297-305
    Holliger C, Scharr G and Alfons J.M.S et al. A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth[J]. Appl Environ Microbiol. 1993,59(9), 2991-2997
    Holliger C, Wohlfarth G, and Diekert G Reductive dechlorination in the energy metabolism of anaerobic bacteria[J]. FEMS Microbiology Reviews. 1999,22:383-398
    Isalou M. Sequential anaerobic-aerobic biodegradation of tetrachloroethene (PCE)[D]. Canada: University of Toronto. 1998:1-60, 118-129
    Kao C. M. and Lei S. E. Using a peat biobarrier to remediate PCE/TCE contaminated aquifers[JJ. Wat. Res. 2000,34(3):835-845
    Kao CM., Chen S.C., and Liu J.K. Development of a biobarrier for the remediation of PCE-contaminated aquifer[J]. Chemoshpere. 2001,43:1071-1078
    Kao CM., Chen Y.L., and Chen S.C. et al. Enhanced PCE dechlorination by biobarrier systems under different redox conditions[J]. Water Research. 2003,37:4885-4894
    Kim J.O. Gaseous TCE and PCE removal by an activated carbon biofilter[J]. Bioprocess Engineering. 1997, 16:331-337
    Kloos H. Trichloroethylene, tetrarchloroethylene, nitrates and other chemicals in well water in the Fresno-Clovis metropolistan area[J]. Archives of Environmental Health. 1997, 52(5):348-354
    Lalonde M. Acclimation of anaerobic systems to biodegrade chlorineated solvents[D]. Canada: University of Toronto. 1997: 21-76
    Lee T.H., Yoshimi M., and Ike M. et al. Characterization of an anaerobic soil enrichment capable of dechlorinating high concentrations of tetrarchloroetheylene[J]. Wat. Sci. Tech. 1997,36(6-7): 117-124
    Lin C.F. Biodegradation of selected homocyclic aromatic compounds and carbon tetrachloride under iron(III) reducing conditions[D]. U.S.: Johns Hopkins University. 2000:1-8
    Lomheim, L.S. Anaerobic biodegradation of high concentrations of perchloroethene (PCE) and 1,2-dichloroethane(1,2-DCA)[D]. Canada: University of Toronto. 2002:1-34
    Lovely D.R., Phillips E.J.P., and Lonergan D.J. Enzymatic versus nonenzymatic mechanicsms for Fe(III) reduction in aquatic sediments[J]. Environ Sci Technol. 1991,25:1062-1067
    Lovley D.R. Dissimilatory Fe and Mn reduction[J]. Microbiol Rev. 1991, 55:259-287
    Lowe S.E., Jain M.K., and Zeikus J.G Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, Salinity, or substrate[J]. Microbiol. Rev. 1993,57:451-509
    Luu Y-Su. Mechanisms of microbial iron(III) reduction for the degradation of organic pollutants. Canada: Canada: Queen's University. 2002:1-12
    Lyew D., Tartakovsky B., and Manuel M.F. et al. A microcosm test for potential mineralization of chlorinated compounds under coupled aerobic/anaerobic conditions[J]. Chemosphere. 2002,47:695-699
    Maym6-Gatell. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethane[J]. Science. 1997,276:1568-1571
    McCarty PL. An Overview of Anaerobic Transformation of Chlorinated Solvents[C]. In: Symposium
     on Natural Attenuation of Ground Water/EPA/600/R-94/162. 1994(Sep): 104-108
    McCormick M. L. Biotic and abiotic transformations of alkyl halides in iron reducing environments[D]. U.S.: the University of Michigan. 2002:1-15
    McDade J. Demonstration-scale analysis of anaerobic bioremediation of tetrachloroethene DNAPL source zone using bioaugmentation and electron donor delivery[D]. U.S.: Rice University. 2002:80-86
    McLaughlin J. K. and Blot W.J. A critical review of epidemiology studies of trichloroethylene and perchloroethylene and risk of renal-cell cancer[J]. Int Arch Occup Environ Health. 1997, 70:222-231
    Middeldorp P.J.M., Luijten M.L.G.C., and et al. Anaerobic microbial reductive dehahogenation of chlorinated ethanes[J]. Bioremediation Journal. 1999,3:151-168
    Miller E., Wohlfarth G., and Diekert G. Comparative studies on tetrachloroethene reductive dechlorination mediated by Desulfitobacterium sp. strain PCE-S[J]. Arch Microbiol. 1997,168:513-519
    Muftikian R, Fernando Q, and Korte N. A method for the rapid dechlorination of low molecular weight chlorinated hydrocarbons in water[J]. Water Res.1995,29:2434-2439.
    Mundt K.A., Birk T., and Burch M.T. Critical review of the epidemiological literature on occupational exposure to perchloroethylene and cancer[J], Int Arch Occup Environ Health. 2003,76:473-491
    Ndon N.J. and Randall A.A. Periodic aerated treatment and in-situ bioremediation strategies for polyhalogenated compounds[J]. Wat. Res. 1999, 33(11):2715-1720
    Parsons F., Barrio-Large G., and Rice R. Biotransformation of chlorinated organic solvents in static microcosms[J]. Environ. Toxicol. Chem. 1985,4:739-742
    Pavlostathis S.G., and Gupta S.K. Biodegradation of tetrarchloroethylene in upflow anaerobic sludge blanket reactor[J]. Bioresource Technology. 2000, 72:47-54
    Pietari J.M.H. Characterization of PCE dechlorinating cultures and isolation of a novel PCE to cis-1, 2-DCE halorespiring bacterium[D]. U.S.: University of Washington. 2002:1-25, 123-185
    Pontius F. W. An update of the federal drinking water regulations[J]. Journal of the American Water Works Association. 1995,87(2):48-58
    Prakash S. M., and Gupta S.K. Biodegradation of tetrachloroethylene in upflow anaerobic sludge blanket reactor[J]. Bioresource Technology. 2000, 72:47-54
    Rashid M. and Kaluarachchi J.J. Remediation of a TCE-Contaminated heterogeneous aquifer using pump and treat: model applicaitons and system limitations[C]. In: International Conference on measurements and modelling in Environmental Pollution, MMEP, Proceedings. Computational Mechanics Plub, Southampton, Engl. 1997,43-52
    Rashid M. Biodegradation of hydrocarbons using alternate electron acceptors: theoretical development and model applications[D].U.S.: Utah State University. 2001:1-45
    Reeter C., Gavaskar A., and Gupta N. et al. Permeable reactive wall remediation of chlorinated hydrocarbons in groundwater, NAS moffett field, Mountain Wiew, California[C]. In: After the Rain Has Fallen International Water Resources Engineering Conference-Proceedings. ASCE, Reston, VA, USA. 1998,153-158
    Reynolds G.W., Hoff J.T., and Gillham R.W. Sampling bias caused by materials used to monitor halocarbon in ground water[J]. Environmental Science and Technology. 1990,24(1):135-142
    Rifai H.S., Newell C.J., Miller R.N., Taffinder S., and Roundsaville M. Simulation of natural attenuation with multiple electron acceptors[C]. In: R.E.Hinchee, J.T. Wilson and D.C.Downey(Editors), Intrinsic Bioremediation. Battelle, Columbus, OH. 1995:53-58
    Sax N.I. Dangerous Properties of Industrial Materials. Six Edition, Van Nostrand Reinhold Company, Inc., New York, NY. 1984
    Sewell GW., and Gibson S.A. Stimulation of the reductive dechlorination of tetrachloroethene in anaerobic aquifer microcosms by the addition of toluene[J]. Environ. Sci. Technol. 1991,25:982-984
    Shim H., Ryoo D., Barbieri P., Wood T.K. Aerobic degradation of mixtures of tetrachloroethylene, trichloroethylene, dichloroethylenes, and vinyl chloride by toluene- o-xylene monooxygenase of Pseudomonas stutzeriOX I [J]. Appl Microbiol Biotechnol. 2001, 56:265-269
    Sun Y, Petersen J.N., Prabhakar T.P. and Hooker B.S. Modular computer model for simulating natural attenuation of chlorineated organics in saturated ground-water aquifers[C]. Proceedings of Symposium on Natural Atteunation of Chlorinated Organics in Ground Water. Dallas, TX, 1996:169
    Tartakovsky B., Miguez C.B., Petti L., Bourque D., Groleau D., and Guiot S.R. Tetrachloroethylene dechlorination using a consortium of coimmobilized methanogenic and methanotrophic bacteria[J]. Enzyme and Microbial Technology. 1998, 22:255-260
    Taylor P., Pennell K.D., Abriola L.M., Dane J.H. Surfactant enhanced recovery of tetrachloroethylene from a porous medium containing low permeability lenses 1. Experimental studies[J]. Journal of Contaminant Hydrology.2001, 48:325-350
    U.S. Department of Health & Human Services (DHHS) . Toxicological profile for Vinyl Chloride[M].
    U.S. Department of Health & Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry. 1997, 239
    U.S. Department of Health & Human Services ( DHHS ) . Toxicological profile for l,2-dichloroehenes[M]. TP-93/06, U.S. Department of Health & Human Services, Public Health
    Service, Agency for Toxic Substances and Disease Registry. 1994, 192
    Van Eekert M.H.A., Schroder J., and van Rhee A. et al. Constitutive dechlorination of chlorinated ethenes by a methanol degrading methanogenic consortium[J]. Bioresource Technology. 2001,77:163-170
    Villarante N.R., Armenante P.M., and Quibuyen T.A.O. et al. Dehalogenation of dichloroethene in a contaminated soil: fatty acids and alcohols as electron donors and an apparent requirement for tetrachloroethene[J]. Appl Microbiol Biotechnol. 2002,55:239-247
    Vogel T.M. and McCarty P.L. Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride and carbon dioxide under methanogenic conditions[J]. Appl.Environ. Microbiol. 1985,49:1080-1083
    Vogel T.M., Criddle C.S., and McCarty P.L. Transformation of halogenated aliphatic compounds[J]. Environ. Sci. Technol. 1987,21:722-736
    Wang L. Tetrachloroethene(PCE) and Trichloroethene(TCE) Biodegradation with Bioreactors[D]. U.S.:
     University of Missouri-Columbia. 2001:1-18, 28-49
    Westrick J.J., Mello J.W., and Thomas R. F. The groundwater survey[J]. Journal of the American Water Works Association. 1984, 76:52-63
    Widdowson M.A., Brauner J.S. and Waddil D.W. Sequential electron acceptor modeling for the assessment of intrinsic bioremediation[C].In: Proceedings of the Fourth International In Situ and On-Site Bioremediation Symposium. New Orleans, LA, 1997:35
    Wiedemeier T. H., Miller R. N., and Wilson J.T.et al. Significance of anaerobic processes for the intrinsic bioremediation of fuel hydrocarbons[C]. In: Proceedings of the Petroleum Hydorcarbons and Organic Chemicals in ground water: Prevention, Detection, and Remediation., Conference and exposition. Houston, TX. 1995:49-61.
    Witt M. E., Klecka G. M., and Lutz E. J. et al. Natural attenuation of chlorinated solvents at Area 6, Dover Air Force Base: groundwater biogeochemistry[J]. Contaminant Hydrologv. 2002,57:61-80
    World Health Organization (WHO). Environmental Health Criteria 31—Tetrachloroethylene. World Health Organization Geneva. 1984, 48
    World Health Organization (WHO). Environmental Health Criteria 50—Trichloroethylene. World Health Organization Geneva. 1985, 133
    Yeh C. K. J., Peng S. L., and Hsu I.Y. Co-surfactant of ethoxylated sorbitan ester and sorbitan monooleate for enhanced. ushing of tetrachloroethylene[J]. Chemosphere. 2002,49:421-430
    Yeh H. C, and Kastenberg W. E. Health Risk assessment of biodegradeable volatile organic chemicals: A case study of PCE, TCE, DCE and VC[J]. Journal of Hazardous Materials. 1991, 27:111-126
    Yu F., and Chou S. Contaminated site Remedial investingation and Feasibility Removal of Chlorinated Volatile Organic Compounds from Groundwater by Activated Carbon Fiber Adsorption[J]. Chemospere. 2000, 41:371-378
    Zhuang P. and Pavlostatbis S. G. Effect of temperature, pH and electron donor on the microbial reductive dechlorination of chloroalkenes[J]. Chemoshpere. 1995, 31 (6):3537-3548
    何小娟,汤鸣皋,李旭东,等.镍/铁和铜/铁双金属降解四氯乙烯的研究[J].环境化学,2003a,22(4):334-339
    何小娟,汤鸣皋,沈照理,等.Ni/Fe双金属对PCE脱氯影响因素研究[J].地球科学——中国地质大学学报,2003b,28(3):334-339
    洪义国,许玫英,郭俊等.细菌的Fe(Ⅲ)还原[J].微生物学报,2005,45(4):653-656
    黄园英,刘菲,汤鸣皋等.纳米镍/铁对四氯乙烯快速脱氯试验[J].岩矿测试,2005a,24(2):93-97
    黄园英.纳米镍/铁颗粒对水中挥发性氯代脂肪烃脱氯研究[D].北京:中国地质大学(北京),2005b:14-19
    贾建丽.石油污染土壤微生物学特性与生物修复效应研究[D].北京:清华大学,2005:47-93
    李惠娣,杨琦,尚海涛.甲醇为共代谢基质时四氯乙烯的厌氧生物降解[J].环境科学,2004,25(3):84-88
    李惠娣.四氯乙烯(PCE)的厌氧生物降解研究[D].北京:中国地质大学(北京),2004,43-44
    刘菲,汤鸣皋,何小娟.零价铁降解水中氯代烃的实验室研究[J].地球科学—中国地质大学学 报,2002,27(2):186-188
    刘永刚,刘菲,郑海涛等.顶空气相色谱法测定北京市地下水中的氯代烃[J].岩矿测试,2002,21(1):55-58.
    刘永泉.职业接触四氯乙烯作业工人血清甘油三酯和胆固醇含量的变化[J].中国药理学与毒理学杂志,1997,11(2):136
    卢晓霞,李广贺,张旭等.不同氧化还原条件下氯乙烯的微生物脱氯[J].环境科学,2002,23(2):29-33
    马光庭,Gottschalk G.厌氧菌降解四氯乙烯的研究[J].环境污染与防治,1996,18(2):1-5
    马溪平,李清华,马丽等编.厌氧微生物学与污水处理[M].北京:化学工业出版社,2005:40-49
    任南琪,马放,杨基先等编著.污染控制微生物学[M].哈尔滨:哈尔滨工业大学出版社,2004:69-163
    苏冰琴,李亚新.硫酸盐生物还原和重金属的去除[J].工业水处理,2005,25(9):1-4
    谭盈盈,郑平,姜辛.微生物作用下铁(Ⅲ)对有机污染物的氧化[J].浙江大学学报(农业与生命科学版),2002,28(3):350-354
    王国惠主编.环境工程微生物学[M].北京:化学工业出版社,2005:65-75
    王少坡,王淑莹,彭永臻等.常温内源反硝化脱氮过程中pH和ORP变化规律[J].环境污染治理技术与设备,2005,6(3):20-24
    文湘华,王建龙译.环境生物技术原理与应用[M].北京:清华大学出版社,2004:573-574
    吴唯民.利用厌氧颗粒污泥处理氯代有毒有机物[J].应用与环境生物学报,1995,1(1):50-60
    向夕品.三氯乙烯和四氯乙烯处理方法研究进展[J].渝州大学学报(自然科学版),2002,19(4):77-82
    徐业林.干活场所四氯乙烯对环境污染及对人体健康影响的调查[J].职业医学.1990,17(1):55
    赵宇华,叶央芳,刘学东.硫酸盐还原菌及其影响因子[J].环境污染与防治,1997,19(5):41-43
    周群英,高廷耀编著.环境工程微生物学[M].北京:高等教育出版社,2003:115-117
    周少奇编著.环境生物技术[M].北京:科学出版社,2003:158-281

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700