三氯乙烯的好氧共代谢与挥发模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大量的氯代烃因不合理的使用、处理和处置进入环境中造成了严重的地下水环境污染,引起了环境工作者的广泛关注,其中三氯乙烯(TCE)是地下水中常见的一种氯代烃有机污染物。对于地下水中TCE的修复,由于生物法具有成本低、操作方便、易行、能够充分发挥微生物的降解能力,针对性地去除某种或某类有机物等特点,成为国内外专家和学者的研究热点。生物法修复TCE尤以好氧共代谢降解TCE最为有效。
    论文选取了甲苯、苯、氯苯、苯酚、苯甲酸、苯胺等六种芳香族化合物作为TCE的共代谢基质,通过对微生物的驯化、富集培养,以瓦呼仪作为测试手段,分析了六种共代谢基质在其驯化后活性污泥中的可生物降解性,及六种共代谢基质驯化后的混合微生物共代谢降解TCE的可能性。
    研究了六种共代谢基质和TCE共代谢降解的动力学性质。为了比较TCE好氧共代谢降解速率,实验同时对TCE为唯一碳源的降解动力学进行了研究。研究表明,TCE的降解动力学均符合一级反应动力学方程。TCE的降解速率常数的关系为:Ksa苯酚> Ksa甲苯> Ksa苯甲酸> Ksa苯胺> Ksa苯> KsaTCE唯一碳源> Ksa氯苯,速率常数依次为0.3078, 0.1698, 0.1254, 0.0443, 0.0286, 0.0268, 0.0147 L / g?h。本实验分别对单一代谢基质的降解(不加TCE)和共代谢条件下基质的降解动力学进行了研究,结果表明在两种情况下代谢基质的降解均符合一级动力学方程。通过对TCE和共代谢基质速率常数的比较,得出如下结论:苯酚是最有效的共代谢基质,其次是甲苯、苯;氯苯不宜作为TCE的共代谢降解的基质。经研究化合物的分子结构和生物降解性的关系得出,共代谢基质的空间参数是影响共代谢降解的主要因素。
    在实验室条件下研究了TCE在灭菌污泥和活性污泥中的挥发模型。由于生物降解的作用,活性污泥中TCE的挥发速率常数明显低于灭菌污泥中对应的数值;25℃时两体系中TCE的挥发速率常数均与该温度下TCE在水溶相中的挥发速率常数在一个数量级上,这说明在含有污泥的溶液体系中挥发模型同样适用。
Chlorinated hydrocarbons have a widespread use in industry and agriculture,because of their accidental spills, leakages and improper use, which caused greatconcern by environmental staff. Trichloroethylene (TCE) is one of the most extensivecontaminants in groundwater. Because of convenient operation, lower expense andusing selected microbes to remove organic compounds, biological treatment forTCE-contaminated waters becomes a hot topic. TCE is efficiently biodegraded byaerobic cometabolism
    In the Ph. D. dissertation, six aromatic compounds, including toluene, benzene,chlorobenzene, phenol, benzoic acid and aniline, were used TCE cometabolicsubstrates to acclimate the activated sludge. The biodegradability of the sixacclimated substrates and that of TCE through cometabolism are conducted bymeasuring oxygen consumption with Warburg respirometer.
    The biodegradation kinetics of the six cometabolic substrates and that of TCE bycometabolic degradation were studied. In order to compare with TCE cometabolicdegradation kinetic rates, the degradation kinetics of TCE using TCE as the solecarbon source was conducted. The results were shown that a first-order linear rate lawapplied to TCE biodegradation under the conditions mentioned aboved. The first orderrate constant relationship of TCE was as follows: Ksa phenol > Ksa toluene > Ksabenzoic acid > Ksa aniline > Ksa benzene > Ksa TCE > Ksa chlorobenzene,and therate constant was 0.3078, 0.1698, 0.1254, 0.0443, 0.0286, 0.0268, 0.0147 L/g?h,respectively. The biodegradation kinetics experiments of the metabolic substrateswithout TCE and under cometabolic conditions were conducted. The results wereshown that the six metabolic substrates confirmed to the first order equation underboth conditions. Compared to TCE cometabolic rate constant, conclusions weredrawn that phenol was the most suitable cometabolic substrate, toluene second, andbenzene third;chlorobenzene was not suitable substrate. Space descriptor ofcometabolic substrate was the effective factor in cometabolic biodegradation processby Quantitative structure biodegradability relationships(QSBR)study.
    The volatile model of TCE was discussed in autoclaved sludge and activatedsludge systems in the laboratory. Results suggested that the volatile rate constant ofTCE in activated sludge was apparently lower than that of TCE in autoclaved sludge,due to the biodegradation.The volatile rate constant of TCE in both systems at 25℃
    was within the range of the estimate value in aquatic phase, which expressed thevolatile model was also applied in sludge system.
引文
[1] Agrawal A and Tratanyek P G. American Chemical Society Meeting Abstracts, Division of Environmental Chemistry, 1994, 13-18 March.
    [2] Anderson J E and McCarty P L. Transformation yields of chlorinated ethenes by a Methanotrophic mixed culture expressing particulate methane monooxyenase[J]. Applied and Environmental Microbiology, 1997, 63(2): 687-693.
    [3] Arp D J, Yeager C M, Hyman M R. Molecular and Cellular Fundamentals of Aerobolic Cometabolism of Trichloroethylene[J]. Biodegradation, 2001, 12(2): 81-103.
    [4] Arp D J. Understanding the diversity of trichloroethene oxidations[J]. Current Opinion in Biotechnology, 1995, 6:352-359.
    [5] Arvin E. Biodegradation kinetics of chlorinated aliphatic hydrocarbons with metane oxidizing bacteria in an aerobic fixed biofilm[J]. Water Research, 1991, 25(7): 873-881.
    [6] Bagley D, Gossett J. Tetrachloroethylene transformation to trichloroethylene and cis-dichloroethene by sulfate-reducing enrichment cultures[J]. Applied and Environmental Microbiology, 1990, 56: 2511-2516.
    [7] Ballapragada B S, et al. Effect of hydrogen on reductive dechlorination of chlorinated ethenes[J]. Environmental Science and Technology, 1997, 31: 1728-1734.
    [8] Banat F A and Simandl J. Removal of benzene traces from contaminated water by vacuum membrane distillation [J]. Chemical Engineering Science, 1996, 51(6): 1257-1265.
    [9] Baum Edward J. Chemical Property Estimation: theory and practice[M].Lewis publishers, CRC Press, 1998, 285-306.
    [10] Bielefeldt A R, Stensel H D and Strand S E. Cometabolic degradation of TCE and DCE without intermediate toxicity[J]. Journal of Environmental Engineering, 1995, 121(11): 791-797.
    [11] Burback B L. Effect of environmental pollutants and their metabolites of a soil Mycobacterium[J]. Applied and Environmental Microbiology, 1994, 41: 134-136.
    [12] Carbeneau R J, Bedient P B, Loehr R C. Groundwater remediation water quality management library 8[M]. Technomic Publishing Co. Inc., 1992, 143-159.
    [13] Chang H L and Alvarez-Cohen L. Transformation capacities of chlorinated organics by mixed cultures enriched on methane, propane, toluene, or phenol[J]. Biotechnology and Bioengineering, 1995, 45(5): 440-449.
    [14] Chen W M, Chang J S, Wu Ch H, et al. Characterization of phenol and trichloroethene degradation by the rhizobium Ralstonia taiwanensis[J]. Research in Microbiology, 2004 (155): 672-680.
    [15] Cheung H M, Bhantnagar A and Jansen G. Sonochemical destruction of chlorinated hydrocarbons in dilute aqueous solution[J]. Environmental Science and Technology 1991, 25: 1510.
    [16] Cyr P J, Paraskewich M R and Suri R P S. Sonochemical destruction of trichloroethylene in water[J]. Water Science and Technology, 1999, 40(4): 131-136.
    [17] Dabrock B, Riedel J, Bertram J, et al. Isopropylbenzene (cumene) —a new substrate for the isolation of trichloroethene-degrading bacteria[J]. Arch Microbiology, 1992, 158: 9-13.
    [18] David M B, Michelle L, Vasilios K, et al. Acclimation of anaerobic systems to biodegrade tetrachloroethene in the presence of carbon tetrachloride and chloroform [J]. Water Research. 2000, 34(1): 171-178.
    [19] Deane C L. Trichioroethylene biodegradation by a mehane -oxidixing bacterium[J]. Applied and Environmental Microbiology, 1998, 56: 951 -956.
    [20] Dewulf J, Langenhove H van, Visscher A De, et al. Ultrasonic degradation of trichloroethylene and chlorobenzene at micromolar concentrations: kinetics and modeling[J]. Ultrasonics Sonochemistry, 2001, 8: 143-150.
    [21] DisPirito A A, Gulledge J, Shiemke A K, et al. Trichloroethylene oxidation by the membrane-associated methane monooxygenase in typeⅠ, typeⅡand type Ⅹmethanotrophs [J]. Biodegradation, 1992, 2: 151-164.
    [22] Drijvers D, Langenhove H. van, Nguyen Thi Kim L, et al. Sonolysis of an aqueous mixture of trichloroethylene and chlorobenzene[J]. Ultrasonics Sonochemistry, 1999, 6: 115-121.
    [23] Duba A G, Jackson K J, Jovanovich M C, et al. TCE remediation using an in-situ, resting-state bioaugmentation[J]. Environmental Science and Technology, 1996, 30(6): 1982-1989.
    [24] Ely R L, Williamson K J, Guenther R B, et al. A cometabolic kinetics model incorporating enzyme inhibition, inactivation, and recovery: Model development, analysis and testing[J]. Biotechnology and Bioengineering, 1995, 46(3): 218-231.
    [25] Ensign S A, Hyman M R, Arp D J. Cometabolic degradation of chlorinated alkenes by alkene monooxygenase in a propylene-grown Xanthobacter strain[J]. Applied and Environmental Microbiology, 1992, 58: 3038-3046.
    [26] Erik Arvin. Biodegradation kinetics of chlorinated aliphatic hydrocarbons with methane oxidizing bacteria in an aerobic fixed biofilm reactor[J]. Applied and Environmental Microbiology, 1991, 54(3): 873-881.
    [27] Fathepure M. R., Tiedje J. M.. Reductive dechlorination of tetrachloroethylene by a chlorobenzoate-enriched boifilm reactor[J]. Environmental Science and Technology, 1994, 28: 746-752.
    [28] Fogel M M, Taddeo A R and Fogel S. Biodegradation of chlorinated ethenes by a methane-utilizing mixed culture[J]. Applied and Environmental Microbiology, 1986, 51: 720
    [29] Folsom B.R., Chapman P.J., Pritchard P.H., Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: kinetics and interactions between substrates[J]. Applied and Environmental Microbiology, 1990, 56 (5): 1279-1285.
    [30] Fox B G, Borneman J G, Wackett L P, et al. Haloalkene oxidation by soluble methane monooxygenase from Methylosinus trichosporium Ob3b: mechanistic and environmental implications[J]. Biochemistry, 1990, 29: 6417-6419.
    [31] Freedman D L, Gossett J M. Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions [J]. Applied and Environmental Microbiology, 1989, 55: 2144-2151.
    [32] French W T, Brown L R, Downer D N, et al. Effects of n-hexadecane and PM-100 clay on trichloroethylene degradation by Burkholderia cepacia[J]. Journal of Hazardous Materials 2002, 92: 89-102
    [33] Fries M R, Forney L J, Tiedje, J M. Phenol-and toluene degrading Microbial Populations from an Aquifer in which Successful Trichloroethene Cometabolism[J]. Applied and Environmental Microbiology,1997, 63(4):1523-1530.
    [34] Fujishima A, Hondo K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 37(1): 238-245.
    [35] Gillham R. W. and O'Hannesin S. F. Metalcatalyzed abiotic degradation of halogenated organic compounds, International Association of Hydrologists Conference, “Modern Trends in Hydrology”, Hamilton, Ontario, Canada, 1992, 10-13, May.
    [36] Guiot S R, Gorur S S, Kennedy K J. Nutritional and environmental factors contributing to microbial aggregation during upflow anaerobic sludge bed filter reactor start up[J]. Anaerobic Digestion, 1988, 47-53.
    [37] Harker A R, Kim Y. Trichloroethylene degradation by two independent aromatic degrading pathways in Alcaligenes cutrophus JMP134[J]. Applied and Environmental Microbiology, 1990, 56: 1179-1181.
    [38] Harkness M R, et al. Use of bioaugmentation to stimulate complete reductive dechlorination of trichloroethylene in Dover soil columns[J]. Environmental Science and Technology, 1999, 33: 1100-1109.
    [39] Heald S and Jenkins R O. Trichloroethylene removed and oxidation toxicity mediated by toluene dioxygenase of Pseudomonas putida[J]. Applied and Environmental Microbiology, 1994, 60: 43-64.
    [40] Hirano K, Nitta H, Sawada K. Effect of sonication on the photo-catalytic mineralization of some chlorinated organic compounds[J]. Ultrasonics Sonochemistry, 2005, 12: 271-276.
    [41] Hirata T, Nakasugi, Yoshioka M, et al. Groundwater pollution by volatile organochlorines in Japan and related phenomena in the substance environment [J]. Water Science and technology, 1992, 125 (11): 9-16.
    [42] Hopkins G D, Semprini L, McCarty P L. Microcosm and in situ field studies of enhanced biotransformation of trichloroethylene by phenol-utilizing microorganisms [J]. Applied and Environmental Microbiology, 1993, 59: 2277-2285.
    [43] Infante P F, Tsongas T A. Mutagenic and oncogenic effects of chloromethanes chloroethanes and halogenated analogs of vinyl chloride[J]. Environmental Science and Research, 1987, 25: 301-327.
    [44] Inguva S, Gina S Sh. Biodegradation kinetics of trichloroethylene and 1,2-dichloroethane by Burkholderia (Pseudomonas) cepacia PRI31 and Xanthobacter autotrophicus GJ10[J]. International Biodeterioration & Biodegradation, 1999, 43: 57-61.
    [45] Isabelle M R, Hans M, Erik A. Product formation from thiophene by a mixed bacterial culture. Influence of benzene as growth substrate [J]. Water Research, 2003, 37: 3047-3053.
    [46] Jean P A and Erik A. Modeling of the cometabolic biodegradation of trichloroethylene by toluene-oxidizing bacteria in a biofilm system [J]. Environmental Science and Technology, 1997, 31 (11): 3044-3052.
    [47] Jenal-Wanner U and McCarty P L. Development and evaluation of semicontinuous slurry microcosms to simulate in site biodegradation of trichloroethylene in contaminated aquifers[J]. Environmental Science and Technology, 1997, 31(10): 2915-2922.
    [48] Joseh G L, Aamando M B, and Ronald H O. Comparison of factors influencing trichloroethylene degradation by tolueneoxidizing bacteria[J].Applied and Environmental Microbiology, 1996, 62: 825.
    [49] Kao C M, Prosser J. Intrinsic bioremediation of trichloroethylene and chlorobenzene: field and laboratory studies [J]. Journal of Hazardous Materials B69, 1999: 67-79.
    [50] Kim J. O. Gaseous PCE and TCE removal by an activated carbon biofilter[J]. Bioprocess Engineering, 1997, 16: 331-337.
    [51] Leahy J G, Byrne A M, Olsen R H. Comparison of factors influencing trichloroethylene degradation by toluene-oxidizing bacteria[J]. Applied and Environmental Microbiology, 1996, 62(3): 825-833.
    [52] Lewis Semprini. Strategies for the aerobic co-metabolism of chlorinated solvents[J]. Current Opinion in Biotechnology, 1997, 8: 296-308.
    [53] Li S Y and Wackett L P. Trichloroethylene oxidation by toluene dioxygenase[M]. Biochemistry and Biophysics, Press Commun. 1992, 185: 443-451.
    [54] Lide, D R. CRC Handbook of Chemistry and Physics[M]. CRC Press, 1994.
    [55] Liss P S, Slater P G. Flux of gases across the air-sea interface[J]. Nature, 1974, 247: 181-184.
    [56] Little C D, Palumbo A V, Herbes S E, et al. Trichloroethylene biodegradation by a methane-oxidizing bacterium[J]. Applied and Environmental Microbiology, 1988, 54: 951-956.
    [57] Lontoh S and Semrau J D. Methane and trichloroethylene degradation by Mehtylosinus trichosporium OB3b expressing particulate methane monooxygenase[J]. Applied and Environmental Microbiology, 1998, 64(3): 1106-1114.
    [58] Lovely D, Anderson R. Influence of disimilatory metal reduction on fate of organic and metal contaminants in the subsurface[J]. Journal of Hydrogeology, 2000, 8: 77-88.
    [59] Lu C J, Lee C M, Chung M S. The comparison of trichloroethylene removal rates by methane-and aromatic-utilizing microorganisms [J]. Water Science and Technology, 1998, 38 (7): 19-24.
    [60] Mars A E, Prins G T, Wietzes P, et al. Effect of trichloroethylene on the competitive behavior of toluene-degrading bacteria[J]. Applied and Environmental Microbiology, 1998, 64(1): 208-215.
    [61] Matheson L J and Tratnyek P G. American Chemical Society Meeting Abstracts, Division of Environmental Chemistry, 1993, 28 March-2 April.
    [62] Matheson L J and Tratnyek P G. American Chemical Society Meeting Abstracts, Division of Environmental Chemistry, 1993, 13-18 March.
    [63] McCarty P L, Goltz M N, Hopkins G D, et al. Full-scale evaluation of in situ cometabolic degradation of trichloroethylene in groundwater through toluene injection[J]. Environmental Science and Technology, 1998, 32(1): 88-100.
    [64] McFarland M J, Vogel C M and Spain J C. Methanotrophic cometabolism of trichloroethylene (TCE) in a two stage bioreactor system[J]. Water Research, 1992, 26, 259.
    [65] Middeldorp J M, Aalst A, Rijnaarts H M, et al. Stimulation of reductive dechlorination for in-situ bioremediation of a soil contaminated with chlorinated ethenes [J]. Water Science and technology, 1998, 37 (8): 105-110.
    [66] Miyakea Y, Sakodab A, Yamanashic H, et al. Activated carbon adsorption of trichloroethylene (TCE) vapor stripped from TCE-contaminated water[J]. Water Research, 2003, 37 (8): 1852-1858.
    [67] Mueller J, Chapman P, Pritchard P. Action of a fluoranthene-utilizing community on policyclic aromatic hydrocarbon components of creosote[J]. Applied and Environmental Biotechnology, 1989, 55: 3085-3090.
    [68] Muftikian R, Fernando Q and Korte N. A method for the rapid dechlorination of low molecular weight chlorinated hydrocarbons in water[J]. Water Research, 1995, 29(10): 2434-2439.
    [69] Munakata J M. Long term biodegradation of trichloroethylene influenced by bioaugmentation and dissolved oxygen in aquifer microcosms[J]. Environmental Science and Technology, 1997, 31(3): 786-791.
    [70] Munish G, Makram T S, Gregory D S. Modeling kinetics of chloroform cometabolism in methanogenic and sulfate-reducing environments[J]. Water Science and Technology, 1996, 34(5-6): 403-410.
    [71] Nakano Y, Li Q H, Nishijim W A, et al. Biodegradation of trichloroethylene (TCE) adsorbed on granular activated carbon (GAC)[J].Water Research, 2000, 34(17): 4139-4142.
    [72] Nakano Y, Nishijima W, Soto E, et al. Relationship between growth rate of phenol utilizing bacteria and the toxic effect of metabolic intermediates of trichloroethylene (TCE) [J]. Water Research, 1999, 33 (4): 1085-1089.
    [73] Nelson C H, Brown R A. Adapting ozonation for soil and groundwater cleanup[J]. Chemical Engineering, 1994, 14-24.
    [74] Nelson M J K, et al. Aerobic Metabollism of Trichloroethylene by a Bacterial Isolate[J]. Applied and Environmental Microbiology, 1986, 52 (2): 383~384.
    [75] Nelson M J K, Montgomery L O, Pritchard P H. Trichloroethylene metabolism by microorganisms that degrade aromatic compounds[J]. Applied and Environmental Microbiology, 1988, 54: 604-606.
    [76] Oldenhuis R, Oedzes J Y, Waarde van J J, et al. Kinetics of chlorinated hydrocarbon degradation by Methylosinus trichosporium OB3b and toxicity of trichloroethene[J]. Applied and Environmental Microbiology, 1991, 57: 7-14.
    [77] Partrick R, Ford E, Quarles J. Groundwater Contamination in the USA[M]. Philadelphia: University of Pennsylvania Press, 1987.
    [78] Petrovskis E A, et al. Transformation of tetrachloromethane by Shewanella putrefaciens MR~1[M]. Bioremediation of Chlorinated Solvents, 1995, Battelle Press. Columbus, Ohio.
    [79] Peyton G. R, et al. Destruction of pollutants with ozone in combination with ultraviolet radation1 general principle sand oxidation of tetrachloroethylene[J]. Environmental Science and Technology, 1982,16: 448-453.
    [80] Pruden A L, et al. Photoassisted heterogenous catalysis: the degradation of trichloroethylene in water[J]. Journal of Catalysis, 1983, 82(2): 404-417.
    [81] Rasche M E, Hyman M R, Arp D J. Factors limiting aliphatic chlorocarbon degradation by Nitrosomonas europaea cometabolic inactivation of ammonia monooxygenase and substrate specificity[J]. Applied and Environmental Microbiology, 1991, 57: 2986-2994.
    [82] Richard E D. A history of the production and use of carbon tetrachloride, tetrachloroethylene, richloroethylene and 1,1,1-trichloroethane in the United States: Part 2-trichloroethylene and 1,1,1-trichloroethane [J]. Journal of Environmental Forensics, 2000 (1): 83-93.
    [83] Sakoda A, Kawazoe K, Suzuki M. Adsorption of tri-and tetra-chloroethylene from aqueous solutions on activated carbon fibers[J]. Water Research, 1987, 21(6): 717–22.
    [84] Scott O W, Robert W, Gillham. Dechlorination of trichlotoethene in aqueous solution using Fe0 [J]. Environtal Science and Technology, 1996, 30: 66-71.
    [85] Segar Jr R L, De Wys S L and Speitel Jr G E. Sustained trichloroethylene cometabolism by phenol-degrading bacteria in sequencing biofilm reactors[J].Water Environmental Research, 1995, 65(5): 764-774.
    [86] Segar Jr, Leung S Y and Vivek S A. Treatment of trichloroethene contaminated water with a fluidized-bed bioreator[M]. Bioremediation of surface and subsurface contamination, 1997, The New York Academic Sciences, New York, 83-95.
    [87] Semprini L. Strategies for the aerobic co-metabolism of chlorinated solvents[J].Current Opinion and Biotechnology, 1997, 8: 296-308.
    [88] Sharp D W A. Dictionary of Chemistry[M]. Penguin Books Press, London,1990.
    [89] Shen Y S, Ku Y. Treatment of gas-phase trichloroethene in air by the UV/O3 process[J]. Journal of Hazardous Materials, 1997, 54: 189-200.
    [90] Shields M S, Reagin M J. Selection of a Pseudomonas cepacia strain constitutive for the degradation of trichlorothylene[J]. Applied and Envionmental Microbiology, 1992, 58: 3977-3984.
    [91] Smatlak C, Gossett J, Zinder S. Comparative kinetics of hydrogen utilization for reductive dechlorination of tetrachloroethene and methanogenesis in an anaerobic enrichment culture[J]. Environmental Science and Technology, 1996, 30: 2850-2858.
    [92] Speece R E. Anaerobic Biotechnology for Industrial Wasterwater[M]. Arche Press Pub, 1996: 322.
    [93] Strandberg G W, Donaldson T L, Farr L L, et al. Degradation of trichloroethylene and trans-1,2-dichloroethylene by a methanotrophic consortrium in a dixed-film, packed-bed bioreactor[J]. Environmental Science and Technology,1989, 23(6): 1982-1989.
    [94] Suzuki M. Application on fiber adsorbent in water treatment[J].Water Science and Technology, 1991, 22:1649-1658.
    [95] Tom Kuo M C, Liang K F, Han Y L, et al. Pilot studies for in-situ aerobic cometabolism of trichloroethylene using toluene-vapor as the primary substrate [J]. Water Research, 2004, 38: 4125-4134.
    [96] Tschantz M F, Bowman J P, Donaldson T L, et al. Methanotrophic TCE biodegradation in a multi-stage bioreator[J]. Environmental Science and Technology,1995, 29(8): 2073-2082.
    [97] Tsien H C, Brusseau G A, Hanson R S, et al. Biodegration of trichlorothylene by Methylosinus trichosporium OB3b[J]. Applied and Environmental Microbiology, 1989, 55: 3155-3161.
    [98] Uchiyama H. Immobilization of trichloroethylene-degrading bacterium, Methylocystis sp. strain M in different matrices[J]. Journal of Ferment Bioengineering, 1994, 2: 173-177.
    [99] Vogel T M and McCarty P M. Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions [J]. Applied and Environmental Microbiology, 1985, 49, 1080-1083.
    [100] Vogel T M, Criddle C S, McCarty P L. Transformation of halogenated aliphatic compounds[J]. Environmental Science and Technology, 1987, 21: 722-736.
    [101] Wackett L P, Brusseau G A, Householder S R, et al. Survey of microbial oxygenases trichloroethylene degradation by propane oxidizing bacteria[J]. Applied and Environmental Microbiology, 1989, 55: 2960-2964.
    [102] Wiesel J, Wubker S, Rehm H. Degradation of policyclic aromatic hydrocarbons by an immobilized mixed bacterial culture[J]. Applied and Environmental Biotechnology, 1993, 39: 110-116.
    [103] Wilcox D W, Autenrieth R L, Bonner J S. Propane-induced biodegradation of vapor phase trichloroethylene[J]. Biotechnology and Bioengineering, 1995, 46(4): 333-342.
    [104] Wilson B H, Smith G B, Ree J F. Biotransformations of selected alkylbenzenes and halogenated alIphatic hydrocarbons in methanogenic aquifer material: a microcosm study[J]. Environmental Science and Technology, 1986, 20: 997-1002.
    [105] Wilson B H, Wilson J T, and Luce Darryl. Design and interpretation of microcosm studies for chlorinated compounds, In Proceedings: Symposium on natural attenuation of chlorinated organics in ground water, Environmental Protection Agency, 1996, 21-30.
    [106] Wilson J T, Wilson B H. Biotransformation of trichloroethylene in soil[J]. Applied and Environmental Microbiology, 1985, 29: 242-243.
    [107] Winter R B, Yen K-M, Ensley B D. Efficient degradation of trichlorothylene by recombinant Escherichia coli[J]. Biotechnology,1989, 7: 282-285.
    [108] Yang L, Chang Y F, Chou M S. Feasibility of bioremediation of trichloroethylene contaminated sites by nitrifying bacteria through cometabolism with ammonia[J]. Journal of Hazardous Materials B69, 1999, 111-126.
    [109] 陈翠柏, 杨琦, 尚海涛, 等. 三氯乙烯好氧生物降解的初步研究[J].环境污染治理技术与设备, 2004, 5(11): 35-37.
    [110] 陈翠柏, 杨琦, 尚海涛, 等. 混合菌种对地下水中三氯乙烯的生物降解和吸附解吸的实验研究[J]. 水文地质工程地质, 2004(1): 47-51.
    [111] 陈翠柏. 好氧生物降解三氯乙烯(TCE)高效菌株选育的实验研究. [博士学位论文]. 北京: 中国地质大学, 2004.
    [112] 崔俊芳, 郑西来, 林国庆. 地下水有机污染处理的渗透性反应墙技术[J].水科学进展, 2003, 14(3): 363-367.
    [113] 董春娟, 吕炳南, 陈志强, 等. 处理生物难降解物质的有效方式-共代谢[J].化工环保, 2003, 23(2): 82-85.
    [114] 付莉燕, 文湘华, 钱易. 厌氧条件下活性翠蓝生物降解性能的研究[J].上海环境学, 2001, 20(6): 274~276.
    [115] 何小娟, 汤鸣皋, 李旭东, 等. 利用镍/铁和铜/铁双金属降解四氯乙烯的实验研究[J]. 环境化学, 2003, 22(4): 334-339.
    [116] 黄园英. 纳米镍/铁双金属对氯代烃脱氯研究[博士学位论文].北京: 中国地质大学, 2005.
    [117] 李燕城. 水处理实验技术[M]. 北京: 中国建筑工业出版社, 1989.
    [118] 刘鸿, 成少安, 王琪全, 等. 无水条件下气相三氯乙烯的光催化降解机理[J].环境科学, 1998, 19 (2): 62-65.
    [119] 刘勇弟, 徐寿昌. 紫外-Fenton 试剂的作用机理及在废水处理中的应用[J].环境化学, 1994, 13(4): 302-306.
    [120] 全燮, 郎佩珍. 江水中有机污染物挥发速率的预测[J].环境化学, 1986, 5 (4): 30-34.
    [121] 沈润南, 李树本. 甲烷利用细菌降解三氯乙烯的研究[J].微生物学报, 1998, 38(1): 63-69.
    [122] 宋汉林, 程崇泉, 宿萍, 等. 三氯乙烯对人体慢性影响的探讨[J].职业卫生与病伤, 1995, 10(3): 138-192.
    [123] 隋红, 徐世民, 李鑫钢. 地下水中三氯乙烯共代谢规律[J].天津大学学报, 2004, 37(5): 423-427.
    [124] 孙文杰, 刘勇弟. 生物共代谢动力学模型[J].郑州大学学报(工学版), 2003, 24(2): 108-112.
    [125] 唐有能, 程晓如, 王晖. 共代谢及其在废水处理中的应用[J].环境保护, 2004, 10: 22-25.
    [126] 王连生. 环境化学进展[M].化学工业出版社:北京, 1995, 315-321.
    [127] 王英锋. 三氯乙烯及其代谢物分析[J].中国卫生检验, 1995, 5(6): 360-363.
    [128] 王永杰, 李顺鹏, 沈标. 有机磷农药广谱活性降解菌的分离及其生理特性研究[J].南京农业大学学报, 1999, 22(2): 42-45.
    [129] 夏北成. 环境污染物生物降解[M].化学工业出版社:北京, 2002, 257.
    [130] 向夕品. 三氯乙烯和四氯乙烯处理方法研究进展[J].渝州大学学报(自然科学版), 2002, 19(4): 77-82.
    [131] 徐业林. 干洗场所三氯乙烯对环境污染及其从业人员健康影响的调查研究[J].中国卫生工程学杂志, 1999, 8(1): 38-40.
    [132] 张达政, 陈宏汉, 李海明, 等. 某城市浅层地下水卤代烃污染的初步研究[J].中国地质, 2002 (3): 326-329.
    [133] 张锡辉, Bajpai R. 微生物共降解动力学模型解析[J].环境科学学报, 2000, 20: 58-63.
    [134] 张锡辉, Bajpai R. 以关键酶为基础共代谢模型的建立-以甲烷细菌共代谢三氯乙烯为例[J].环境科学学报, 2000, 20 (5): 558-562.
    [135] 张新建, 黄乐仰. 15 例三氯乙烯中毒病例调查分析[J].中国工业医学杂志, 2000, 13 (3): 165-166.
    [136] 钟理, Kuo C J and Edward Z M. 三氯乙烯液相 O3 氧化实验研究[J].化工学报, 49(1): 116-120.
    [137] 周邦智, 吕昕, 郭珍, 等. 三氯乙烯气相光催化氧化研究[J].青海师范大学学报 (自然科学版), 2002(2): 34-37.
    [138] 瞿福平, 杨义燕, 冯旭东, 等. 定量结构—生物降解性能关系(QSBR) 研究原理及进展[J].中国环境科学, 1999, 19 (1) : 18-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700