载体法高效驱杀蚊整理模型的建立及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蚊子是与人类生活和健康关系极为密切的昆虫之一,除了直接叮刺、骚扰外,还可传播多种疾病。研究表明有60多种疾病可通过蚊虫传播,如疟疾、丝虫病、黄热病和登革热等。如今在发展中国家,尤其是在非洲国家,每年大约有一亿多的疟疾新发病例,大约有100多万人死于疟疾,而且大多数是儿童和孕妇;中国地处亚热带地区虽未遭受因蚊虫传染带来的大规模伤害,但人们也深受蚊虫的困扰。因此,驱杀蚊整理是目前最需迫切解决的问题之一,本论文就驱杀蚊试剂在纺织品中的应用及理论模型的建立进行研究。
     本论文首先研究了驱杀蚊试剂的实际应用情况,根据其物化性质选用载体法制备高效驱杀蚊织物。比较了不同驱杀蚊试剂和载体对制备高效驱杀蚊织物的影响,发现OP为最佳载体,ZX-1(主要成分为2,2-双(4-氯苯基)-1,1,1-三氯乙烷)为最佳驱杀蚊试剂。制备过程首先以萃取分离法对ZX-1的原料预处理,通过两步法分离提纯ZX-1原料,并以驱杀蚊试剂ZX-1、环己烷、载体OP、分散剂NNO为原料处理涤纶织物,获得载体整理最佳工艺为:ZX-10.6g/L(3%,o.w.f),Mzx-1:M环己烷为1:1.6,载体OP3g/L,分散剂NNO0.5g/L,90℃处理90min,浴比为1:50。通过对经ZX-1载体整理后驱杀蚊涤纶织物的结构分析得出如下结论:ZX-1附着于纤维表面,并且进入涤纶纤维内部无定形区;涤纶织物的结晶度随着整理剂ZX-1浓度的增加而增加,同时驱杀蚊实际ZX-1不会影响纤维的晶形结构和涤纶织物的热稳定性;从而获得长期有效驱杀蚊涤纶织物。
     本论文还研究了涤纶纤维对ZX-1的吸附性能及扩散机理研究。ZX-1不溶于水,涤纶纤维在常温常压下很难吸附ZX-1,选用载体法可有效吸附ZX-1。载体小分子较快地向纤维内部扩散并以范德华力或氢键的方式与纤维结合,减弱了纤维间的结合力,增大了大空穴产生的几率,提高ZX-1的扩散速度。吸附过程中ZX-1向纤维表面的扩散属于在湍流层中的扩散,其扩散边界层很薄;ZX-1在纤维中的扩散属于自由容积扩散,扩散系数随着涤纶纤维的自由容积变化而变化,遵循逐个孔穴“跳跃”扩散,最终提高ZX-1的扩散速率。
     目前针对防蚊织物的研究主要集中在织物防蚊性能表征方面,而对其理论研究比较少,本论文探讨并建立了涤纶纤维吸附ZX-1过程中吸附模型。研究发现,涤纶纤维吸附ZX-1的吸附量随着温度的升高而增加;吸附时间的延长而吸附量增加速度减缓,直至达到饱和吸附。动力学(一级吸附动力学、二级吸附动力学和粒子间扩散吸附模型)和热力学模型(能斯特、朗格缪尔、弗里德利胥和D-R模型)研究表明,涤纶对ZX-1的吸附动力学模型符合二级动力学吸附模型,吸附热力学模型符合Langmuir等温吸附模型。涤纶吸附ZX-1的热力学参数吉布斯自由能变△G°和吸附活化能Ea同时说明涤纶纤维对zx-1的吸附过程属于较易发生的自发进行的过程;吸附焓△H°和吸附熵△S°表明涤纶纤维对ZX-1的吸附过程为放热,被纤维吸附的ZX-1较难从纤维上解吸。
     本论文选用实验室驯化饲养的92代淡色库蚊作为实验对象,在实验室环境内对库蚊在织物上的行为学进行研究。实验结果表明,最佳测试条件为:羽化时间为3天的雌性库蚊,测试时间为晚上6-9点,引诱剂为浓度5%的C02气体,室内无自然光。通过对经过ZX-1载体整理后的驱杀蚊涤纶织物的实际驱蚊效果的测试得出如下结论:随着ZX-1浓度的增加,羽化天数为3天的雌性库蚊的活力最强,雌蚊对防蚊织物的趋避效应最明显;且测试时间的延长使得雌蚊对ZX-1的耐受度降低,活动力降低。随着水洗次数的增加,其驱蚊效果略微下降,但整体降低幅度不大;随着处理织物中ZX-1浓度的增加,雌蚊停留在水洗后织物的数目也随之降低,与未水洗的防蚊织物测试效果相比仍呈现一定的线性规律。
Mosquitoes are one of insects affecting humans'life and health significantly. Mosquito not only has direct barbed bite and harassment, but also transmits more than60diseases, such as malaria, dengue fever, filariasis, yellow fever et al. Now, in developing country, especially African country, almost one hundred million malaria diseases erupt, about one million people died because of malaria, most of children and pregnant women. Although, China haven't suffer for mass harm for mosquito transmission, people also puzzle for mosquito biting. Therefore, anti-mosquito finishing is one of the most urgent and critical problems to solve. This thesis is focus on researching the application of anti-mosquito textile and their theory.
     Firstly, this thesis research on actual applied condition of anti-mosquito reagents. According to physicochemical properties of anti-mosquito reagents, carrier finishing method is the optimal method to produce high effecient anti-mosquito textile. Having compared different reagents and carriers which affected anti-mosquito textile producing, we found that OP and ZX-1(main component was2,2-bis(4-Chlorophenyl)-1,1,1-trichloroethane) were the best carrier and reagent. Then, pretreated ZX-1raw material by using extraction separation with two method to purify ZX-1. Effects of the dosage of pesticide, ZX-1, the reactive temperature and time, and the dosage of additives on the anti-mosquito textile finishing were discussed. These data showed that, the optimal treatment process was the concentration of ZX-10.6g·L-1(3%, o.w.f), ZX-1to cyclohexane mass ratio1:1.6, the concentration of carrier3g· L-1, the concentration of dispersing agent NNO0.5g·L-1, bath ratio1:50, with1.5hour under90℃. Researching on Structural analysis of anti-mosquito textile after ZX-1by carrier finishing, these results showed that ZX-i were treated on the surface of polyester fiber, and entered into amorphous regions of polyester fibers'interior; the degrees of crystallinity of polyester fiber after ZX-1anti-mosquito treatment were increased with increasing ZX-1concentrations, simultaneously, ZX-1treatment did not particularly affect the size and shape of crystallites in the polyester fiber; ZX-1treatment also didn't influence thermostability of polyester fiber, finally, obtained long time high anti-mosquito textile.
     Adsorption Properties of polyester fiber absorbing ZX-1and diffusion mechanism were studied. This study included that ZX-1was water-fast and could not come into fibers'interior under normal temperature and pressure, so we chose carrier method to effectively absorb ZX-1into polyester fibers' inner. We found carrier micromolecule quickly diffused into fibers'interior and combined with fiber by Van der waals'force or hydrogen bond, weakened the bond between fibers, increased odds of big cavities to appear and improved diffusion velocity of ZX-1. By the way, ZX-1diffusion on fibers' surface was belong to turbosphere diffusion, its diffusionboundarylayer was very thin; ZX-1diffusion on fibers'inner was belong to free volume diffusion, and its diffusion coefficient increased with free volumes of polyester fiber increasing, it followed with one by one cavity "jump" diffusion, finally improved diffusion rate of ZX-1.
     At present, anti-mosquito textiles are focused on textile properties characterization, however, theoretical study rare dicusses. Thus, the thesis researched on adsorption thermodynamics and kinetics model when polyester fiber adsorbed ZX-1process. These results showed that ZX-1concentration on the fiber increased with increasing the ZX-1concentration in solution until it reached the saturation value. According to kinetics model (first-order adsorption kinetics, the pseudo-second-order adsorption kinetics and an intra-particle diffusion model) and thermodynamic model (Nernst, Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm model), the second-order-model was found most suitable to describe the kinetic diffusion process; Langmuir model appears to fit the adsorption of ZX-1on polyester fibers better than other adsorption models. In addition, thermodynamic parameters such as free energy (AG) and adsorption activation energy (Ea) were all showed that this adsorption process was geared to spontaneous adsorption process; enthalpy (△H°) and entropy (AS) were indicated that this adsorption process was exothermic process, and ZX-1which is absorbed by polyester fiber, was hard to desorb form polyester fiber inner.
     Another important part of the thesis is to study on mosquito behavior on the anti-mosquito textile in the laboratory with92generation culex as experimental subject, which was naturalized. These data showed that the optimal test condition were female cluex with3emergence day, texting time6-9PM, the concentration of attractant5%CO2, non-natural light. Actual anti-mosquito effect experiments results with anti-mosquito textile after ZX-1finishing indicated that3emergence day female cluex's activity was the best, and its greater effect was more and more obvious with increasing concentration of ZX-1; however, its suffertibility and activities became lower with testing time extending. furthermore, anti-mosquito effect of textiles after washing was appreciably reduced when increasing washing time, but the reducing range was small; number of female cluex staying on the textiles after washing was appreciably reduced with the concentration of ZX-1on the anti-mosquitotextile increasing, compared with non-wash textile, there were also appeared with certain linear regular.
引文
[1]薛智慧,郭建强,龚跃刚.植物源杀蚊剂的研究概况[J].药效研究,2005,(2):9-11.
    [2]Roberts, L. Mosquitoes and diseases[J]. Science,2002,298:82-83.
    [3]Omena M. C., Navarro D. M. A. F., Paula J. E., et al. Larvicidal activities against Aedes aegypti of some Brazilian medicinal plants[J]. Bioresource Technology,2007,98(13):2549-2556.
    [4]Roberto A. S., Nataly D. de Lima Santos, Clecia Sipriano Borges D. S. Larvicidal activity of lectins from Myracrodruon urundeuva on Aedes aegypti[J]. Comparative Biochemistry and Physiology, Part C.2009,149(3):300-306.
    [5]胡林,黄晓东,夏坚等.灭蚊、驱蚊植物及其活性成分研究的挑战与机会[J].华东交通大学学报,2006,23(2):154-156.
    [6]Berger P. E., Levsen K., Preiss A. Analysis of individual natural pyrethrins in indoor matrixes by HRGC/ECD[J]. Journal of High Resolution Chromatography,1997,20(5):284-288.
    [7]丁智慧,刘吉开,丁靖垲等.拟除虫菊酯的研究进展[J].云南化工,2001,28(2):22-24.
    [8]朱丽华.天然植物源杀虫剂一一虫菊[J].世界农药,2002,24(3):30-32.
    [9]Chris P., Rowley W., Coat J. R. Examination of two essential oils as mosquito repellents[C]. ACS National Meeting,2001:26-30.
    [10]Chris P., Nemetz, L. T., Jones, L. M., et al. Behavioral activity of catnip (Lamiaceae) essential oil components to the German cockroach (Blattodea:Blattellidae)[J]. Journal of Economic Entomology,2002,95(2):377-380.
    [11]Chris P. J., Wilson E. J. Catnip essential oil activity in sand for control of subterranean termites (Isoptera:Rhinotermitidae) in the laboratory[C]. ACS National Meeting,2003:23-27.
    [12]董文霞,张峰,阚炜等.蚜虫雄蚜与雌性母对性信息素及植物挥发物的田间反应[J].生态学报,2009,29(1):178-184.
    [13]Scialdone M. A. Preparation of puleganic acid as insect repellent[P]. U.S. Patent,2007,4.
    [14]郝慧玲,邓晓军,杜家伟.猫薄荷精油有效成分的提取极其对白纹伊蚊、淡色库蚊的趋避活性[J].昆虫学报,2006,49(3):533-537.
    [15]Dong Q., Li F. Y. The establishment and optimization of the regeneration system of Mozzie buster in vitro[J]. Fujian Shifan Daxue Xuebao,2006,22(1):72-76.
    [16]Tawatsin A., Asavadachanukorn P., Thavara U., et al. Repellency of essential oils extracted from plants in Thailand against four mosquito vectors (Diptera:Culicidae) and oviposition deterrent effects against Aedes aegypti (Diptera:Culicidae)[J]. Southeast Asian Journal of Tropical Medicine and Public Health,2006,37(5):915-931.
    [17]吴刚,刘向辉,戈峰.香茅醛对淡色库蚊空间驱避效果的观察[J].寄生虫与医学昆虫学报,2005,12(4):205-209.
    [18]Yang A., Lu R. H., Shi Y. P.. Chemical constituents of Pyrethrum tatsienense, a raw material of Tibetan medicine[J]. Zhongchengyao,2008,30(5):731-733.
    [19]Fryauff D. J., Shoukry M. A., Hanafi H. A., et al. Contact toxicity of permethrin-impregnated military uniforms to Culex pipiens (Diptera:Culicidae) and Phlebotomus papatasi (Diptera: Psychodidae):effects of laundering and time of exposure[J]. Journal of the American Mosquito Control Association,1996,12(1):84-90.
    [20]Piquett P. G. Effect of four commonly used synergists on a synthetic pyrethroid[J]. Journal of Economic Entomology,1949,42:841-852.
    [21]LaForge F. B., Barthel W. F. Constituents of Pyrethrum Flowers. XX. The Partial Synthesis of Pyrethrins and Cinerins and Their Relative Toxicities[J]. The Journal of Organic Chemistry, 1947,12:199-202.
    [22]Casida J. E. Michael Elliott's billion dollar crystals and other discoveries in insecticide chemistry[J]. Pest management science,2010,66(11):1163-1170.
    [23]Tsuda S., Yoshida K., Okuno Y. Empenthrin for fabric pest control[J]. Soap, Cosmetics, Chemical Specialties,1983,59(12):36-54.
    [24]黄清臻,邓兵,李宏等.高渗高效氯氰菊酯乳油的研制与应用[J].中华卫生杀虫药械,2006,12(5):355-357.
    [25]蔡碧琼,倪素美,林加良.8.0%氟虫腈·高效氯氟氰菊酯微乳剂的配方研究[J].现代农药,2008,7(4):22-24.
    [26]赵辉.高效氯氟氰菊酯微乳液形成过程的研究[D].山东,山东农业大学,2006.
    [27]郭凤英,吴厚永,李承毅.我国蚊虫对拟除虫菊酷类杀虫剂抗性的研究进展[J].寄生虫与医学昆虫学报,2002,9(3):51-59
    [28]Gray W. E., Dick D. H. United States department of agriculture-agricultural research service research on managing insect resistance to insecticides[J]. Pest Management Science,2003(6-7),59: 770-776.
    [29]农业部农药检定所.新编农药手册(续集)[M].北京:中国农业出版社,1998.
    [30]高聪芬,张兴,冯俊涛.杀虫剂增效作用研究进展[J].西北农业大学学报,1996,24(1):88-92
    [31]Qiu H., Jun H. W., Mccall J. W. Pharmacokinetics, formulation, and safety of insect repellent N,N-diethyl-3-methylbenzamide (DEET):a review[J]. Journal of the American Mosquito Control Association,1998,14(1):12-27.
    [32]高静,高申.避蚊胺剂型研究进展[J].中国媒介生物学及控制杂志,200213(6):469-471.
    [33]Domb A. J., Marlinski A., Maniar M., et al. Insect repellent formulations of N,N-diethyl-m-toluamide (DEET) in a liposphere system:efficacy and skin uptake[J]. Journal of the American Mosquito Control Association,1995,11(1):29-34.
    [34]Salafsky B., He Y. X., Li J., et al. Short report:study on efficiacy of a new long-acting formulation of N, N- diethyl- m- toluamide (DEET) for the prevention of tick attachment[J]. The American Journal of Tropical Medicine and Hygiene,2000,62(2):169-172
    [35]Rutledge L. C., Gupta R. K., Mehr Z. A., et al. Evaluation of controlled- release mosquito repellent formulations[J]. Journal of the American Mosquito Control Association,1996,12(1): 39-44.
    [36]Gupta R. K., Rutledge L.C. Controlled release repellent formulations on human volunteers under three climatic regimens[J]. Journal of the American Mosquito Control Association,1991, 7(3):490-493.
    [37]Qiu H., Jun H. W., Dzimianski M., et al. Reduced transdermal absorption of N,N-diethyl-m-toluamide (DEET) from a new topical insect repellent formulation[J]. Pharmaceutical Development and Technology,1997,2(1):33-42.
    [38]史卫国,徐之明,黄清臻等.7种驱避剂驱蚊效果实验观察[J].中国媒介生物学及控制杂志,1999,10(6):420-422.
    [39]张稷博,关玉辉,邢丽等.避蚊胺包结化合物的研制及其生物效能评价[J].中国媒介生物学及控制杂志,2001,12(1):56-57.
    [40]Fei B. Xin, J. H. N,N-diethyl-m-toluamide-containing microcapsules for bio-cloth finishing[J]. American Journal of Tropical Medicine and Hygiene,2007,77(1):52-57.
    [41]U.S. department of health and human services public health service. Toxicological profile for DDT, DDE, and DDD[M]. Agency for Toxic Substances and Disease Registry, Atlanta,2002,9.
    [42]滴滴涕.http://www.zwbk. org/MyLemmaShow.aspx?lid=329.
    [43]Sutek K. Nobel prize for Paul Hermann Muller in 1948 for discovery of DDT insecticide[J]. Wiadomosci Lekarskie,1968,21(18):1698.
    [44]Heus J. G., Maan W. J.. Determination of the milk yield, fat production, and DDT content in the milk of cows fed with pea straw from peas sprayed with DDT.[C] "De Schothorst" Hoogland bij Amersfoort,1948,8.
    [45]Rachel C. Silent Spring[M]. Houghton Mifflin Company, Boston,1962,9.
    [46]吴开琛,邓达.为了控制疟疾一我们需要DDT[J].中国热带医学,2009,9(1):194-195.
    [47]WHO. Indoor residual spraying:use of indoor residual spraying for scaling up global malaria control and elimination[C]. Global Malaria Programme, Geneva,2006,9.
    [48]Matthew P. L. Invited Commentary:Why DDT matters now[J]. American Journal of Epidemiology,2005,162(8):726-728.
    [49]http://www.aei.org/article/energy-and-the-environment/the-rise-fall-rise-and-imminent-fall-of-ddt/.
    [50]WHO. The use of DDT in malaria vector control[C]. Global Malaria Programme, Geneva, 2007,9.
    [51]WHO. Long-lasting insecticidal nets for malaria prevention A manual for malaria programme managers[C]. Global Malaria Programme, Geneva,2007,9.
    [52]Michele D.C. Silva, Roberto A. Sa, Thiago H. N., et al. Purified Cladonia verticillaris lichen lectin:Insecticidal activity on Nasutitermes corniger (Isoptera:ermitidae)[J]. International Biodeterioration & Biodegradation,2009,63:334-340.
    [53]Ansari M.A., Vasudevan P., Tandon M., Razdan R. K. Larvicidal and mosquito repellent action of peppermint (Mentha piperita) oil[J]. Bioresource Technology,2000,71(3):267-271.
    [54]Castle S., Palumbo J., Prabhaker N. Newer insecticides for plant virus disease management[J]. Virus Research,2009,141(2):131-139..
    [55]Alvarez M., Calle A., Tamayo J., et al. Development of nanomechanical biosensors for detection of the pesticide DDT[J]. Biosensors and Bioelectronics,2003,18:649-653.
    [56]Hadapad A.B., Hire R.S., Vijayalakshmi N., et al. UV protectants for the biopesticide based on Bacillus sphaericus Neide and their role in protecting the binary toxins from UV radiation[J]. Journal of Invertebrate Pathology,2009,100(3):147-152.
    [57]Prajapati V., Tripathi A.K., Aggarwal K.K., et al. Insecticidal, repellent and oviposition-deterrent activity of selected essential oils against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus[J]. Bioresource Technology,2005,96(16):1749-1757.
    [58]潘健民,董红霞.防蚊整理剂JYKPL-100的驱蚊及击倒和致蚊死研究[J].印染助剂,2007,27(12):34-46.
    [59]薛智慧,郭建强,龚跃刚.植物源杀蚊剂的研究概况[J].城市害虫防治,2005,2:9-12.
    [60]王燕,师光禄,吴振宇等.植物源杀虫剂作用机理研究进展[J].北京农学院学报,2008,23(4):70-73.
    [61]Mulla M. S., Su T. Activity and biological effects of neem products against arthropods of medical and veterinary importance[J]. Journal of American Mosquito Control Association, 1999,15(2):133-152.
    [62]Duan H., Takaishi Y., Jia Y., et al. Sesquiterpene alkaloids from extracts of Tripterygium wilfordii[J]. ChemPharm,1999,47(11):1664-1667.
    [63]王继栋,王宣,张兴.砂地柏叶中鬼臼毒素的分离与鉴定[J],西北农业大学学报,2000,28(6):25-29.
    [64]Gao R., Gao C. F., Tian X, et al. Insecticidal activity of deoxypodophyllotoxin, isolated from Juniperus Sabina L. and related lignans against larvae of Pieris rapae L[J]. Pest Management Science,2004,60(11):1131-1136.
    [65]魏红梅.几种植物精油的熏蒸杀虫作用及其活性成分研究[D].西北农林科技大学,陕西,2000.
    [66]Aucoin R. R., Fidlds P., Lewis M. A., et al. The protective effect of antioxidants to a phototoxin sensitive insect herbivore (Manduca sexta)[J]. Chemical Ecology,1990,16(10):2913-2914.
    [67]Yenyar S., Arnason J. T., Philogene B. J. R., et al. Comparative metabolism of the phototoxic allelochemical α-terthieny in three species of Lepidopterans, Pestic Biochem Physilo, 1990,37:154-164.
    [68]林琳,叶萌,周祖基.植物源驱蚊物质研究进展[J].天然产物研究与开发,2007,19(11):578-581.
    [69]王燕.牵牛子提取物对果园朱砂叶螨生物活性的研究[D].北京农学院,2009.
    [70]黄清臻,贾琳,付强等.影响杀虫剂药效的因素[J].中华卫生杀虫药械,2008,1(14):2-5.
    [71]Hadapad A.B., Vijayalakshmi N., Hire R.S., et al. Effect of ultraviolet radiation on spore viability and mosquitocidal activity of an indigenous ISTP-8 Bacillus sphaericus Neide strain [J]. Acta Tropica,2008,107(2):113-116..
    [72]Schreck, C. E., Weidhaas, D. E., Smith, N., et al. Chemical treatment of wide-mesh net clothing for personal protection against blood-feeding arthropods[J]. Mosquito News,1977,37(3): 455-462.
    [73]陆必泰,朱义,吴振华.避蚊纺织品及其加工方法[P].1641093A,2005,07.
    [74]冯卫吴,羹英,赵阿金,微胶囊技术在驱蚊整理上的应用[J].印染,1996,22:12-14.
    [75]Raphael N. G., Bart G. J. Knols, Cedric P., et al. DEET microencapsulation:a slow-release formulation enhancing the residual efficacy of bed nets against malaria vectors[J]. Transactions of the Royal Society of Tropical Medicine and Hygiene,2008,102(3):259-262.
    [76]黄衍章,杨长举,薛东等.新型驱蚊缓释剂的研制[J].中华卫生杀虫药械,2008,14(1):16-18.
    [77]陈克权,钱芝龙,段菊兰,郭永林,严国华,蒋燕华,符纲,钱瑛.具有避蚊功能的聚丙烯纤维[P].CN02136049.9,2004,01.
    [78]唐玉.驱蚊蝇纤维及其面料[P].CN200710023682.8,2007,11.
    [79]曹公平.用拟除虫菊酯上染合成纤维制备防虫纺织品的方法[P].CN200610023262.5,2006,09.
    [80]董言德,赵彤言,曹公平.一种防蚊虫叮咬布[P].CN200520011647.0,2006,07.
    [81]黄菊萍,曹公平.防虫聚烯烃纤维的制造方法[P].CN200410053688.6,2005,03.
    [82]Akira I., Shinji Y., Shinichi N. Functional finishing for textile and its effect[J]. Senshoku Kenkyu.2006,50(4):102-109.
    [83]Shinichi N.. Mosquito-repellent finishing for fabrics[J]. Kako Gijutsu,2002,37(9):566-569.
    [84]防蚊布己在我国台湾批量生产[J].福建轻纺,2003(6):29.
    [85]WHO. Instructions for treatment and use of insecticide-treated mosquito nets, Use insecticide-treated mosquito nets to sleep in peace- and protect your health[C]. World Health Organization, Geneva,2002.
    [86]WHO. Guidelines for laboratory and field testing of long-lasting insecticidal mosquito neds[C]. World Health Organization, Geneva,2002.
    [87]李祖资,朱泰华,扬灼宏等.溴氰菊酯防制蚊虫药效的评试报告[J].华南预防医学,1983,02:79-84.
    [88]Lindsay S. W., Adiamah J. H., Miller J. E., et al. Pyrethroid-treated bednet effects on mosquitoes of the Anopheles gambiae complex in The Gambia[J]. Medical and veterinary entomology,1991,5(4):477-483.
    [89]Prasittisuk M., Prasittisuk C., Pothichiti V., et al. The effect of pyrethroid impregnated mosquito nets on field malaria vector populations in experimental huts and in individual local houses[J]. The Southeast Asian journal of tropical medicine and public health,1996,27(3):610-616.
    [90]Weerasooriya M. V., Munasinghe C. S., Mudalige, M. P., et al. Comparative efficacy of house curtains impregnated with permethrin, lambda-cyhalothrin or bendiocarb against the vector of bancroftian filariasis, Culex quinquefasciatus, in Matara[J]. Transactions of the Royal Society of Tropical Medicine and Hygiene,1996,90(2):103-104.
    [91]潘波,吴旭光,阳文胜.溴氰菊酯三种剂型浸泡蚊帐对中华按蚊的毒效比较[J].广东卫生防疫,1995,21(1):83-84.
    [92]潘波,吴旭光,阳文胜等.三氟氯氰菊醋浸泡蚊帐防制蚊媒的毒效观察[J].寄生虫与医学昆虫学报,1995,2(3):180-181.
    [93]季建萍.织物用驱虫防虫杀菌制剂[P].CN200710044075.X,2008,03.
    [94]何锡跃,季建平,王智达,白阳林.一种织物用防虫制剂[P].CN200610117902.9,2008,05.
    [95]Gopalakrishnan D. Mosquito repellent fabrics[J]. Man-Made Textiles in India.2007,50(1): 15-18.
    [96]杨晓蓉.一种防虫防蚊的纺织物[P].CN200720060576.2,2008,11.
    [97]赵德仁.高聚物合成工艺学[M].北京:化学工业出版社,1981.
    [98]胡云峰.避蚊胺微胶囊的制备研究[D].大连理工大学,2008.
    [99]冯卫,吴英,赵阿金.微胶囊技术在驱蚊整理上的应用[J].印染,1996,22(12):26-30.
    [100]华明扬.聚氨酯防蚊芳香微胶囊的制备方法[P].CN101161921,2008,04.
    [101]胡倩,刘维锦.缓释型防蚊织物的研究动态[J].丝绸,2008,8:51-54.
    [102]刘增加,杨银书,石淑珍等.复方缓释驱避剂处理衣服驱蚊蠓药效研究[J].中华卫生杀虫药械,2004,10(3):158-160.
    [103]陈丽琼,杨发达,杨建等.防蚊整理剂与制备方法及在防蚊织物中的应用[P].CN200710124845.1,2008,05.
    [104]Abdel-Mohdy, F.A., Moustafa M.G., Rehan, M. F., et al. Repellency of controlled-release treated cotton fabrics based on cypermethrin and prallethrin[J]. Carbohydrate Polymers,2008, 73(1):92-97.
    [105]Gulrajani, M. L., Agarwal A., Lohia C. Preparation of mosquito repellent fabrics[J]. Asian Dyer,2007,4(5):53-55.
    [106]Mathis R., Sladek, H. J. Microencapsulation of insect repellants for fibers and textiles and preparation of fiber with long lasting wash-proofed insect repellant properties[P]. EP1845186, 2007,04.
    [107]刘维德.蚊类抗药性及其测定[M].上海:科学出版社,1979.
    [108]付在凤,余品红蚊类抗药性监测方法研究进展[J].湖北预防医学杂志,2001,3(12):14-15.
    [109]贺艳萍.中国重要蝗区东亚飞蝗有机磷杀虫剂抗性生化机制研究[D].山西大学,2006.06.
    [110]Pasteur N., Georghiou G. Filter paper test for rapid determination of phenotypes with high esterase activity in opresistant mosquitoes [J]. Mosquito News,1981,41(1):181-183.
    [111]刘维德.近年我国蚊类抗药性研究进展[C].全国蚊类抗药性协作组会议资料,1993.
    [112]朱淮民,瞿逢伊,刘维德.用蚊虫酯酶单克隆抗体进行库蚊有机磷抗性的免疫学检测[J].中国寄生虫学与寄生虫病杂志,1994,12(3):165-168.
    [113]刘维德.蚊类抗药性监测[C].全国蚊类抗药性协作组会议资料,1992.
    [114]龚坤元.害虫抗药性及其防治论文汇编[M].陕西:天则出版社,1992.
    [115]中国医学科学院寄生虫病研究所.实用疟疾学[M],北京:人民卫生出版社,1978.
    [116]商成杰.功能纺织品[M],北京:中国纺织出版社,2006,07.
    [117]周仕涛.中国植物源农药的研究及前景[J].西南农业学报,2004,17(4):525-530.
    [118]赵莉,刘德立.国外植物源杀虫剂研究进展[J].农药,2008,47(2):82-86.
    [119]万方浩,叶正楚,郭建英等.我国生物防治研究的进展及展望[J].昆虫知识, 2000,37(2):65-74.
    [1]Bakouri H. E., Usero J., Morillo J., et al. Drin pesticides removal from aqueous solutions using acid-treated date stones[J]. Bioresource Technology,2009, (100):2676-2684.
    [2]Alvarez M., Calle A., Tamayo J., et al. Development of nanomechanical biosensors for detection of the pesticide DDT [J]. Biosensors and Bioelectronics.2003,18(5):649-653.
    [3]Rai R., Srivastav A., Jain K. ZnS and DDT (dodacanthiol-1) capping in CdSe nanoparticles[J]. Sensors and Actuators B,2009,138(1):304-309.
    [4]Vladimir Z. The Handbook of environmental chemistry[M]. Springer Berlin/Heidelberg,2003, 30, P47-90.
    [5]王菊生.染色工艺原理[M].北京:中国纺织出版社,1984.
    [6]孔繁超.涤纶针织物染整[M].北京:纺织工业出版社,1982.
    [7]GB 5713-97.纺织品耐水色牢度测试方法[S].
    [8]Laigo J., Christien F., Gall R., et al. SEM, EDS, EPMA-WDS and EBSD characterization of carbides in HP type heat resistant alloys [J]. Materials Characterization,2008,59(11):1580-1586.
    [9]Zhao H.; Kwak J. H.; Zhang Z., et al. Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis[J]. Carbohydrate Polymers,2007,68(2):235-241.
    [10]Cayuela D., Gace'n J., Tzvetkova M., et al. Determination by DSC of secondary crystallization due to heatsetting of thermoplastic fibres[J]. Polymer Testing,2008,27(6), 667-674.
    [11]Lebedev A. T., Shaydullina G. M., Sinikova N. A., et al. GC-MS comparison of the behavior of chlorine and sodium hypochlorite towards organic compounds dissolved in water[J]. Water Research,2004,38(17):3713-3718.
    [12]张小丽,蔡再生.驱杀蚊剂ZX-1处理织物的研究[J].2011,39(4):29-31.
    [13]胡之德,赵正风.分光光度分析法[M].宁夏:宁夏人民出版社,1987.
    [14]Ingamells W., Peters R. H., Thornton S. R. The mechanism of carrier dyeing[J]. Journal of Applied Polymer Science,1973,17(12):3733-3746.
    [15]Robers G. A. F., Solanki R. K. Carrier dyeing of polyester fibre part I-Studies of diffuision[J]. Journal of the Society of the Dyers and Colourists,1979,95(6):226-229.
    [16]David F. H., Arved D. A mechanism of carrier action in dyeing polyester with disperse dyestuffs[J]. Textile Research Journal,1975,45(3):235-239.
    [17]Teodorovic M., Majdanac L. J., Cosic D., et al. The thermal behavior of cellulose samples with different structure[J]. Journal of Thermal Analysis,1992,38(3):907-916.
    [18]Muller H. M., Bockhorn H., Krebs L., et al. A comparative kinetic study on the pyrolysis of three different wood species [J]. Journal of Analytical and Applied Pyrolysis,2003,68-69: 231-249.
    [19]Yang P. Y., Kokot S.. Thermal analysis of different cellulosic fabrics[J]. Journal of Applied Polymer Science,1996,60(8):1137-1146.
    [20]Fakirov S., Terephtalate P. Handbook of Thermoplastics[M]. New York, Marcel Dekker, 1997.
    [21]王妮,张建春,孙润军等.涤纶纤维结晶度测试方法的比较研究[J].西安工程科技学院学报,2007,21(3):285-291.
    [22]于伯龄,姜胶东.实用热分析[M].北京:纺织工业出版社,1990.
    [23]Hermans P. H., Weidin G. A. Quantitative investigation of the X-ray diffraction picture of some typical rayon specimens:Part Ⅰ[J]. Textile Research Journal,1961,31 (6):5582571.
    [24]Hermans P. H., Weidinger A. Quantitative Investigation of The X-ray diffraction picture of some typical rayon specimens:Part Ⅱ [J]. Textile Research Journal,1961,31(10):875-877.
    [25]肖文华,龚静华,金惠芬等.计算机分峰法研究复合超细纤维的结晶结构一第Ⅱ报:PET/PA6复合超细纤维的WAXD图谱解析[J].合成纤维,2000,29(6):10-12.
    [26]Bhatt N. V., Naik S. G. Effect of drawing of poly (ethylene terephthalate) fiber on molecular orientation [J]. Textile Research Journal,1984,54 (12):868-873.
    [27]金日光,华幼卿.高分子物理学[M].北京:化学工业出版社,2001.
    [28]Pal S. K., Candhi R. S. Structural properties of anionic modified PET textured yarn-A comparison with normal PET[J]. Indian Journal of Fiber & Textile Research,1996,21(6):109-115.
    [29]Abdel-Kareem O. M. A. The long-term effect of selected conservation materials used in the treatment of museum artefacts on some properties of textiles[J]. Polymer Degradation and Stability,2005,87(1):121-130.
    [30]陈建梅.红外光谱法对未知纤维的剖析[J].合成技术及应用,2003,2(18):47-49.
    [31]张德国,黄关葆,汪少朋.酸性染料可染改性聚酯的制备及表征[J].化纤与纺织技术,2010,1(39):5-9.
    [32]Silva D. A., Betioli A. M., Gleize P. J. P., et al. Degradation of recycled PET fibers in Portland cement-based materials[J]. Cement and Concrete Research,2005,9(35):1741-1746.
    [33]刘净维,董建朋.傅立叶衰减全反射红外光谱法在纺织与印染中的应用与进展[J].中国商界,2008,5:252-253.
    [34]王宏菊,陈旭辉,王成云.FTIR-ATR无损快速鉴定纺织纤维[J].印染,2001,27(3):45-46.
    [35]Xing Y. N., Guo Y., Xie M., et al. Detection of DDT and its metabolites in two estuaries of South China using a SPME-based device:First report of p,p'-DDMU in water column[J]. Environmental Pollution,2009,157(4):1382-1387.
    [1]孔繁超,涤纶针织物染整[M].北京:纺织工业出版社,1982.
    [2]蔡再生.纤维化学与物理[M].北京:国纺织出版社,2009.
    [3]Beard J. DDT and human health[J]. Science of the Total Environment,2006,355 (1-3):78-89.
    [4]Ingamells, W., Peters, R. H., Thornton, S. R. Mechanism of carrier dyeing[J]. Journal of Applied Polymer Science,1973,17(12):3735-3748.
    [5]Blackburn S., Fox M. R. The behaviour of leuco vat dyes above 100℃[J]. Journal of the Society of Dyers and Colourists,1955,71(2):80-89.
    [6]Waters E. The dyeing of terylene polyester fibre[J]. Journal of the Society of Dyers and Colourists,1950,66(12):609-615.
    [7]Jacobasch H. J., Baubock G., Schurz J. Problems and results of zeta-potential measurements on fibers[J].Colloid and Polymer Science,1985,263(1):3-24.
    [8]王菊生.染整工艺原理第三册[M].北京:中国纺织化出版社,2004.
    [9]黑木宣彦,陈水林译.染色理论化学(上)[M].北京:纺织工业出版社,1981.
    [10]Max Born. Einstein's theory of relativity [M]. New York:Courier Dover Publications,1962.
    [11]Eggeling J., Bell G. R., T. S. Jones. Temperature-dependent two-dimensional plasmons at clean and hydrogenated Ge (001) surfaces[J]. Physical Review B, Condensed Matter and Materials Physics,2000,62(11):7330-7335.
    [12]Venkataraman K., Daruewalla E. The chemistry of syntetic dyes[M]. New York:Physical chemistry of Dyeing,1974.
    [13]Peters R. H. The physical chemistry of dyeing[M]. Amsterdam:Textile chemistry,1975.
    [14]Levich V. Physicochemical Hydrodynamics[M]. New-Jersey:Prentice Hall,1962.
    [15]Brooks J., Nordon P. Effect of rate of flow on dye distribution in package dyeing[J]. Journal of the Society of Dyers and Colourists,1971,87(1):12-14.
    [16]McGregor, R., Peter, R. H. Some Observations on the Relation between Dyeing Properties and Fibre Structure[J]. Journal of the Society Dyers and Colourists,1968,84(5):267-276.
    [17]Carman P.C. Flow of gases through porous media[M]. London:Butterworths,1956.
    [18]Crank J. The Mathematics of Diffusion (2nd edit). Oxford University Press, Oxford,1999:15.
    [19]Hill, A.V. The energy liberated by an isolated muscle during the performance of work[J]. Proceedings of the Royal Society,1928,65:1-27.
    [20]Vickerstaff T. The physical chemistry of dyeing (2nd edit) [M]. London:Oliver and Boyd, 1954.
    [21]Crank J. The Mathematics of Diffusion[M]. Oxford University Press, Oxford,1975.
    [22]格·叶·克里切大斯基著,高敬琮.染色和印花过程中的吸附与扩散[M].北京:纺织工业出版社,1985.
    [1]Barron V. J., Kably, A. A.; Limon, L. L. et al. Methods of sex selection:a new method for preventing genetic diseases[J]. Ginecologiay Obstetricia de Mexico,1996,64:547-551.
    [2]Lines J. Mosquito nets and insecticides for net treatment:a discussion of existing and potential distribution systems in Africa[J]. Tropical Medicine & International Health,1996,1(5):616-632.
    [3]Raphael, N. G., Vincent, C., Martin, A., et al. Reduced efficacy of insecticide-treated nets and indoor residual spraying for malaria control in pyrethroid resistance area[J]. Emerging Infectious Diseases,2007,13(2):199-206.
    [4]WHO. Guidelines for testing mosquito aAdulticides for indoor residual spraying and treatment of mosquito nets[C]. World Health Organization, Geneva,2006.3.
    [5]Erol, A., Numan, H. Adsorption kinetics and isotherms of pesticides onto activated carbon-cloth[J]. Chemosphere,2005,60:1600-1607.
    [6]Bakouri, H. E., Usero, J., Morillo, J., et al. Drin pesticides removal from aqueous solutions using acid-treated date stones[J]. Bioresource Technology,2009,100:2676-2684.
    [7]Baocheng, Q. U., Zhou, J. T., Xiang, X. M., et al. Adsorption behavior of Azo Dye C. I. Acid Red 14 in aqueous solution on surface soils[J]. Journal of Environmental Sciences, 2008,20:704-709.
    [8]Selivansky, D. DSC studies of thermal events at the glass transition temperature region of partially oriented polyester fibers[J]. Thermochimica. Acta,1989,148 (4):381-386.
    [9]尹进阳.牛奶纤维染色理论的研究[D].河北科技大学,2009.
    [10]Lagergren S. Zur theorie der sogenannten adsorption geloster stoffe. Kungliga Svenska Vetenskapsakademiens[J]. Handlingar,1898,24:1-39.
    [11]Ho, Y. S., McKay, G. Sorption of dye from aqueous solution by peat[J]. Chemical Engineering Journal,1998,70(2):115-124.
    [12]Weber W. J., Morris, J. C. Kinetics of adsorption on carbon from solutions[J]. Journal of the Sanitary Engineering Division,1963,89(2):31-59.
    [13]Cegarra J., Puente P. Considerations on the kinetics of the dyeing process of polyester fibers with disperse dyes[J]. Textile Research Journal,1967,37(5):343-350.
    [14]Daneshvar N., Aber S., Khani A., et al. Study of imidaclopride removal from aqueous solution by adsorption onto granular activated carbon using an on-line spectrophotometric analysis system[J]. Journal of Hazardous Materials,2007,144(1-2):47-51.
    [15]Bakouri H. E., Usero J., Morillo J., et al. Drin pesticides removal from aqueous solutions using acid-treated date stones[J]. Bioresource Technology,2009,100 (10):2676-2684.
    [16]Ilhan, U. kinetics of the adsorption of reactive fyes by chitosan[J]. Dyes and pigment, 70(2006):76-83.
    [17]Chen, J. P., Wu, S., Chong, K. H. Surface modification of a granular activated carbon by citric acid for enhancement of copper adsorption[J]. Carbon,2003,41:1979-1986.
    [18]Kannan N., Sundaram M. M. Kinetics and mechanism of removal of methylene blue by adsorption on various carbons-a comparative study[J]. Dyes Pigments,2001,51 (1):25-40.
    [19]Johann F. O., Saravia V., Jose L., et al. Sunflower seed shells:A novel and effective low-cost adsorbent for the removal of the diazo dye Reactive Black 5 from aqueous solutions[J]. Journal of Hazardous Materials,2007,147 (3) 900-905.
    [20]Chiou, M. S., Chuang, G. S. Competitive adsorption of dye metanil yellow and RB15 in acid solutions on chemically cross-linked chitosan beads[J]. Chemosphere,2006,62(5),731-740.
    [21]隋淑英,朱平,许长海等.竹纤维的染色动力学性能研究[J].印染,2006,01:10-15.
    [22]宋心远,赵涛,沈煜如.聚酯超细纤维染色性能和理论研究[J].中国纺织大学学报,1997,23(3):5-7.
    [23]王雪燕,韩海燕.等离子体处理绢丝的染色动力学研究[J].印染,1998,24(4):11-13.
    [24]金咸穰著.染整工艺试验[M].北京:纺织工业出版社,1993.
    [25]傅忠君,郑化,郭中等.聚乳酸纤维染色动力学[J].印染,2007,(10):6-9.
    [26]高春朋,高铭,董瑛等.涤/锦超细纤维的染色动力学性能研究[J].印染助剂,2005,24(5):19-21.
    [27]Japan Textile News. Dyeing and finishing of polyester fiber. Osaka:Osaka Senken Ltd., 1978.
    [28]许建华,关艳锋,郑今欢.PLA纤维的染色动力学和热力学研究[J].浙江理工大学学报,2008,25(6):644-648.
    [29]Langmuir I. The adsorption of gases on the surfaces of glass, mica and platinum[J]. Journal of the American Chemical Society,1918,40(8):1361-1403.
    [30]Freundlich H. M. F. U" ber die adsorption in lo"sungen[J]. Chemistry,1906,57A:385-470.
    [31]Dubinin M. M., Radushkevich L.V. The equation of the characteristic curve of activated charcoal[J]. Physics and Chemistry of Section,1947,55:331.
    [32]Hobson J. P. Physical adsorption isotherms extending from ultrahigh vacuum to vapor pressure[J]. Journal of Physics and Chemistry,1969,73(8):2720-2727.
    [33]Hemming, D. F., Datyner, A. A mechanism of carrier action in dyeing polyester with disperse dyestuffs[J]. Textile Research Journal,1975,45:235-239.
    [34]Yen M. S., Cheng C. C. Absorption behavior of the polyester type polyols containing benzene rings toward poly(ethylene terephthalate) fiber[J]. Journal of Applied Polymer Science, 2002,86:2967-2976.
    [35]Peter R. H. The physical chemistry of dyeing[M]. North Carolina:Textile chemistry,1975.
    [36]Marshall J. The theory of coloration of textiles[M]. Bradford:Dyers Company Publications Trust,1975.
    [37]Qodaha A. Z., Shawaqfehb A. T., Lafia W. K. Adsorption of pesticides from aqueous solutions using oil shale ash[J], Desalination,2007,208:294-305.
    [38]Memon G. Z., Bhanger M. I., Akhtar M., et al. Adsorption of methyl parathion pesticide from water using watermelon peels as a low cost adsorbent[J]. Chemical Engineering Journal,2008, 138:616-621.
    [39]Singh D. Studies of the adsorption thermodynamics of oxamyl on fly ash[J]. Adsorption Science Technology,2000,18:741-748.
    [1]张菊仙,龚正达.中国蚊类研究概况[J].中国媒介生物学及控制杂志,2008,6(19):595-599.
    [2]陆宝麟.中国动物志-昆虫纲.双翅目.蚊科(上卷)[M].北京:科学出版社,1997.
    [3]雷心田,杨昌文,尹治成等.四川省蚊虫相调查[J].四川动物,1990,02:59-61.
    [4]高煜.淡色库蚊越冬期生理解剖的探讨[J].中华卫生杀虫药械,2009,4(15):271.
    [5]刘恩溥,陈健行.浙江嘉兴中华按蚊越冬的观察[J].昆虫学报,1959,01.
    [6]Dhileepan K. Physical factors and chemical cues in the oviposition behavior of arboviral vectors culex annulirostris and culex molestus diptera:culicidae[J]. Environ Entomol,1997, 26(2):318-326.
    [7]Du Y. J., Millar J. G. Oviposition responses of gravid culex quinquefasciatus and culex tarsalis to bulrush (Schoenoplectus acutus) infusions[J]. Journal of the American Mosquito Control Association,1999,15(4):500-509.
    [8]Navarro D., de Oliveira P.. Potting R., et al. The potential attractant or repellent effects of different water types on oviposition in Aedes aegypti L. (Dipt., Culicidae)[J]. Journal of Applied Entomology,2003,127(1):46-50.
    [9]郑能雄,罗斌,林云钦等.不同材料容器与水质对白纹伊蚊孳生状况的影响[J].海峡预防医学杂志,2002,8(6):17-20.
    [10]John B. S. Mosquito Ecology:Field Sampling Methods[M]. Springer,2007.
    [11]Samuel R. C. Aedes aegypti the yellow fever mosquito[M]. Cambridge Univeristy Press, 1960.
    [12]GB 5713-1997.纺织品耐水色牢度测试方法[S].
    [13]马新爱,王昊.淡色库蚊生物学特性观察[J].中国卫生检验杂志,1998,5(8):316-317.
    [14]张时妙.环保型蚊虫控制技术的初步研究[D].杭州:浙江大学硕士学位论文,2006.
    [15]吕文,孙养信.三带喙库蚊实验室种群的建立[J].医学动物防制,2009,9(25):668-669.
    [16]辛正,朱春雨,李梅等.试验用淡色库蚊室内标准养殖技术研究[J].中华卫生杀虫药械,2011,3(17):181-183.
    [17]陆宝麟,吴厚永.中国重要医学昆虫分类与鉴别[M].郑州:河南科学技术出版社,2003-1.
    [18]Kilpatrick A. M., Kramer L. D., Jones M. J., et al. West nile virus epidemics in North America are driven by shifts in mosquito feeding behavior[J]. PLos Biology,2006,4:1-5.
    [19]张晓龙,董言德,汪中明等.不同动物(血)对蚊虫的引诱作用[J].中国媒介生物学及控制杂志,2007,4(18):272-274.
    [20]Centers for Disease Control and Prevention. Gulidelines for Surveillance, Prevention, and Control[C]. Epidemic/Epizootic West Nile virus in the United States,2001:6-7.
    [21]杜永均,吴仲南.蚊虫搜寻吸血寄主和产卵行为的调节因子及相关嗅觉机理[J].昆虫学报,2007,50(10):1060-1069.
    [22]Takken W. The role of olfaction in host-seeking of mosquitoes:a review[J]. International Journal of Tropical Insect Science,1991,12(1):287-295.
    [23]Mboera L., Takken W., Sambu E. Z. The response of Culex quinquefasciatus (Diptera: Culicidae) to traps baited with carbon dioxide, 1-octen-3-ol, acetone, butyric acid and human foot odour in Tanzania[J]. Bulletin of Entomological Research,2000,90(2):155-159.
    [24]Takken W., Kline D. L. Carbon dioxide and 1-octen-3-ol as mosquito attractant[J]. Journal of the American Mosquito Control Association,1989,5(3):311-316.
    [25]Dekker T., Geier M., Carde T. Carbon dioxide instantly sensitized female yellow fever mosquitoes to human skin odours[J]. The Journal of Experimental Biology,2005,208(15):2963-2972.
    [26]Mboera L.E. G., Takken W. Carbon dioxide chemotropism in mosquitoes (Diptera:Culicidae) and its potential in vector surveillance and management programmes [J]. Medical and Veterinary Entomology,1997,85(7):355-368.
    [27]Geier M., Bosch O. J., Boeckh J. Ammonia as an attractive component of host odour for the yellow fever mosquito, Aedes aegypti[J]. Chemical Senses,1999,24(6):647-653.
    [28]Braks M. A., Takken W. Incubated human sweat but not fresh sweat attracts the malaria mosquito, Anopheles gambiae sensu strict[J]. Journal of Chemical Ecology,1999,25:663-672.
    [29]Braks M. A., Scholte E. J., Takken W., et al. Microbial growth enhances the attractive-ness of human sweat for the malaria mosquito, Anopheles gambiae sensu stricto (Diptera:Culicidae) [J]. Chemoecology,2000,10(3):129-134.
    [30]Braks M. A., Meijerink J., Takken W. The response of the malaria mosquito, Anopheles gambiae, to two components of human sweat, ammonia and L-lactic acid, in an olfactometer[J]. Physiological Entomology,2001,26(2):142-148.
    [31]Steib B. M., Geier M., Boeckh J. The effect of lactic acid on odor-related host preference of yellow fever mosquitoes[J]. Chemical. Senses,2001,26(5):523-528.
    [32]Costantini C., Gibson G., Sagnon N.F., et al. Mosquito responses to carbon dioxide in a West African Sudan savanna village[J]. Medical and Veterinary Entomology,1996,10(3):220-227.
    [33]Costantini C., Sagnon N. F., della Toore A., et al. Odor-mediated host preference of West African mosquitoes, with particular reference to malaria vectors[J]. The American Journal of Tropical Medicine and Hygiene,1998,58(1):56-63.
    [34]Braks M. A., Anderson R. A., Knols B. G. J. Infochemicals in mosquito host selection:human skin microflora and Plasmodium parasites[J]. Parasitology Today,1999,15(10):409-413.
    [35]Smallegange R. C., Qiu Y. T., van Loon J. A., et al. Synergism between ammonia, lactic acid and carboxylic acids as kairomones in the host-seeking behavior of the malaria mosquito Anopheles gambiae sensu stricto (Diptera:Culicidae)[J]. Chemical. Senses,2005,30(2):145-152.
    [36]Allan S. A., Bernier U. R., Kline D. L. Attraction of mosquitoes to volatiles associated with blood[J]. Journal of Vector Ecology,2006,31(1):71-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700