脂肪酸甲酯加氢制脂肪醇Cu/Zn催化剂的失活机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脂肪醇是精细化工的重要基础原料,利用其分子结构中的羟基官能团,与多种化合物进行反应得到的脂肪醇衍生物广泛地应用于表面活性剂、润滑剂等的工业生产。按原料来源来分,脂肪醇可分为合成醇和天然醇。由于受石油价格及消费者偏好的影响,以天然油脂为原料的天然醇生产规模逐渐超过以乙烯为原料的合成醇的生产规模。而脂肪酸甲酯高温高压加氢作为天然醇生产过程中的重要一步,其广泛使用的Cu/Zn催化剂寿命较短,是天然醇产业发展的瓶颈问题。本文研究了脂肪酸甲酯中可能存在的水、含硫化合物、含氯化合物、甘油和甘油酯对Cu/Zn催化剂催化加氢活性的影响,并对部分失活催化剂的二次加氢活性进行了初步探讨。
     本文的主要研究工作和成果有以下几方面:
     (1)对不同的脂肪酸甲酯原料进行了筛选,优选了月桂酸甲酯作为适合小试研究的脂肪酸甲酯原料,并在间歇高压釜中对月桂酸甲酯加氢制月桂醇的反应条件进行了优化。结果表明,反应温度为230℃、反应时间为8h、搅拌转速为450rpm、催化剂与月桂酸甲酯的投料质量比为5.5%、反应压力为11MPa是最为适宜的反应条件。
     (2)在月桂酸甲酯中添加不同质量含量的水,考察了水在月桂酸甲酯加氢制月桂醇的反应初始阶段和结束阶段对Cu/Zn催化剂加氢活性的影响,并通过XRD、BET、H2-TPR、SEM、TEM和ICP-AES对不同水失活程度的Cu/Zn催化剂进行了表征。结果表明,水在加氢反应的初始阶段就已经开始影响Cu/Zn催化剂的加氢活性,且随着水含量的增加,月桂酸甲酯的转化率和月桂醇的选择性随之下降。由于水在油性的反应体系中的溶解度极低,极易积聚在Cu/Zn催化剂表面,覆盖催化活性位,并促使Cu晶粒增长、比表面积降低、催化剂团聚加剧,水热浸出作用同时导致催化剂组分的流失,削弱铜和锌之间的协同效应,导致Cu/Zn催化剂的失活。水失活后的Cu/Zn催化剂的催化加氢活性能够部分恢复。
     (3)以1,2-二氯乙烷、1,1,2-三氯乙烷、氯代丁烷和氯代十二烷为模型毒物,考察了月桂酸甲酯加氢制月桂醇Cu/Zn催化剂的氯失活过程,并通过XRD、BET、ICP-AES和SEM对不同氯失活程度的Cu/Zn催化剂进行了表征。结果表明,月桂酸甲酯的转化率和月桂醇的选择性均随着不同含氯化合物含量的增加而降低。含氯化合物的存在会改变活性位的价态、降低催化剂的比表面积、促进Cu晶粒的增长、加剧Cu/Zn催化剂的团聚。从含氯化合物中分解出的氯原子能与催化剂中的ZnO结合生成溶于反应体系液相的ZnCl2,这又可以作为路易斯酸促进交酯反应的进行而得到副产物十二酸十二酯。
     (4)考察了硫醇、二硫醚和其他结构的硫化物对月桂酸甲酯加氢制月桂醇Cu/Zn催化剂的影响,并通过XRD、EDS和XPS对硫失活催化剂进行了表征。结果表明,月桂酸甲酯的转化率和月桂醇的选择性不仅分别随着硫醇和二硫醚的硫含量的增加而降低,且随着硫醇和二硫醚的碳链的增长而降低。在低硫浓度时,硫醇和二硫醚中的硫会与Cu/Zn催化剂中的Zn组分结合生成ZnS;在高硫浓度时,硫醇和二硫醚中的硫在与Zn组分结合外,还会与Cu组分结合生成硫化铜。此外,含硫化合物的毒性大小还与其结构有关,含硫化合物的质子亲合能越大,其对Cu/Zn催化剂的毒性越大。
     (5)在间歇高压釜中考察了甘油和三乙酸甘油酯对Cu/Zn催化剂上月桂酸甲酯加氢制月桂醇催化活性的影响,并采用XRD、BET、GC-MS和TG-DTA等方法对失活催化剂和反应产物进行了分析。结果表明,月桂酸甲酯的转化率和月桂醇的选择性均随着甘油和三乙酸甘油酯含量的增加而降低。甘油和三乙酸甘油酯并没有改变Cu/Zn催化剂活性中心的价态,且对催化剂晶粒大小变化影响不大。甘油会在Cu/Zn催化剂的作用下分解得到强疏油性物质1,2-丙二醇,并会吸附在催化剂上,导致催化剂活性中心被覆盖,催化剂比表面积减小,进而引起Cu/Zn催化剂的失活。但甘油失活催化剂可以通过甲醇处理再生恢复活性。三乙酸甘油酯会被加氢生成乙醇和甘油,同时经酯交换得到一系列副产物。而生成的部分甘油会再进一步得到丙烯醛,而这种含有双键的物质很容易聚合为难熔且难以溶解于常规溶剂的交联物,并覆盖催化剂的活性中心,降低催化剂的比表面积,也导致Cu/Zn催化剂的严重失活。
Fatty alcohols, as important raw materials for industry of fine chemicals, could be used to produce their derivatives by reacting with many compounds using its hydroxyl group, which have found numerous applications in surfactants and lubricants production. Fatty alcohol could be divided into natural alcohol and synthetic alcohol by the origination of its feedstock. Based on effect of the price fluctuation of crude oil and preference of terminal customers, the importance of nature fatty acids or esters process is steadily growing relative to the alternative petrochemical process during these years. Hydrogenation step of fatty aicd methyl ester to fatty alcohol is of great importance in the commercial production of natural alcohol. However, the Cu/Zn catalyst, widely used in this process, retains certain activity and slectivity for a relative short time scale, which have been the bottleneck for the development of natural alcohol production. In this dissertation, the effect of various impurities on Cu/Zn catalyst, like water, sulfur-containing compounds, chlorine-containing compounds, glycerine and glycerides, which are difficult to be removed from fatty esters, have been investigated. Furthermore, the rehydrogenation ability of deactivated Cu/Zn catalysts was discussed. The main work and results in this dissertation are listed as follows:
     (1) Several types of fatty aicd methyl esters were used as feedstock for experimental research of Cu/Zn deactivation, and methyl laurate was selected as the most suitable one. The effect of operation conditions on the hydrogenation of methyl laurate to lauryl alcohol was conducted using a stirred autoclave reactor system. The experimental results indicated that the mass transfer resistance could be eliminated with an agitation rate over 450rpm, the best performance of Cu/Zn catalyst could be reached at the reaction temperature of 230℃, hydrogen pressure of 11MPa, reaction time of 8h and catalyst-ester with a weight ration of 0.055.
     (2) The effect of water on Cu/Zn catalyst prepared by co-precipiation for hydrogenation of methyl laurate in a slurry phase was studied. The catalysts were characterized by means of XRD, BET, H2-TPR, SEM, TEM and ICP-AES. The results indicate that catalytic activity decreases with increased amount of water in methyl laurate at the initial or ending stage. Correalting with the results from the above characterization, it is found that the main causes for the water deactivation of the Cu/Zn catalyst were the water occlusion of active catalyst sites by the low solubility of water in the substrate and the promotion of crystal growth, as well as the Cu/Zn catalyst agglomeration in the presence of water. The catalytic activity of water deactivcated Cu/Zn catalyst could be patially recovered in the rehydrogenation reaction.
     (3) The mechanism of deactivation of Cu/Zn catalyst poisoned by organic chlorides in' hydrogenation of methyl laurate to lauryl alcohol was studied in a stirred autoclave. The un-poisoned and poisoned catalysts were characterized using XRD, BET, ICP-AES and SEM, respectively. The results indicated that both of catalytic activity and selectivity decreased with increasing amount of chlorides in methyl laurate. According to the characterization of the catalysts, the main causes for the chlorine deactivation of the Cu/Zn catalyst were that the chlorides could modify the valence state of active sites, decrease the BET surface area, and promote the growth of crystal and catalyst agglomeration. Further investigation showed that chlorine atom decomposed from the chlorides combined with ZnO to produce ZnCl2, which could be dissolved in the liquid and promote ester-exchange reaction to lauryl laurate as Lewis acid.
     (4) The sulfur deactivation of Cu/Zn catalyst was studied by investigating the effect of different types of sulfur-containing compounds on the hydrogenation of methyl laurate to lauryl alcohol. To the alkyl thiols and dialkyl disulfides, the conversiton of methyl laurate and the selectivityl of lauryl alcohol decresed not only with the increasing sulfur concentration, but also with the increment of the alkyl chain length. The XRD, EDS and XPS results indicated that alkyl thiols and dialkyl disulfides prefer to adsorb on Zn sites of the oxide followed by reacting with supported Cu, without S-C or S-S bond decomposition during the deactivation. Results of other sulfides deactivation further suggest that the poisoning effect of sulfides could be related to their molecular structures and valence bonds.
     (5) The effect of glycerine and glyceryl triacetate on the hydrogenation of methyl laurate over Cu/Zn catalyst was investigated, respectively. XRD, BET, GC-MS and TG-DTA were used for catalyst characterization or product analysis. Extremely oleophobic 1,2-propanediol and insoluble highly cross-linked solids could be generated from the thermal decomposition of glyceryl triacetate and glycerine, respectively, and block the catalytic sites by physical adsorption, derease the surface area, leading to the catalyst deactivation. The catalytic activity of glycerine deactivated catalyst could be regenerated by methanol washing.
引文
[1]印祖伟.国内脂肪醇市场现状与发展趋势(续前).日用化学品科学[J].2007,30(6):5-8.
    [2]印祖伟.国内脂肪醇市场现状与发展趋势(待续).日用化学品科学[J].2007,30(5):5-7.
    [3]殷福珊.天然脂肪醇的新型生产技术.日用化学品科学[J].2006,29(12):4-5.
    [4]董万田.国内天然脂肪醇生产与市场现状及其展望.日用化学品科学[J].2008,31(8):5-6.
    [5]LOOI, M.-H., LEE, S.-T., ABD-HAMID, S. B. Use of Citric Acid in Synthesizing a Highly Dispersed Copper Catalyst for Selective Hydrogenolysis. Chinese Journal of Catalysis[J].2008,29 (6):566-570.
    [6]Myers, D. Surfactant Science and Technology[M]. New York:John Wiley & Sons, 2006.
    [7]Hoydonckx, H. E., De Vos, D. E., Chavan, S. A., Jacobs, P. A. Esterification and Transesterification of Renewable Chemicals. Topics in Catalysis[J].2004,27 (1): 83-96.
    [8]Turek, T., Trimm, D. L., Cant, N. W. The Catalytic Hydrogenolysis of Esters to Alcohols. Catalysis Reviews:Science and Engineering[J].1994,36 (4):645-683.
    [9]Leonard, E. Fatty alcohols:Natural or petrochemical feedstocks in the 1980s? Journal of the American Oil Chemists' Society[J].1983,60 (6):1160-1161.
    [10]Rieke, R., Thakur, D., Roberts, B., White, G. Fatty methyl ester hydrogenation to fatty alcohol part Ⅱ:Process issues. Journal of the American Oil Chemists' Society[J]. 1997,74 (4):341-345.
    [11]Rieke, R., Thakur, D., Roberts, B., White, G. Fatty methyl ester hydrogenation to fatty alcohol part I:Correlation between catalyst properties and activity/selectivity. Journal of the American Oil Chemists' Society[J].1997,74 (4):333-339.
    [12]郭建国,周庚生.椰油酸甲酯中压催化加氢制脂肪醇的研究.日用化学工业[J].1997,(5):1-3.
    [13]周庚生,郭建国.椰油酸甲酯中压加氢制脂肪醇催化剂的研制.日用化学工业[J].1996,(3):7-9.
    [14]关洪,谢扬.脂肪酸酯催化加氢制醇的反应动力学研究.石油化工[J].1989,18(9):586-593.
    [15]蔡惠业.脂肪酸(或酯)加氢制脂肪醇催化剂进展及评述.化工时刊[J].1997,11(6):9-12.
    [16]Hattori, Y., Yamamoto, K., Kaita, J., Matsuda, M., Yamada, S. The development of nonchromium catalyst for fatty alcohol production. Journal of the American Oil Chemists' Society[J].2000,77 (12):1283-1288.
    [17]Brands, D. S., U-A-Sai, G., Poels, E. K., Bliek, A. Sulfur Deactivation of Fatty Ester Hydrogenolysis Catalysts. Journal of Catalysis[J].1999,186 (1):169-180.
    [18]Voeste, T., Buchold, H. Production of fatty alcohols from fatty acids. Journal of the American Oil Chemists' Society[J].1984,61 (2):350-352.
    [19]李新怀,吕小婉,李耀会,李伦,李小定.甲醇合成气的深度净化技术.小氮肥设计技术[J].2005,26(1):19-22.
    [20]Denny, P. J., Twigg, M. V., Delmon, B., Froment, G. F. In Studies in Surface Science and Catalysis[M], Elsevier,1980.
    [21]Roberts, G. W., Brown, D. M., Hsiung, T. H., Lewnard, J. J. Deactivation of methanol synthesis catalysts. Industrial & Engineering Chemistry Research[J].1993, 32 (8):1610-1621.
    [22]Delmon, B., Froment, G. F., Eds. Catalyst Deactivation 1999[M], Elsevier: Amsterdam,1999.
    [23]Forzatti, P., Lietti, L. Catalyst deactivation. Catalysis Today[J].1999,52 (2-3): 165-181.
    [24]Twigg, M. V., Spencer, M. S. Deactivation of supported copper metal catalysts for hydrogenation reactions. Applied Catalysis A:General[J].2001,212 (1-2):161-174.
    [25]Hughes, R. Deactivation of catalysts[M]. New York:Academic Press,1994.
    [26]Spencer, M. S. Stable and metastable metal surfaces in heterogeneous catalysis. Nature[J].1986,323 (6090):685-687.
    [27]Bartholomew, C. H. Mechanisms of catalyst deactivation. Applied Catalysis A: General[J].2001,212 (1-2):17-60.
    [28]Tohji, K., Udagawa, Y., Mizushima, T., Ueno, A. The structure of the copper/zinc oxide catalyst by an in-situ EXAFS study. The Journal of Physical Chemistry [J]. 1985,89 (26):5671-5676.
    [29]关鹏博.脂肪醇制造与应用[M].北京:轻工业出版社,1990.
    [30]李承烈.催化剂失活[M].北京:化学工业出版社,1989.
    [31]李荣生,甄开吉,王国甲.催化作用基础[M].北京:科学出版社,1990.
    [32]休斯,R.催化剂的失活[M].北京:科学出版社,1990.
    [33]吕宝乾,彭正强,金启安,温海波,符悦冠.15种杀虫剂对椰心叶甲幼虫及椰甲截脉姬小蜂的毒性.热带作物学报[J].2005,26(1):47-51.
    [34]辛迪.美将修定硫酰氟最高残量.农化新世纪[J].2005,(6):31-31.
    [35]Batyrev, E. D., van den Heuvel, J. C., Beckers, J., Jansen, W. P. A., Castricum, H. L. The effect of the reduction temperature on the structure of Cu/ZnO/SiO2 catalysts for methanol synthesis. Journal of Catalysis[J].2005,229 (1):136-143.
    [36]Sellers, H., Shustorovich, E. Chemistry of sulfur oxides on transition metal surfaces: BOC-MP analysis. Journal of Molecular Catalysis A:Chemical[J].1997,119 (1-3): 367-375.
    [37]Maxted, E. B. In Advances in Catalysis[M], Frankenburg, V. I. K. W. G., Ed.; Academic Press Inc.:New York,1951.
    [38]Mφrk, P. C., Norg rd, D. Nickel-catalyzed hydrogenation:A study of the poisoning effect of halogen-containing compounds. Journal of the American Oil Chemists' Society[J].1976,53 (7):506-510.
    [39]Van de Scheur, F., Sai, G., STAAL, L. The effect of free fatty acid on the reactivity of copper-based catalysts for the hydrogenolysis of fatty acid methyl esters. Journal of the American Oil Chemists' Society[J].1995,72 (9):1027-1031.
    [40]Kreutzer, U. Manufacture of fatty alcohols based on natural fats and oils. Journal of the American Oil Chemists' Society[J].1984,61 (2):343-348.
    [41]国海光,韩文锋.铜基合成甲醇催化剂失活研究进展.工业催化[J].2003,11(3):39-42.
    [42]Semagina, N., Kiwi-Minsker, L. Recent Advances in the Liquid-Phase Synthesis of Metal Nanostructures with Controlled Shape and Size for Catalysis. Catalysis Reviews:Science and Engineering[J].2009,51 (2):147-217.
    [43]Zhu, W., Wang, L., Liu, S., Wang, Z. Characterization and catalytic behavior of silica-supported copper catalysts prepared by impregnation and ion-exchange methods. Reaction Kinetics and Catalysis Letters[J].2008,93 (1):93-99.
    [44]Yurieva, T. M., Kustova, G. N., Minyukova, T. P., Poels, E. K., Bliek, A., Demeshkina, M. P., Plyasova, L. M., Krieger, T. A., Zaikovskii, V. I. Non-hydrothermal synthesis of copper-, zinc-and copper-zinc hydrosilicates. Materials Research Innovations [J].2001,5 (1):3-11.
    [45]Yurieva, T. M., Minyukova, T. P., Kustova, G. N., Plyasova, L. M., Krieger, T. A., Demeshkina, M. P., Zaikovskii, V. I., Malakhov, V. V., Dovlitova, L. S. Copper ions distribution in synthetic copper-zinc hydrosilicate. Materials Research Innovations [J]. 2001,5 (2):74-80.
    [46]李新怀,吕小婉.甲醇生产中合成气的深度净化问题.气体净化[J].2004,4(4):158-162.
    [47]周庚生.椰油甲酯中压加氢制脂肪醇动力学研究.日用化学工业[J].2003,33(4):211-214.
    [48]张文忠,丁时鑫.Cu/SiO2催化剂的制备与表征.分子催化[J].1993,7(3):178-185.
    [49]Kohler, M. A., Curry-Hyde, H. E., Hughes, A. E., Sexton, B. A., Cant, N. W. The structure of Cu/SiO2 catalysts prepared by the ion-exchange technique. Journal of Catalysis[J].1987,108 (2):323-333.
    [50]Shimokewabe, M., Takezaeva, N., Kobayashi, H. Characterization of copper-silica catalysts prepared by ion-exchange. Applied Catalysis[J].1982,2 (6):379-387.
    [51]Van Der Grift, C., Elberse, P., Mulder, A., Geus, J. Preparation of silica-supported copper catalysts by means of deposition-precipitation. Applied Catalysis[J].1990,59 (2):275-289.
    [52]Van Der Grift, C. J. G., Wielers, A. F. H., Mulder, A., Geus, J. W. The reduction behaviour of silica-supported copper catalysts prepared by deposition-precipitation. Thermochimica Acta[J].1990,17195-113.
    [53]Grift, C. J. G., Geus, J. W., Kappers, M. J., Maas, J. H. Characterization of copper-silica catalysts by means ofin Situ diffuse reflectance infrared Fourier transform spectroscopy. Catalysis Letters[J].1989,3 (2):159-168.
    [54]张荣,孙予罕.Cu/SiO2表面性质对甲醇脱氢反应性能的影响.物理化学学报[J].1999,15(7):652-656.
    [55]杨儒,刘瑛.CuO-BaO/SiO2催化剂的表面性质,还原性能及氢解反应性能.石油化工[J].1999,28(7):435-440.
    [56]Toyir, J., de la Piscina, P. R., Fierro, J. L. G., Horns, N. Highly effective conversion of CO2 to methanol over supported and promoted copper-based catalysts:influence of support and promoter. Applied Catalysis B:Environmental[J].2001,29 (3): 207-215.
    [57]Toyir, J., Ramez de la Piscina, P., Fierro, J. L. G., Homs, N. Catalytic performance for CO2 conversion to methanol of gallium-promoted copper-based catalysts: influence of metallic precursors. Applied Catalysis B:Environmental[J].2001,34 (4): 255-266.
    [58]Brands, D. S., Poels, E. K., Bliek, A. Ester hydrogenolysis over promoted Cu/SiO2 catalysts. Applied Catalysis A:General[J].1999,184 (2):279-289.
    [59]Stakheev, A., Kustov, L. Effects of the support on the morphology and electronic properties of supported metal clusters:modern concepts and progress in 1990s. Applied Catalysis A:General[J].1999,188 (1-2):3-35.
    [60]SIJPKES, A., Harmen, VAN DER PUIL, N., VAN DEN BRINK, P., John, DE KEIJZER, A., Hendricus, Joseph, Franciscus, ABDUL HAMID, S., Bee. Chromium-free Catalysts of Metalic Cu and At Least One Second Metal[P], WO/2005/070537,2005.
    [61]Chen, Y. Z., Chang, C. L. Cu-B2O3/SiO2, an effective catalyst for synthesis of fatty alcohol from hydrogenolysis of fatty acid esters. Catalysis Letters[J].1997,48 (1): 101-104.
    [62]Fujitani, T., Saito, M., Kanai, Y., Takeuchi, M., Moriya, K., Watanabe, T., Kawai, M., Kakumoto, T. Methanol Synthesis from CO2 and H2 over Cu/ZnO/Ga2O3 Catalyst. Chemistry Letters[J].1993,22 (6):1079-1080.
    [63]van de Scheur, F. T., Staal, L. H. Effects of zinc addition to silica supported copper catalysts for the hydrogenolysis of esters. Applied Catalysis A:General[J].1994,108 (1):63-83.
    [64]Jansen, W. P. A., Beckers, J., v. d. Heuvel, J. C., Denier v. d. Gon, A. W., Bliek, A., Brongersma, H. H. Dynamic Behavior of the Surface Structure of Cu/ZnO/SiO2 Catalysts. Journal of Catalysis[J].2002,210 (1):229-236.
    [65]Van Der Grift, C. J. G., Wielers, A. F. H., Jogh, B. P. J., Van Beunum, J., De Boer, M., Versluijs-Helder, M., Geus, J. W. Effect of the reduction treatment on the structure and reactivity of silica-supported copper particles. Journal of Catalysis[J]. 1991,131 (1):178-189.
    [66]Grunwaldt, J., Molenbroek, A., Topsoe, N., Topsoe, H., Clausen, B. In situ investigations of structural changes in Cu/ZnO catalysts. Journal of Catalysis[J].2000, 194 (2):452-460.
    [67]Andreasen, J., Rasmussen, F., Helveg, S., Molenbroek, A., Stahl, K., Nielsen, M., Feidenhans'l, R. Activation of a Cu/ZnO catalyst for methanol synthesis. Journal of Applied Crystallography[J].2006,39 (2):209-221.
    [68]Brands, D. S., Poels, E. K., Krieger, T. A., Makarova, O. V., Weber, C., Veer, S., Bliek, A. The relation between reduction temperature and activity in copper catalysed ester hydrogenolysis and methanol synthesis. Catalysis Letters[J].1996,36 (3): 175-181.
    [69]Spencer, M. The role of zinc oxide in Cu/ZnO catalysts for methanol synthesis and the water-gas shift reaction. Topics in Catalysis[J].1999,8 (3):259-266.
    [70]Rodriguez, J. A., Chaturvedi, S., Kuhn, M. A comparison of the reaction of S2 with metallic copper, Cu2O and Cu/ZnO:electronic properties and reactivity of copper. Surface Science[J].1998,415 (3):L1065-L1073.
    [71]Kurtz, M., Wilmer, H., Genger, T., Hinrichsen, O., Muhler, M. Deactivation of supported copper catalysts for methanol synthesis. Catalysis Letters[J].2003,86 (1): 77-80.
    [72]van de Scheur, F. T., Brands, D. S., van der Linden, B., Luttikhuis, C.O., Poels, E. K., Staal, L. H. Activity-enhanced copper-zinc based catalysts for the hydrogenolysis of esters. Applied Catalysis A:General[J].1994,116 (1-2):237-257.
    [73]van de Scheur, F. T., van der Linden, B., Mittelmeijer-Hazeleger, M. C., Nazloomian, J. G., Staat, L. H. Structure-activity relation and ethane formation in the hydrogenolysis of methyl acetate on silicasupported copper catalysts. Applied Catalysis A:General[J].1994,111 (1):63-77.
    [74]骆善道,郑昌权.椰子油加氢制椰油醇新催化剂的性能.精细化工[J].1992,9(1):24-27.
    [75]Patterson, A. L. The Scherrer Formula for X-Ray Particle Size Determination. Physical Review[J].1939,56 (10):978.
    [76]Pereda, S., Bottini, S. B., Brignole, E. A. Phase equilibrium engineering of supercritical hydrogenation reactors. AIChE Journal[J].2002,48 (11):2635-2645.
    [77]胡英,吕瑞东,刘国杰.物理化学[M].北京:高等教育出版社,1988.
    [78]王尚弟,孙俊全.催化剂工程导论[M].北京:化学工业出版社,2001.
    [79]Wang, D., Han, Y., Tan, Y., Tsubaki, N. Effect of H2O on Cu-based catalyst in one-step slurry phase dimethyl ether synthesis. Fuel Processing Technology [J].2009, 90 (3):446-451.
    [80]Thakur, D., Roberts, B., White, G., Rieke, R. Fatty methyl ester hydrogenation to fatty alcohol:Reaction inhibition by glycerine and monoglyceride. Journal of the American Oil Chemists' Society[J].1999,76 (8):995-1000.
    [81]Muttzall, K. M. K., v. d. Berg, P. J. Chemical Reaction engineering[M], Oxford: Pergamon Press,1971.
    [82]Moulijn, J., Van Diepen, A., Kapteijn, F. Catalyst deactivation:is it predictable? What to do? Applied Catalysis A, General[J].2001,212 (1-2):3-16.
    [83]Satterfield, C. N. Heterogeneous catalysis in industrial practice[M]. New York: McGraw-Hill,1991.
    [84]Robertson, S. D., McNicol, B. D., Baas, J. H. D., Kloet, S. C., Jenkins, J. W. Determination of reducibility and identification of alloying in copper-nickel-on-silica catalysts by temperature-programmed reduction. Journal of Catalysis[J].1975,37 (3): 424-431.
    [85]Shimokawabe, M., Asakawa, H., Takezawa, N. Characterization of copper/zirconia catalysts prepared by an impregnation method. Applied Catalysis[J].1990,59 45-58.
    [86]Van Der Grift, C. J. G., Mulder, A., Geus, J. W. Characterizaiton of silica-supported copper catalysts by means of temperature-programmed reduction. Applied Catalysis[J].1990,60 181-192.
    [87]Parameswaran, V. R., Lee, S., Wender, I. The role of water in methanol synthesis. Fuel Science and Technology International[J].1989,7 (7):899-918.
    [88]Tartamella, T., Lee, S. Role of in-situ produced methanol on the catalyst deactivation in the liquid phase methanol synthesis process. Fuel Science and Technology International[J].1996,14 (5):713-727.
    [89]Heldal, J., Mφrk, P. Chlorine-Containing compounds as copper catalyst poisons. Journal of the American Oil Chemists' Society[J].1982,59 (9):396-398.
    [90]Mφrk, P. C., Heldal, J. A. Dehydrohalogenation on copper catalysts. Journal of Catalysis[J].1982,75 (1):49-55.
    [91]Miyake, T., Makino, T., Taniguchi, S.-i., Watanuki, H., Niki, T., Shimizu, S., Kojima, Y., Sano, M. Alcohol synthesis by hydrogenation of fatty acid methyl esters on supported Ru-Sn and Rh-Sn catalysts. Applied Catalysis A:General[J].2009,364 (1-2):108-112.
    [92]Menon, P. G. Diagnosis of Industrial Catalyst Deactivation by Surface Characterization Techniques. Chemical Reviews[J].1994,94 (4):1021-1046.
    [93]Bartholomew, C. H., Agrawal, P. K., Katzer, J. R., D.D. Eley, H. P., Paul, B. W. In Advances in Catalysis[M], Academic Press,1982.
    [94]服部泰幸,田村裕之,门胁秀敏,田清.生产脱硫的油脂或脂肪酸酯的方法以及用所说的脱硫的油脂或脂肪酸酯生产醇的方法[P],CN1069061,1993.
    [95]田村裕之,服部泰幸,羽柒域三,田端修,田清,福冈纪明.制备脱硫脂和油或脂肪酸酯的方法以及用上述脱硫脂和油或脂肪酸酯制备醇的方法[P],CN1066053,1992.
    [96]Maxted, E. B. The poisoning of metallic catalysts[M]. New York:Academic Press Inc.,1951.
    [97]Rodriguez, K. A., Kuhn, M., Hrbek, J. The interaction of Cu and S2 with aluminum and alumina surfaces:a comparative study. Surface Science[J].1997,380 (2-3): 397-407.
    [98]Thomas, J. M., Thomas, W. J. Principles and Practice of Heterogeneous Catalysis[M]. New York:VCH,1997.
    [99]Shatynski, S. R. The thermochemistry of transition metal sulfides. Oxidation of Metals[J].1977,11 (6):307-320.
    [100]Lindstrom, B., Pettersson, L. Deactivation of copper-based catalysts for fuel cell applications. Catalysis Letters[J].2001,74 (1):27-30.
    [101]Nan, Z., Wang, X.-Y., Zhao, Z. Formation of various morphologies of copper sulfides by a solvothermal method. Journal of Crystal Growth[J].2006,295 (1): 92-96.
    [102]John, F. M., William, F. S., Peter, E. S., Kenneth, D. B. Handbook of X-ray Photoelectron Spectroscopy[M]. Eden Prairie:Perkin Elmer Corporation,1992.
    [103]Noble-Luginbuhl, A. R., Nuzzo, R. G. Assembly and Characterization of SAMs Formed by the Adsorption of Alkanethiols on Zinc Selenide Substrates. Langmuir[J]. 2001,17 (13):3937-3944.
    [104]Pesika, N. S., Hu, Z., Stebe, K. J., Searson, P. C. Quenching of Growth of ZnO Nanoparticles by Adsorption of Octanethiol. The Journal of Physical Chemistry B[J]. 2002,106 (28):6985-6990.
    [105]Dai, W.-L., Sun, Q., Deng, J.-F., Wu, D., Sun, Y.-H. XPS studies of Cu/ZnO/Al2O3 ultra-fine catalysts derived by a novel gel oxalate co-precipitation for methanol synthesis by CO2+H2. Applied Surface Science[J].2001,177 (3):172-179.
    [106]李志红,黄伟,左志军,宋雅君,谢克昌.用XPS研究不同方法制备的CuZnAl一步法二甲醚合成催化剂.催化学报[J].2009,30(2):171-177.
    [107]Figueiredo, R. T., Martez-Arias, A., Granados, M. L., Fierro, J. L. G. Spectroscopic Evidence of Cu-Al Interactions in Cu-Zn-Al Mixed Oxide Catalysts Used in CO Hydrogenation. Journal of Catalysis[J].1998,178 (1):146-152.
    [108]Velu, S., Suzuki, K., Vijayaraj, M., Barman, S., Gopinath, C. S. In situ XPS investigations of Cul-xNixZnAl-mixed metal oxide catalysts used in the oxidative steam reforming of bio-ethanol. Applied Catalysis B:Environmental [J].2005,55 (4): 287-299.
    [109]Chusuei, C. C., Brookshier, M. A., Goodman, D. W. Correlation of Relative X-ray Photoelectron Spectroscopy Shake-up Intensity with CuO Particle Size. Langmuir[J]. 1999,15 (8):2806-2808.
    [110]Peplinski, B., Unger, W. E. S., Grohmann, I. Characterization of Cu-Zn-Al oxide catalysts in the precipitaed, calcined and reduced state by means of XPS with the help of a finger-print data base. Applied Surface Science[J].1992,62 (3):115-129.
    [111]Waite, M. M., Shah, S. I. X-ray photoelectron spectroscopy of initial stages of nucleation and growth of diamond thin films during plasma assisted chemical vapor deposition. Applied Physics Letters[J].1992,60 (19):2344-2346.
    [112]席靖宇,王志飞.Cu-Ni/Zn催化剂甲醇裂解机理原位XPS研究.物理化学学报[J].2002,18(1):82-86.
    [113]辛勤.催化研究中的原位技术[M]:北京大学出版社,1993.
    [114]Campbell, C. T., Daube, K. A., White, J. M. Cu/ZnO(0001 [combining macron]) and ZnOx/Cu(111):Model catalysts for methanol synthesis.Surface Science[J].1987, 182 (3):458-476.
    [115]Vesely, C. J., Langer, D. W. Electronic Core Levels of the IIB-VIA Compounds. Physical Review B[J].1971,4 (2):451.
    [116]Sutherland, D. G. J., Carlisle, J. A., Elliker, P., Fox, G., Hagler, T. W., Jimenez, I., Lee, H. W., Pakbaz, K., Terminello, L. J., Williams, S. C., Himpsel, F. J., Shuh, D. K., Tong, W. M., Jia, J. J., Callcott, T. A., Ederer, D. L. Photo-oxidation of electroluminescent polymers studied by core-level photoabsorption spectroscopy. Applied Physics Letters[J].1996,68 (15):2046-2048.
    [117]Lang, P., Nogues, C. Self-assembled alkanethiol monolayers on a Zn substrate: Interface studied by XPS. Surface Science[J].2008,602 (13):2137-2147.
    [118]Mekhalif, Z., Massi, L., Guittard, F., Geribaldi, S., Delhalle, J. X-Ray photoelectron spectroscopy study of polycrystalline zinc modified by n-dodecanethiol and 3-perfluorooctyl-propanethiol Thin Solid Films[J].2002,405 (1-2):186-193.
    [119]Sinapi, F., Forget, L., Delhalle, J., Mekhalif, Z. Self-assembly of (3-mercaptopropyl) trimethoxysilane on polycrystalline zinc substrates towards corrosion protection. Applied Surface Science[J].2003,212-213 464-471.
    [120]Nuzzo, R. G., Zegarski, B. R., Dubois, L. H. Fundamental studies of the chemisorption of organosulfur compounds on gold(111). Implications for molecular self-assembly on gold surfaces. Journal of the American Chemical Society[J].1987, 109 (3):733-740.
    [121]Rufael, T. S., Huntley, D. R., Mullins, D. R., Gland, J. L. Adsorption and Reaction of Dimethyl Disulfide on the Ni(111) Surface. The Journal of Physical Chemistry B[J]. 1998,102 (18):3431-3440.
    [122]Noh, J., Jang, S., Lee, D., Shin, S., Ko, Y. J., Ito, E., Joo, S.-W. Abnormal adsorption behavior of dimethyl disulfide on gold surfaces. Current Applied Physics [J].2007,7 (6):605-610.
    [123]Fine, D., Westmore, J. Heats of formation of some alkylthio radicals. Canadian Journal of Chemistry[J].1970,48 (3):395-400.
    [124]Hunter, E., Lias, S. Evaluated gas phase basicities and proton affinities of molecules: An update. Journal of Physical and Chemical Reference Data[J].1998,27 413.
    [125]David, R. L. CRC Handbook of Chemistry and Physics[M]. Boca Raton:CRC Press, 2002.
    [126]Koritala, S. Selective hydrogenation of soybean oil:Ⅶ. Poisons and inhibitors for copper catalysts. Journal of the American Oil Chemists' Society[J].1975,52 (7): 240-243.
    [127]Wang, S., Liu, H. Selective hydrogenolysis of glycerol to propylene glycol on Cu-ZnO catalysts. Catalysis Letters[J].2007,117 (1):62-67.
    [128]Huang, L., Zhu, Y.-L., Zheng, H.-Y., Li, Y.-W., Zeng, Z.-Y. Continuous production of 1,2-propanediol by the selective hydrogenolysis of solvent-free glycerol under mild conditions. Journal of Chemical Technology & Biotechnology[J].2008,83 (12): 1670-1675.
    [129]David, M. S., Brendan, D. M. Process for the direct hydrogenation of triglycerides[P], US5475160,1995.
    [130]Christoph, R., Schmidt, B., Steinberner, U., Dilla, W., Karinen, R. in Ullmann's Encyclopedia of Industrial Chemistry[M], John Wiley & Sons, Inc., New York: 2008.
    [131]Arntz, D., Fischer, A., Hopp, M., Jacobi, S., Sauer, J., Ohara, T., Sato, T., Shimizu, N., Schwind, H. in Ullmann's Encyclopedia of Industrial Chemistry[M], John Wiley & Sons, Inc., New York:2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700