我国几种土壤中铁锰结核的物质组成与表面化学性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用X-射线衍射(XRD)、透射电镜(TEM/ED/EDS)、扫描电镜(SEM/EDS)、X射线光电子能谱(XPS)和全量分析、化学选择溶提等技术,研究了我国几类土壤铁锰结核的形态构造、氧化锰矿物类型与形貌、物质组成、对重金属离子的吸附和Cr(Ⅲ)的氧化,探讨了铁锰结核和所含氧化锰矿物的性质、形成机制及其与土壤环境条件的关系。
     1、本文提出的方法—用样液比1:100、pH3.0的0.1mol/L HAHC处理样品2小时,能从铁锰结核中分别溶提出80.6~86.3%、1.9~3.8%和<0.36%的锰、铁和铝,说明将此方法用于分离、测定铁锰结核中的锰、铁、铝是可行的。
     2、与土壤相比,铁锰结核中的MnO_2、Pb、Cd、Ba、Co、Ni、Cu、Zn强烈富集,Fe_2O_3明显富集,CaO、P_2O_5、Na_2O稍有富集,SiO_2、Al_2O_3、K_2O、MgO、TiO_2有所减少。结核中Ba、Cd、Co、Cu、Ni、Pb、Zn含量与MnO_2含量显著相关;而土壤中的Cd、Cu、Ni、Pb、Zn含量与Fe_2O_3,含量显著相关。因子分析表明铁锰结核中的元素可分三组:第一组为SiO_2、Al_2O_3、K_2O、MgO、CaO、Na_2O、TiO_2、Sr,代表硅酸盐矿物的元素组合;第二组为MnO_2、Ba、Cd、Co、Cu、Li、Ni、Pb、Zn,它们的富集与氧化锰矿物有关;第三组为Fe_2O_3、P_2O_5、Cr,其富集与氧化铁矿物有关。XPS分析表明铁锰结核中的锰为+3、+4价。
     3、SEM下的铁锰结核背散射电子(BSE)图像表明,从南到北,结核内环带构造由清晰到模糊;Mn、Fe的环带分布逐渐减弱,Ca的增强。SEM/EDS分析表明:①MnO_2、Fe_2O_3在结核剖面上呈波形曲线分布,二者含量交替上升或下降,波形变化由南向北更加频繁,结核的环带构造逐渐由厚变薄;②红壤、黄棕壤铁锰结核剖面上MnO_2含量的变异系数比砂姜黑土、棕壤的高,Fe_2O_3的则相反;③酸性-微酸性土壤中铁锰结核的Ca、Ba、Co、Ni、Pb富集于氧化锰矿物,微碱性-碱性土壤中铁锰结核的Ca、Ba富集于氧化锰矿物,Co、Ni、Pb主要沉淀富集于结核。铁锰结核的生长可分为土壤渍水与贫水两个阶段,环带构造可能是在较大全球气候变化或新构造运动中引起地形、土壤环境巨大波动的条件下形成的。
     4、土壤的层状硅酸盐矿物由南到北逐渐从以1:1型高岭石为主过渡到以2:1型矿物为主;1.4nm过渡矿物转变成蛭石,蒙脱石从无到有,三水铝石从有到无;铁锰结核从南到北的变化与相应土壤的一致,但不含三水铝石,1.4nm矿物为蛭石,2:1型矿物含量比相应土壤的高,高岭石含量则相反。随着铁锰结核颗粒增大,高岭石含量减少、水云母含量增加,层状硅酸盐矿物与土壤间的差异增大。铁锰结核中氧化铁的活化度与游离度比相应土壤的大,从南到北由针-赤混合型向针铁矿过渡,针铁矿比例增加,赤铁矿比例逐渐减少直至消失,与土壤的变化一致,但G/(G+H)比值比土壤的高,针、赤铁矿的铝同晶替代量比相应土壤的低。
    
     5、砂姜黑土铁锰结核的锰矿物以钙锰矿与狸硬锰矿为主,其它土壤的均以理
    硬锰矿为主。黄褐土、武汉黄棕壤铁锰结核中还含水钠锰矿、水羟锰矿,宜章红壤、
    武汉黄棕壤、砂姜黑土还含锰钡矿,桂阳红壤有少量锰铅矿;铁锰结核中的锰矿物
    类型与其所含特征元素的地球化学特性相符。TEMffeDffiDS的观察与分析表明,桂
    阳红壤、黄褐土、棕壤铁锰结核中理硬锰矿的结晶颗粒为500urn~1000nm,呈片状
    或板块状,衍射花样清晰;武汉黄棕壤的水钠锰矿和砂姜黑土的钙锰矿在TIM明
    场下都为微晶集合体;前者的单个晶粒不易分辨,只在暗场像下显示出10urn—30urn
    极细小晶体颗粒,电子衍射花样呈多晶衍射环,后者多呈纤维状、长片状或针状,
    电子衍射花样呈较清晰的多晶衍射环。
     6、pHS.5下,土壤铁锰结核对不同重金属离子的吸附顺序为:Ph>Cn>Zfi>C。
    >M>C山 对这些重金属离于吸附力大小的顺序为:*5-1>*2-1>N个1>N卜1,
    这与其所含的主要氧化锰矿物类型有关。
     7、N4-l、NZ-l、NS-l中氧化锰对k(Im的最大氧化量分别为 723.6、627.l、
    打8.6m。1/陌(枷0。)。铁锰结核对k(皿的氧化百分率:(1)随出 升高而降低;
     *)随离子强度增加而略有升高:u)随样品c人P吸附量增加的变化较小;随
    Ph吸附量的增加而降低,Ph吸附量大于100nunol爪g时,降幅减弱、趋于稳定。铁
    锰结核的氧化锰矿物对Cr皿)的氧化,仅限于吸附在Stern层的Cr(ill),对其它
    Cr(Ill)的氧化机率很小,并受PH、竟争吸附阳离子种类、氧化锰矿物类型、锰的
    价态及表面位点亲和性的影响。
The structure, mineralogy, elemental geochemistry of Fe-Mn nodules, and heavy metals adsorbed and Cr(III) oxidized by them were studied. Formation and elemental accumulation mechanisms of Fe-Mn nodules, relationship between composition of nodules and soil environment, interaction of ion adsorption and redox on Mn oxide minerals were discussed.
    1 The method-pH3.0 of 0.1 moI/L NH2OH HC1 solution (sample:solution = 1:100) treatment with 2h-proposed by the paper could dissolve 80.6%-86.3% of total Mn, 1.9%-3.8% of total Fe and < 0.36% of total Al in Fe-Mn nodules. The method could effectively separate Mn, Fe and Al oxide minerals from Fe-Mn nodules in soil and estimate their content.
    2 Comparison with soils, Mn02, Ba, Cd, Co, Cu, Ni, Pb, Zn and Sr were strongly accumulated, Fe2O3 were obviously accumulated, CaO, P2O5, Na2O were slightly accumulated, and SiO2, A12O3, K2O, MgO, TiO2 were reduced in Fe-Mn nodules. There was remarkable positive correlation between the contents of Ba, Cd, Co, Cu, Ni, Pb, Zn and MnO2 in Fe-Mn nodules, whereas there was remarkable negative correlation between the contents of Cd, Cu, Ni, Pb, Zn and Fe2O3 in soils. The chemical elements could be divided into three groups according to factor analysis: (1) Si, K, Mg, Ca, Na, Ti and Sr which were elemental composition of phyllosilicate, (2) Mn, Ba, Cd, Co, Cu, Li, Ni, Pb and Zn which were related to Mn oxide minerals, (3) Fe, Cr and P which were related to Fe oxide minerals. The results of XPS showed that valences of Mn in Fe-Mn nodules were +3 and +4.
    3 From south to north, the band structure of Fe-Mn nodules was from clear to obscure, the extent of banded Mn and Fe decreased, whereas the extent of banded Ca increased in backscattered electron image (BSE) of SEM. The line distribution of MnO2 and Fe2O3 contents in Fe-Mn nodule profile was wave-like curve, and the content of Fe203 increased when the content of MnO2 declined or the content of Fe203 decreased when the content of Mn02 increased. With the latitude increasing, the wave-like curve of Fe2O3 and MnO2 contents changed frequently, and the thickness of band was from thick to thin. The coefficient variation (C.V.%) of MnO2 content in Fe-Mn nodules profile of red soil and yellow-brown soil were higher than that of Shajiang black soil and brown soil, but C.V.% of Fe2O3 content of them was reverse. Ca, Ba were accumulated in Mn oxide minerals regardless of soil types. However, Co, Ni, Pb were accumulated in Mn oxide minerals of acid-slight acid soils, and precipitated in Fe-Mn nodules of alkaline-slight
    alkaline soils. The alkaline micro-region model of Mn-Fe nodule in soil was proposed. Two periods for growth of Fe-Mn nodules in soils were flooding-water and lacking-water. The band structures of Fe-Mn nodules would
    
    
    
    probably form when the landscape and soil environment experienced greatly change which were affected by global climate change, neotectonics and so on.
    4 From red soil to Shajiang black soil and brown soil, the main phyllosilicate composition of soils changed from 1:1 kaolinite to 2:1 minerals, from 1.4 nm intergrade mineral to vermiculite, montmorillonite from none to present, and gibbsite was only in red soil. The phyllosilicate composition of their Fe-Mn nodules was similar to the corresponding soil. However, Fe-Mn nodules contained no gibbsite, no 1.4 nm intergrade mineral. The content of 2:1 minerals in nodules was higher than that in soils, whereas the content of kaolinite in them was reverse. With the increasing of diameter of nodules, the content of kaolinite decreased, whereas the content of hydromica increased, and the differences of phyllosilicate composition between nodules and soils were increasing. The ratios of Feo/Fed and Fed/Fet of soils were lower than that of Fe-Mn nodules. From south to north, the composition of Fe oxide minerals changed from goethite-hematite mixture type to goethite (G) type, and the contents of goethite were increased as the contents of hematite (H) were decreased in soils. The changes of types and content
引文
1. 丁维新.土壤pH对锰赋存形态的影响.热带亚热带土壤科学.1994.3(4):233-237.
    2. 于天仁.土壤的电化学性质及其研究法.北京:科学出版社.1976.
    3. 于天仁主编.土壤化学原理.北京:科学出版社.1987.
    4. 于天仁,陈志诚主编.土壤发生中的化学过程.北京:科学出版社.1990.
    5. 于天仁,季国亮,丁昌璞等著.可变电荷土壤的电化学.北京:科学出版社.1996.
    6. 王云,魏复盛等编著.土壤环境元素化学.北京:中国环境科学出版社.1995.
    7. 中国科学院贵阳地球化学研究所.矿物X射线粉晶鉴定手册.北京:科学出版社.1978.
    8. 中国科学院南京土壤研究所主编.土壤理化分析.上海:上海科学技术出版社.1978.
    9. 中国科学院南京土壤研究所土壤系统分类课题组,中国土壤系统分类课题研究协作组著.北京:中国农业科技出版社.1995.
    10.冉勇,刘铮.土壤和氧化物对稀土元素的专性吸附及其机理.科学通报.1992.18:1705-1709.
    11.冉勇,傅家谟,Gilkes RJ.氧化锰对金(Ⅰ)和金(Ⅱ)络和物的吸附.中国科学.1998.28(6):523-531.
    12.李学垣主编.土壤化学及实验指导.北京:中国农业出版社.1997.
    13.刘凡,李学垣,徐凤琳,王代长,荣艺.鄂湘两省几种土壤中磷的有效性与氧化铁的类型.中国农业科学.1995.28(3):49-57.
    14.李天杰主编.土壤环境学——土壤环境污染防治与土壤生态保护.北京:高等教育出版社.1995.
    15.刘志光.土壤中的铁、锰氧化物的有机还原和溶解.土壤通报.1991.22(3):119-121.
    16.刘季花,林学辉,粱宏锋,崔汝勇,李杨.东太平洋海底结核及相关沉积物的稀土元素地球化学特征.海洋学报.1999.21(2):134-141.
    17.刘英俊,曹励明,李兆麟等编著.元素地球化学.北京:科学出版社.1984.
    18.刘铮.土壤与植物中锰的研究进展.土壤学进展.1991.19(6):1-10.
    19.刘良梧.变性土年龄研究.土壤.1995.27(5):274-278.
    20.刘良梧,张民.变性土铁锰氧化物结核与钙质结核的元素富集及其环境意义.土壤.1995.27(5):262-268.
    21.邢世和,林景亮.一些土壤中针铁矿的铝同晶替代作用及其意义.土壤学进展.1988.16(1):9-13.
    22.邢世和,吴金奖,林景亮.水稻土中针铁矿的铝同晶替代作用及其在分类上的意义.土壤学报.25(4):530-534.
    23.朱荫湄,周启星.土壤污染与我国农业环境保护的现状、理论和展望.土壤通报.1999.30:132-135.
    24.陈英旭,朱祖祥,何增耀.环境中氧化锰对Cr(Ⅲ)氧化机理的研究.环境科学学报.1993.13(1):45-50.
    25.陈家坊.化学物质的土壤化学行为与环境污染研究进展.环境化学.1988.7(2):8-12.
    26.陈德兴,邵器行.环境地球化学研究现状与发展.地学前缘.1996.3(1-2):119-125.
    27.张民,马丽,骆洪义.铁锰结核的元素组成及微形态特征.山东农业大学学报.1997.28(3):305-312.
    
    
    28.张民,龚子同.钙质变性土形成的某些地球化学特征.土壤.1989.21(5):226-233.
    29.何振立主编.污染及有益元素的土壤化学平衡.北京:中国环境科学出版社.1998.
    30.单连芳.大洋铁锰结核的构造和结核.海洋地质与第四纪地质.1988.8:67-71.
    31.林承毅,边立曾,张富生等.深海锰结核中微生物的分类及串珠状超微生物化石的研究.科学通报.1996.41(9):821-824.
    32.罗勤慧,沈孟长,丁益,任建国,戴安邦.铬(Ⅲ)离子在水溶液中的状态.中国科学.1986.2:137-145.
    33.周代华.铁、铝氧化物表面重金属 Cu~(2+)离子的吸附-解吸机理——兼论天然有机配体的影响.[博士论文].武汉,华中农业大学.1996.
    34.周公度著.晶体结构测定.北京:科学出版社.1981.
    35.於崇文编著.数学地质的方法与应用-地质与化探工作中的多元分析.北京:冶金工业出版社.1980.
    36.南京农业大学主编.土壤农化分析.北京:农业出版社.1986.
    37.赵其国.加速我国南方农业持续发展与生态环境建设.土壤.1993.25:1-6.
    38.赵其国.中国土壤科学的历史回顾与展望.见:中国土壤学会主编,中国土壤学在前进.北京:中国农业科技出版社.1995.1-9.
    39.赵其国.现代土壤与农业持续发展.土壤学报.1996.33:1-11.
    40.赵成大编著.理论无机化学—结构与反应机理.长春:东北师范大学出版社.1994.
    41.贺纪正,谭文峰,刘凡.几种可变电荷土壤电荷零点的初步研究.华中农业大学学报.1995.14(5):449-454.
    42.袁可能编著.植物营养元素的土壤化学.北京:科学出版社.1983.
    43.徐仁扣,刘志光.土壤中的氧化锰对酚类化合物的氧化降解作用.土壤学报.1995.32(2):179-185.
    44.顾新运.土壤超微形态在土壤研究中的应用.土壤专报.1988.43:37-55.
    45.殷细宽,曾维琪.广西第四纪红色粘土风化壳几个问题的探讨.见:陆景冈主编,土壤地质.北京:中国农业出版社.1997.55-61
    46.曹升赓.土壤微形态在土壤发生、分类研究中的应用.土壤专报.1980.37:25-50.
    47.韩喜球,沈华悌,陈建林,钱江初.太平洋多金属结核的生物成因与生物-化学二元成矿机制初探.中国科学(D辑).1997.27:349-353.
    48.谢正苗,朱祖祥,袁可能,黄昌勇.土壤中二氧化锰对As(Ⅲ)的氧化及其意义.环境化学.1989.8(2):1-5.
    49.臧小平.土壤锰毒与植物锰的毒害.土壤通报.1999.30(3):139-141.
    50.鲍根德.铁、锰在早期成岩过程中分离及其生物地球化学机制.中国科学(B辑).1989.1:93-102.
    51.鲍根德.控制铁锰结核地球化学特征的主导因素研究Ⅰ铁锰结核的地球化学特征.中国科学(B辑).1991a.8:860-866.
    52.鲍根德.控制铁锰结核地球化学特征的主导因素研究Ⅱ不同Mn/Fe结核的形成机制.中国科学(B辑).1991b.9:971-978.
    53.熊毅等编著.土壤胶体(第一册).北京:科学出版社.1983.
    54.熊毅等编著.土壤胶体(第二册).北京:科学出版社.1985.
    55.熊毅,陈家坊等编著.土壤胶体(第三册).北京:科学出版社.1990.
    
    
    56.谭文峰,刘凡,贺纪正,李学垣.淋溶土铁锰结核中锰矿物的鉴定方法及性质的研究.见:黄巧云主编.《迈向二十一世纪的土壤与植物营养》.北京:中国农业出版社.1997.102-106.
    57.谭文峰,刘凡,贺纪正,李学垣.HGMS技术与NaOH溶液浓缩土壤铁锰氧化物的效果比较.土壤.1998.30(5):267-271.
    58.谭文峰,李永华,刘凡,李学垣.湖北省几种土壤铁锰结核中的锰矿物类型.华中农业大学学报.1998.28:42-47.
    59.谭文峰,刘凡,李永华,贺纪正,李学垣.土壤铁锰结核中锰矿物类型鉴定的探讨.矿物学报.2000.20:63-67.
    60.潘根兴.淮北土壤铁锰结核中过渡金属元素的富集及其环境地球化学意义.科学通报.1989.19:1505-1507.
    61.潘根兴,黄瑞采,丁瑞兴.淮北白浆土铁锰质物相形态类型.南京农业大学学报.1991.14(2):94-95.
    62. Adams SN, Honeysett, Tiller KG & Norrish K. Factors controlling the increase of cobalt in plants following the addition of cobalt fertilizer. Aust. J. Soil Res. 1969.7: 29-42.
    63. Asghar M & Kanehiro Y. The fate of applied iron and manganese in an Oxisol and an Ultisol from Hawaii. Soil Sci. 1981. 131: 53-55.
    64. Auocena JM & Ackerman JD. Use of statistical tests to describe the basic distribution pattern of iron oxide nodules in soil thin sections. Soil Sci. Soc. Am. J. 1998.62:1346-1350.
    65. Balistrieri LS & Chao TT. Adsorption of selenium by amorphous iron oxyhydroxide and manganese dioxide. Geochim Cosmochim Acta. 1990. 54: 739-751.
    66. Bartlett RJ. Manganese redox reactions and organic interactions in soils. In: Graham RD, Hannam RJ & Uren NC eds.,Manganese in soils and plants. Dordrecht: Kluwer Academic Pub. 1988.59-74.
    67. Bartlett RJ & James JM. Behavior of chromium in soils.Ⅲ. Oxidation. J. Environ. Qual. 1979.8:31-35.
    68. Brewer R, Protz P & McKeague JA. Micoscopy and electron microprobe analysis of some iron-manganese pans from Newfoundland. Can. J. Soil Sci. 1973.53: 349-361.
    69. Bricker OP. Some stability relations in the system Mn-O_2-H_2O and one atmosphere total pressure. Am. Mineral. 1965.50:1296-1354.
    70. Brown G. Associated minerals. In: Brindley GW & Brown G eds.,Crystal structures of clay minerals and their X-ray identification. London, London Press. 1984. 361-410.
    71. Bundt M, Kretzschmar S, Zech W & Wilcke W. Seasonal redistribution of manganese in soil aggregates of a costa rican coffee field. Soil Sci. 1997. 162(9): 641-647.
    72. Burns RG. The uptake of cobalt into ferromanganese nodules, soils, and synthetic manganese(Ⅳ) oxides. Geochim. Cosmochim. Acta. 1976. 40: 95-102.
    73. Burns RG & Burns VM. Mechanism for nucleation and growth of manganese nodules. Nature (London). 1975. 255:130-131.
    74. Burns RG, Burns VM & Stockman HW. A review of the todorokite-buserite problem: Implications to the mineralogy of marine manganese nodules. Am. Mimeral. 1983.68: 972-980.
    75. Burns RG & Fuerstenau DW. Electron probe determination of interelement relationships in manganese nodules. Am. Mineral. 1966. 51: 895-902.
    
    
    76. Cescas Mp, Tyner EH & HarmerⅢ RS. Ferromanganiferous soil concretions: A scanning electron microscope study of their micropore structures. Soil Sci. Soc. Am. Proc. 1973.37: 465-469.
    77. Chao TT. Selective dissolution of manganese oxides from soils and sediment with acidified hydroxylamine hydrochloride. Soil Sci. Soc. Am. J. 1972.36: 764-768.
    78. Childs CW & Leslie DM. Interelement relationship in iron manganese concretion from a cateuary sequence of yellow-grey soils in loess. Soil Sci. 1977. 123:369-376.
    79. Chukrov FV, Gorshkov AL, Rudnitskaya ES, Beresovskaya VV & Sivtsov AV. Manganese minerals in clays: a review. Clays and Clay Miner. 1980.28(5): 346-354.
    80. Collins JF & Boul SW. Effects of fluctuations in the Eh-pH environment on iron and /or manganese equilibria. Soil Sci. 1970a. 110:111-118.
    81. Collins JF & Boul SW. Patterns of iron and manganese precipitation under specified Eh-pH conditions. Soil Sci. 1970b. 110: 157-162.
    82. Cornell RM & Giovanoli R. Effect of manganese on the transformation of ferrihydrite into goethite an dacobsite in alkaline media. Clays Clay Miner. 1987.35:11-20.
    83. Dawson BSW, Fergusson JE, Campbell AS & Cutler EJB. Distribution of elements in some Fe-Mn modules and an iron-pan in some gley soils of New Zealand. Geoderma. 1985.35:127-143.
    84. Dillard JG & Schenck CN. Interaction of Co(Ⅱ) and Co(Ⅲ) complexes on synthetic birnessite: surface characterization. In: Davis JA & Hayes KF eds.,Geochemical Processes at Mineral Surfaces. Washington DC: ACSsymp ser. 323 ACS. 1986. 503-522.
    85. Dixon JB and Skinner HCW. Manganese minerals in surface environments. In: Skinner HCW & Fitzpatrick RW eds.,Biomineralization Processes of Iron and Manganese—Modern and Ancient Environments. Cremlingen: CATENA Verlag. 1992.21:31-50.
    86. Dixon JB. Dating soil need opportunity and challenge. Proceeding of Euroclay'95, Dating of Soil Formation—Quantitative Approaches in Soil Mineralogy. 1995.
    87. Dugolisky BK, Margolis SV &Dudly WC. Biogenic influence on manganese nodules. J. Sed. Petrology. 1977.47: 428-445.
    88. Emerson S, Kalhorn S, Jacobs L, Tebo BM, Nealson KH & Rosson RA. Environmental oxidation rate of manganese(Ⅱ): Bacterial catalysis. Geochim. Cosmochim. Acta. 1982.46: 2022-2026.
    89. Fu G, Allen HE & Cowan CE. Adsorption of cadmium and copper by manganese dioxide. Soil Sci. 1991.72-81.
    90. Gadde RR & Laitinen HA. Studies of heavy metal adsorption by hydrous iron and manganese oxides. Anal. Chem. 1974.46:2022-2026.
    91. Glasby GP, Rankin PC & Meylan MA. Manganiferous soil concretions from Hawaii. Pacific Sci. 1979.33: 103-115.
    92. Gilkes RJ. Geochemistry and mineralogy of manganese in soils. In Graham RD, Hannam KJ eds.,Manganese in Soils and Plants. Netherlands, Kluwer Academic Publishers. 1988.23-35
    93. Giovanoli R. Vernadite is random-stacked birnessite. Mineral. Deposita. 1980. 15: 251-253.
    94. Giovanoli R, Buhler H & Sokolowska K. Synthetic lithiophorite: electron microscopy and X-ray diffraction. J. Microscopic. 1973.18: 271-284.
    95. Golden DC, Chen CC & Dixon JB. Synthesis of Todorokite. Science. 1986a. 231: 717-719:
    
    
    96. Golden DC, Dixon JB & Chen CC. Ion exchange, thermal transformations, and oxidizing properties of birnessite. Clays and Clay Minerals. 1986b. 34:511-520.
    97. Golden DC, Chen CC & Dixon JB. Transformation of birnessite to buserite, todorokite, and manganite under mild hydrothermal treatment. Clays and Clay Minerals. 1987. 35: 271-280.
    98. Golden DC, Chen CC, Dixon JB & Tokashiki Y. Pseudomorphic replacement of manganese oxides by iron oxide minerals. Geoderma. 1988.42:199-211.
    99. Golden DC, Dixon JB & Kanehiro Y. The manganese oxide mineral, lithiophorite, in an Oxisol from Hawaii. Aust. J. Soil Res. 1993.31: 51-66.
    100. Golden DC, Zuberer DA & Dixon JB. Manganese oxides produced by fungal oxidation of manganese from siderite and rhodochrosite. In: Skinner HCW & Fitzpatrick RW eds.,Biomineralization Processes of Iron and Manganese—Modern and Ancient Environments. Cremlingen: CATENA Verlag. 1992.21:161-168.
    101. Goodman BA, Berrow ML & Russel JD. Transformation of poorly crystalline oxides during boiling with NaOH to concentrate iron oxides from soils. J. Soil Sci. 1988.39: 87-98.
    102. Greenslate J. Microorganisms participate in the construction of manganese nodules. Nature. 1974. 249: 181-183.
    103. Healy TW, Herring AP & Fuerstenau DW. The effect of crystal structure on the surface properties of a series of manganese dioxides. J.Colloid Interface Sci. 1966.21: 435-444.
    104. Hem JD. Redox processes at surfaces of manganese oxide and their effects on aqueous metal ions. Chemical Geology. 1978.21:199-218.
    105. Hem JD. Rates of manganese oxidation in aqueous systems. Geochim. Cosmochim. Acta. 1981. 45: 1369-1374.
    106. Huang PM. Kinetics of Redox reactions on manganese oxides and its impact on environmental quality. In: Sparks DL, Suarez DL eds.,Rate of Soil Chemical Processes. SSSA Apec. Publ. 27. SSSA Madison. WI. 1991. 191-230.
    107. Jarvis SC. The forms of occurrence of manganese in some acidic soils. J. Soil Sci. 1984.35: 421-429.
    108. Jaurequi MA & Reisenauer HM. Dissolution of oxides of manganese and iron by root exudate components. Soil Sci. Soc. Am. J. 1982.46: 314-317.
    109. Jenne EA. Controls on Mn, Fe, Co, Ni, Cu, and Zn concentrations in soils and water: The significant role of hydrous Mn and Fe oxides. Adv. Chem. Ser. 1968.73: 337-387.
    110. Jones LHP & Milne AA. Birnessite, a new manganese oxide mineral from Aberdeenshire, Scotland. Mineral. Mag. 1956. 31: 283-288.
    111. Kampf N & Schwertmann U. The 5-M-NaOH concentration treatment for iron oxides in soil. Clays Clay Miner. 1982a. 30: 401-408.
    112. Kampf N & Schwertmann U. Quantitative determination of goethite and hematite in Kaolinitic soils by X-ray diffraction. Clay Mineral. 1982b. 17:359-363.
    113. Krishnamurti GSR & Huang PM. The catalytic role of birnessite in the transformation of iron. Can.J. Soil Sci. 1987.67: 533-543.
    114. Krishnamurti GSR & Huang PM. Influence of manganese oxide minerals on the formation of iron oxides. Clays Clay Miner. 1988.36: 467-475.
    
    
    115. Krishnamurti GSR & Huang PM. Influence of Mn~(2+) and pH on the formation of iron oxides from ferrous chloride and ferrous sulfate solutions. Clays Clay Miner. 1989. 37:451-458.
    116. Kung KH & McBride MB. Electron transfer processes between hydroquinone and hausmannite (Mn_3O_4). Clays Clay Miner. 1988. 36: 297-302.
    117. Leeper GM & Swaby RJ. The oxidation of manganese compounds by microorganisms in the soil. Soil Sci. 1947. 49: 163-169.
    118. Lehmann RG, Chen HH & Harsh JB. Oxidation of phenolic acids by soil iron and manganese oxides. Soil Sci. Soc. Am. J. 1987.51: 352-356.
    119. Li LM & Wu QT. Role of amorphous manganese oxide in nitrogen loss. Pedosphere. 1991.1: 83-92.
    120. Liu F, Xu FL & Li XY. Types of crystalline iron oxides and phosphate adsorption in variable charge soils. Pedosphere. 4: 35-46.
    121. Liu F, Tan WF, He JZ & Li XY. Changes of clay mineral association after high-gradient magnetic separation. Pedosphere. 1998.8: 79-84.
    122. Loganathan P & Burau RG. Sorption of heavy metals by a hydrous manganese oxide. Geochim. Cosmochim. Acta 1973.37:1277-1293.
    123. Loganathan P, Burau RG & Fuerstenau. Influence of pH on the sorption of Co~(2+), Zn~(2+) and Ca~(2+) by a hydrous manganese oxide. Soil Sci. Soc. Am. J. 1977. 41: 57-62.
    124. Manceau A, Llorca S & Calas G. Crystal chemistry of cobalt and nickel in lithiophorite and asbolane from New Caledonia. Geochim. Cosmochim. Acta. 1987.51:105-113.
    125. McBride MB. Adsorption and oxidation of phenolic compounds by iron and manganese oxides. Soil Sci. Soc. Am. J. 1987. 51: 1466-1472.
    126. McBride MB. Oxidation of dihydroxybenzenes in aerated aqueous suspensions of birnessite. Clays Clay Miner. 1989a. 37: 341-347.
    127. McBride MB. Oxidation of 1,2-and 1,4-dihydroxybenzenes by birnessite in acidic aqueous suspension. Clays Clay Miner. 1989b. 37: 479-486.
    128. McDaniel PA & Buol SW. Manganese distributions in acid soils of the north Carolina piedmont. Soil Sci. Soc. Am.J. 1991.55:152-158.
    129. McDaniel PA, Bathke GR & Buol SW. Secondary manganese/iron ratios as pedochemical indictors of field-scale throughflow water movement. Soil Sci. Soc. Am. J. 1992. 56:1211-1217.
    130. McKeague JA, Damman AWH & Heringa PK. Iron-manganese and other pans in some soils of Newfoundland. Can. J. Soil Sci. 1968.48: 243-253.
    131. McKenzie RM. The synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese. Mineral. Mag. 1971.28: 493-503.
    132. McKenzie RM. An electron microprobe study of the relationships between heavy metals and manganese and iron in soils and ocean floor nodules. Aust. J. Soil Res. 1975.13: 177-188.
    133. McKenzie RM. The effect of two manganese dioxides on the uptake of Pb, Co, Ni, Cu and Zn by subterranean clover. Aust. J. Soil Res. 1978. 16: 209-214.
    134. McKenzie RM. Proton release during adsorption of heavy metal ions by a hydrous manganese dioxide. Geochim. Cosmochim. Acta. 1979. 43:1855-1857.
    135. McKenzie RM. The adsorption of lead and other heavy metals on oxides of manganese and iron. Aust. J. Soil Res. 1980. 19:41-50.
    
    
    136. McKenzie RM. The surface charge on manganese dioxides. Aust. J. Soil Res. 1981.19: 41-50.
    137. McKenzie RM. The adsorption of molybdenum on oxide surfaces. Aust. J. Soil Res. 1983.21: 505-513.
    138. McKenzie RM. Manganese oxides and hydroxides. In Dixon JB & Weed SB eds.,Minerals in Soil Environments. Madson WI, SSSA Book Ser.1. 1989. 439-465.
    139. Means JL, Crerar DA, Borcsik MP & Duguid JO. 1978. Adsorption of cobalt and selected actinides by Mn and Fe oxides in soils and sediments. Geochim. Cosmochim. Acta. 1978. 42: 1763-1773.
    140. Mehra OD & Jackson ML. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner. 1960. 5:317-327.
    141. Morgan JJ & Stumm W. Colloid-chemical properties of manganese dioxide. J. Colloid Sci. 1964. 19: 347-359.
    142. Murry JW. The surface chemistry of hydrous manganese dioxide. J. Colloid Interface Sci. 1974. 46: 357-371.
    143. Murray JW. The interaction of metal ions at the manganese dioxide-solution interface. Geochim. Cosmochim. Acta. 1975a. 39:505-519.
    144. Murray JW. The interaction of cobalt with hydrous manganese dioxide. Geochim. Cosmochim. Acta. 1975b. 39: 635-647.
    145. Murray JW & Dillard JG. The oxidation of cobalt(Ⅱ) adsorbed on manganese dioxide. Geochim. Cosmochim. Acta. 1979.43: 781-787.
    146. Nahon DB, Herbillon AJ & Beauvais A. The epigenetic replacement of kaolinite by lithiophorite in a manganese-Lateritic profile, Brazil. Geoderma. 1989. 44: 247-259.
    147. Naidja A, Huang PM, Bollag JM. Comparison of reaction products from the transformation of catechol catalyzed by birnessite or tyrosinase. Soil Sci. Soc. Am. J. 1998.62: 188-195.
    148. Nealson KH, Rosson RA & Myers CR. Mechanisms of oxidation and reduction of manganese. In: Beveridge T & Doyle R eds.,Metal Ions and Bacteria. New York, John Wiley & Sons. 1989.383-411.
    149. Norvell WA. Inorganic reactions of manganese in soils. In: Graham RD, Hannam RJ & Uren NC eds.,Manganese in soils and plants. Dordrecht: Kluwer Academic Pub. 1988.37-58.
    150. Oscarson DW, Huang PM, Defosse C & Herbillon A. The oxidative power of Mn(Ⅳ) and Fe(Ⅲ) oxides with respect to As(Ⅲ) in terrestrial and aquatic environments. Nature. 1981a. 291:50-51.
    151. Oscarson DW, Huang PM & Liaw WK. The role of manganese in the oxidation of arsenite by freshwater lake sediments. Clays and Clay Miner. 1981b. 29: 219-225.
    152. Oscarson DW, Huang PM & Hammer UT. Oxidation and sorption of arsenite by manganese dioxide as influenced by surface coating of iron and aluminum oxides and calcium carbonate. Water, Air, Soil Pollut. 1983.20: 233-244.
    153. Ostwald J. Two varieties of lithiophorite in some Australian deposits. Mineralogical Magazine. 1984.48:383-388.
    154. Ozochukwu GA & Dixon JB. Manganese oxide minerals in nodules of two soils of Texas and Alabama. Soil Sci. Soc. Am. J. 1986.50: 1358-1363.
    
    
    155. Parc S, Nahon D, Tardy Y & Vieillard P. Solubility products and stability fields of cryptomelane, nsutite, birnessite and lithiophorite in lateritic weathering. Am. Mineral. 1989.74: 466-475.
    156. Paterson E. Intercalation of synthetic buserite by dodecylammonium chloride. Am. Mineral. 1981. 66:424-427.
    157. Paterson E, Bunch JL & Clark DR. Cation exchange in synthetic manganates:ⅠAlkylammounium exchange in a synthetic phyllomangante. Clay Miner. 1986a. 21: 957-964.
    158. Paterson E, Clark DR, Russell JD & Swaffleld R. Cation exchange in synthetic manganates:ⅡThe structure of an alkylammonium-saturated phyllomanganate. Clay Miner. 1986b. 21: 957-964.
    159. Pauling L & Kamb B. The crystal structure of lithiophorite. Am. Mineral. 1982.67:817-821.
    160. Phillippe WR, Bievins RL, Barnhisel RI & Bailey HH. Distribution of concretions from selected soils of the inner bluegrass region of Kentucky. Soil Sci. Soc. Am. Proc. 1972.36:171-173.
    161. Pizzigallo MDR, Ruggiero P, Crecchio C & Mininni R. Manganese and iron oxides as reactants for oxidation of chlorophenols. Soil Sci. Soc. Am. J. 1995.59: 444-452.
    162. Polteva RN & Sokolova. Investigation of concretions in a strongly podzolic soil. Sov. Soil Sci. 1967.4: 431-437.
    163. Postma D. Concentration of Mn and separation from Fe in sediments.Ⅰ. Kinetics and stoichiometry of the relation between birnessite and dissolved Fe(Ⅱ) at 10℃. Geochim. Cosmochim. Acta. 1985.49: 1023-1033.
    164. Potter RM & Rossman GR. The tetravalent manganese oxides: identification, hydration, and structural relationships by infrared spectroscopy. Am. Mineral. 1979a. 64:1199-1218.
    165. Potter RM & Rossman GR. Mineralogy of manganese dendrites and coatings. Am. Mineral. 1979b. 64: 1219-1226.
    166. Potter RM & Rossman GR. A magnesium analogue of chalcophanite in manganese-rich concretions from Baja California. Am. Mineral. 1979c. 64: 1227-1229.
    167. Post JE. Crystal structures of manganese oxide minerals. In: Skinner HCW & Fitzpatrick RW eds.,Biomineralization Processes of Iron and Manganese—Modern and Ancient Environments. Cremlingen: CATENA Verlag. 1992.21: 51-73.
    168. Post JE & Bish DL. Rietveld refinement of the todorokite structure. Am. Mineral. 1988a. 73: 861-869.
    169. Post JE & Appleman DE. Chalcophanite,ZnMn_3O_7·3H2O: new crystal structure determinations. Am. Mineral. 1988b. 73:1401-1404.
    170. Post JE & Veblen DR. Crystal structure determinations of synthetic sodium, magnesium, and potassium birnessite using TEM and the rietveld method. Am. Mineralogist. 1990.75:477-489.
    171. Raymond JR, Guthrie GD, Bish DL, Reneau SL & Chipera SJ. Biomineralization of manganese in rock varnish. In: Skinner HCW & Fitzpatrick RW eds.,Biomineralization Processes of Iron and Manganese—Modern and Ancient Environments. Cremlingen: CATENA Verlag. 1992. 21: 321-335.
    172. Rhoton FE & Tyler DD. Erosion-induced changes in the properties of a fragipan soils. Soil Sci. Soc. Am. J. 1990.54: 223-228.
    173. Rhoton FE, Meyer LD & McChesney DS. Depth-of-erosion assessment using iron-manganese nodule concentrations in surface horizons. Soil Sci. 1991. 152: 389-394.
    
    
    174. Rhoton FE, Bigham GM and Schulze DG. Properties of Iron-manganese nodules from a sequence of eroded fragipan soils. Soil Sci. Soc. Am. J. 1993.57:1386-1392.
    175. Pisser JA & Bailey GW. Spectroscopic study of surface redox reactions with manganese oxides. Soil Sci. Soc. Am. J. 1992.56: 82-86.
    176. Robbins EL, Agostino JPD, Ostwald J, Fanning DS, Carter V & Van Hoven RL. Manganese nodules and microbial oxidation of manganese in the Huntley Meadows wetland, Virginia, USA. In: Skinner HCW & Fitzpatrick RW eds.,Biomineralization Processes of Iron and Manganese—Modern and Ancient Environments. Cremlingen: CATENA Verlag. 1992.21:179-202.
    177. Robinson GD. Major-element chemistry and micromorphology of Mn-coatings on stream alluvium. Appl. Geochem. 1993.8: 633-642.
    178. Ross SJ, Franzmeier DP & Roth CB. Mineralogy and chemistry of manganese oxides in some Indiana soils. Soil Sci. Soc. Am. J. 1976.40:137-143.
    179. Ross DS & Bartlett RJ. Evidence for non-microbial oxidation of manganese in soil. Soil Sci. 1981. 132: 153-160.
    180. Sanz A, Garcia-Gonzalez MT, Vizcayno C & Rodriguez R. Iron-manganese nodules in a semi-arid environment. Aust. J. Soil Res. 1996. 34:623-634.
    181. SAS Institute. SAS/STAT guide for personal computers. SAS Inst.,Cary, NC. 1985.
    182. Schulze DG & Dixon JB. High gradient magnetic separation of iron oxides and other magnetic minerals from soil clays. Soil Sci. Soc. Am. J. 1979.43: 793-799.
    183. Schwertmann U & Taylor RM. Iron oxides. In: Dixon JB & Weed SB eds.,Minerals in Soil Environments (2nd Ed). Madison WI, SSSA Book Ser. No. 1.1989. 1-118.
    184. Schwertmann U & Fanning DS. Iron-manganese concretions in hydrosequences of soils in loess in Bavaria. Siol Sci. Soc. Am. J. 1976.40: 731-738.
    185. Schwertmann U & Kampf N. Properties of goethite an hematite in Kaolinitic soils of southern and central Brazil. Soil Sci. 1985. 139: 344-350.
    186. Senkayi AL, Dixon JB & Hossner LR. Todorokite, goethite, and hematite: alteration products of siderite in East Texas lignite overburden. Soil Sci. 1986. 142: 36-42.
    187. Sherman DM. The electronic structures of manganese oxide minerals. Am. Mineral. 1984. 69: 188-199.
    188. Shindo H, Huang PM. Role of Mn(Ⅳ) oxide in abiotic formation of humic substances in the environment. Nature. 1982. 298: 363-365.
    189. Shindo H, Huang PM. Signification of Mn(Ⅳ) oxide in abiotic formation of organic nitrogen complexes in natural environments. Nature. 1984a. 308: 57-58.
    190. Shindo H, Huang PM. Catalytic effects of manganese(Ⅳ), iron(Ⅲ), aluminum, and silicon oxides on the formation of humic polymers. Soil Sci. Soc. Am. J. 1984b. 48: 927-934.
    191. Shindo H, Huang PM. Comparison of the influence of manganese(Ⅳ) and typrosinase on the formation of humic substances in the environment. Sci. Total Environ. 1992. 117/118:103-110.
    192. Shuman LM. Separating soil iron-and manganese-oxide fractions for microelement analysis. Soil Sci. Soc. Am. J. 1982.46:1099-1102.
    193. Shuman LM. Fractionation method for soil microelements. Soil Sciences. 1985. 140(1): 11-22.
    194. Sihu PS, Sehgal JL, Sinha MK & Randhawa NS. Composition and mineralogy of iron-manganese concretions from some soils of the Indo-Gangetic plain in northwest India. Geoderma. 1977. 18: 241-249.
    
    
    195. Sposito G & Reginato RJ. Opportunities in basic soil science research. Soil science society of America, Inc. Madison, Wasconsin. 1992.
    196. Stone AT & Morgan JJ. Reduction and dissolution of manganese(Ⅲ) and manganese(Ⅳ) oxides by organics. 1. Reaction with hydroquinone. Environ. Sci. Technol. 1984a. 18: 450-456.
    197. Stone AT & Morgan JJ. Reduction and dissolution of manganese(Ⅲ) and manganese(Ⅳ) oxides by organics. 2. Survey of the reactivity of organics. Environ. Sci. Technol. 1984b. 18:617-624.
    198. Stone At. Reductive dissolution of manganese(Ⅲ)/(Ⅳ) oxides by substituted phenols. Environ. Sci. Technol. 1987.21: 979-988.
    199. Skinner HCW & Fitzpatrick RW. Iron and manganese biomineralization. In: Skinner HCW & Fitzpatrick RW eds.,Biomineralization Processes of Iron and Manganese—Modern and Ancient Environments. Cremlingen: CATENA Verlag. 1992.
    200. Sullivan LA & Koppi AJ. Manganese oxide accumulations associated with some soil structural pores.Ⅰ. Morphology, composition and genesis. Aust. J. Soil Res. 1992.30:409-427.
    201. Sung W & Morgan JJ. Oxidative removal of Mn(Ⅱ) from solution catalysed by the γ-FeOOH (lepidocrocite) surface. Geochim. Cosmochim. Acta. 1981.45: 2377-2383.
    202. Tan WF, Liu F, Li YH, He JZ & Li XY. Mineralogy of manganese oxides in iron-manganese nodules of several main types of soils in China. Pedosphere. 2000. 10(3): (in press).
    203. Taylor RM. The association of manganese and cobalt in soils—further observations. J. Soil Sci. 1968.19: 77-80.
    204. Taylor RM & McKenzie RM. The association of trace elements with manganese minerals in Australian soils. Aust. J.Soil Res. 1966.4: 29-39.
    205. Taylor RM, McKenzie RM & Norrish K. The mineralogy and chemistry of manganese oxides in some Australian soils. Aust. J. Soil Res. 1964,2:235-248.
    206. Ten Khak-Mun. Participation of microorganisms in the formation of manganese-iron concentrations in soils of the Brown forest zone of the Far East. Sov. Soil Sci. 1973.5: 96-99.
    207. Tokashiki Y, Dixon JB & Golden DC. Manganese oxide analysis in soils by combined X-ray diffraction and selective dissolution methods. Soil Sci. Soc. Am. J. 1986.50: 1079-1084.
    208. Traina SJ & Doner HE. Heavy metal induced releases of manganese (Ⅱ) from a hydrous manganese dioxide. Soil Sci. Soc. Am. J. 1985a. 49:317-321.
    209. Traina SJ & Doner HE. Copper-manganese(Ⅱ) exchange on a chemically reduced bimessite. Soil Sci. Soc. Am. J. 1985b. 49:307-313.
    210. Turner S & Buseck PR. Manganese oxide tunnel structures and their intergrowths. Science. 1979. 203(2): 456-458.
    211. Turner S & Buseck PR. Todorokites: a new family of naturally occurring manganese oxides. Science. 1981. 212: 1024-1026.
    212. Turner S, Siegel MD & Buseck PR. Structural features of todorokite intergrowths in manganese nodules. Nature. 1982. 296: 841-842.
    213. Turner S & Post JE. Refinement of the substructure and superstructure of romanechite. Am. Mineral. 1988.73:1155-1161.
    
    
    214. Tu S, Racz GJ & Goh TB. Transformations of synthetic birnessite as affected by pH and manganese concentration. Clays and Clay Minerals. 1994. 42:321-330.
    215. Ukrainczyk I & McBride MB. Oxidation of phenol in acid aqueous suspensions of manganese oxides. Clays Clay Miner. 1992.40: 157-166.
    216. Uren NC & Leeper GW. Microbial oxidation of divalent manganese. Soil Biol. Biochem. 1978. 10: 85-87.
    217. Usui A. Nickel and copper accumulation as essential elements in 10 manganite of deep-sea manganese nodules. Nature. 1979. 279:411-413.
    218. Usui A & Mita N. Geochemistry and mineralogy of a modern buserite deposit from a hot spring in Hokkaido, Japan. Clays and Clay Minerals. 1995.43(1): 116-127.
    219. Uzochukwu GA & Dixon JB. Manganese oxide minerals in Nodules of two soils of Texas and Alabama. Soil Sci. Soc. Am. J. 1986. 50: 1358-1363.
    220. Wada H, Seirayosakol A, Kimura M & Takai Y. The process of manganese deposition in paddy soils(Ⅰ) A hypothesis and its verification. Soil Sci. Plant Nutr. 1978a. 24(1): 55-62.
    221. Wada H, Seirayosakol A, Kimura M & Takai Y. The process of manganese deposition in paddy soils:Ⅱthe microorganisms responsible for manganese deposition. Soil Sci. Plant Nutr. 1978b. 24: 319-325.
    222. Wadsley AD. The structure of lithiophorite (Al,Li)MnO_2(OH)_2. Acta Crystallogr. 1952. 5: 676-680.
    223. Wadsley AD. The crystal structure of psilomelane (Ba,H_2O)_2Mn_5O_10. Acta Crystallogr. 1953.6: 433-438.
    224. Wang MC & Huang PM. Polycondensation of pyrogallol and glycine and the associated reactions as catalyzed by birnessite. Sci. Total Environ. 1987.62: 435-442.
    225. Wang TSC, Huang PM, Chou CH & Chen JH. The role of soil minerals in the abiotic polymerization of phenolic compounds and formation of humic substances. P251-258. In: Huang PM & Schnitzer eds.,Interaction of Soil Minerals with Natural Organics and Microbes. Madison WI, SSSA Spec. Publ. 17. SSSA. 1986.
    226. White GN & Dixon JB. Iron and manganese distribution in nodules from a young Texas Vertisol. Soil Sci. Soc. Am. J. 1996.60: 1254-1262.
    227. Winters Eric. Ferromanganiferous concretions from some podzolic soils. Soil Sci. 1938.46: 33-40.
    228. Zhang M & Karathanasis. Characterization of iron-manganese concretions in Kentucky Alfisols with terched water tables. Clays and Clay Minerals. 1997.45: 428-439.
    229. Zwicker WK, Meijer WOJG & Jaffe HW. Nsutite—a widespread manganese oxide mineral. Am. Mineral. 1962, 47: 246-266.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700