J-TEXT三波远红外激光偏振干涉仪的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
等离子体电流密度剖面是托卡马克等离子体物理研究需了解的主要参数,电流密度的分布与等离子体的约束与输运,磁流体不稳定性等行为密切相关。先进托卡马克运行模式需要对等离子体电流密度剖面进行测量以对电流密度剖面进行反馈控制,同时测量等离子体电流密度剖面也能为等离子体的磁流体行为研究提供宝贵的数据。作为高温等离子体中最难测量的参数之一,电流密度剖面的测量方法十分有限。通过偏振仪测量法拉第效应目前被认为是最可靠的手段之一。
     为促进J-TEXT托卡马克上的等离子体物理研究,弥补国内在相关诊断技术方面的不足,J-TEXT实验室在国家ITER专项经费的支持下于2010年启动了J-TEXT偏振干涉仪的建造工作,并于2012年冬季完成了系统的建立。J-TEXT偏振干涉仪的建立,包括系统的设计,系统的搭建与测试,等离子体电流密度剖面反演程序的设计与测试以及系统的运行与优化,为本学位论文的主要内容。
     本文首先对偏振干涉仪的诊断原理进行了综述,介绍了几种主要的偏振测量方法,并详细讨论了测量的误差来源及处理思路。随后给出了J-TEXT偏振干涉仪的设计方案,包括概念设计,光学设计以及机械设计。J-TEXT偏振干涉仪设计采用三波法以及独特的扩束光路进行测量,使得系统可以实现高相位分辨率,高空间分辨率以及高时间分辨率的测量。此后本文对J-TEXT偏振干涉仪的搭建与测试进行了描述。经过测试,各子系统的功能得到了确认,光束的偏振态与共线状态也得到了校验。在台面测试中,系统的测量可行性得到了验证,同时系统的高分辨率也得到了初步的体现。接着给出了J-TEXT剖面反演程序的设计与测试。该程序基于平衡磁面位型反演,可由J-TEXT偏振干涉仪的测量数据反演得到平衡等离子体的电流密度剖面,安全因子剖面以及电子密度剖面。测试对程序的基本功能进行了检验,并对剖面反演的误差进行了评估。最后,本文给出了J-TEXT偏振干涉仪的实验运行结果。该系统已实现了同步的法拉第旋转角测量与弦积分密度测量,并通过震动与共线方面的优化提高了系统的性能水平。J-TEXT偏振干涉仪已实现0.1度的相位分辨率、1微秒的时间分辨率以及8道的空间测量,这些性能指标居国际前列。得益于高分辨率,该系统实现了对法拉第旋转角扰动以及弦积分密度扰动的测量。实验测量数据经剖面反演程序反演得到了令人满意的结果。
Current density profile is a fundamental element in tokamak plasma, which is closelyrelevant to processes of confinement, transport, and MHD activities. Measurement ofcurrent density profile is inevitable for advanced tokamak operation, while determinationof current density profile also offers great help for MHD relevant study. As one of thoseparameters that are most difficult to measure, current density profile could only beobtained by limited means, in which polarimetry towards measurement of Faraday Effectis now considered as one of the most reliable methods.
     Motivated by the needs of plasma physics research and diagnostic technique study, apolarimeter-interferometer diagnostic was proposed for J-TEXT tokamak in2010andestablished at the end of2012. The establishment of the system, including systematicdesign, system integration, tests, coding, and system operation and optimization, are themain contents of the dissertation.
     In the thesis, diagnostic principle of polarimeter-interferometer is briefly reviewedfirstly. Techniques used to determine Faraday angle are introduced. Precision of themeasurement and sources of errors are discussed. Design of J-TEXTpolarimeter-interferometer is given secondly, including conceptual design, optical designand mechanical design. Three-wave technique is adopted and unique beam-expandedoptics is used, which allow the system be able to perform measurement with high phaseresolution, spatial resolution and temporal resolution. Integration and tests of the systemare shown. Capabilities of sub-systems and optical components are checked, andperformance of the system is preliminarily confirmed. Design and test of J-TEXT profileinversion code based on equilibrium magnetic surface geometry are presented. Inversederror of the code is estimated, and capability of the code for inversion of data fromJ-TEXT polarimeter-interferometer is validated. Finally the experimental operation of thesystem is described. Simultaneous measurements of Faraday rotation angle andline-integrated density are achieved. Optimizations of mechanical vibration and colinearityare done to improve the performance of the system. J-TEXT polarimeter-interferometerhas achieved0.1degree phase resolution and1μs temporal resolution with8chords. Benefited from these capabilities, small amplitude perturbations on Faraday rotation angleand line-integrated density are observed. Reasonable inversion results are obtained fromexperimental data.
引文
[1]邱励俭.聚变能及其应用.北京:科学出版社,2008
    [2] Chen, F. F. An Indispensable Truth: How Fusion Power Can Save the Planet.Springer,2011
    [3]朱士尧.核聚变原理.北京:中国科学技术大学出版社,1992
    [4]宫本健郎.热核聚变等离子体物理学.北京:科学出版社,1981
    [5] Goldston, R. J.,Rutherford, P. H. Introduction to Plasma Physics. Taylor&Francis,2010
    [6] Wesson, J.,Campbell, D. J. Tokamaks.3rd ed. Clarendon Press,2004
    [7] Politzer, P.,Hyatt, A.,Luce, T., et al. Stationary, high bootstrap fraction plasmas inDIII-D without inductive current control. Nuclear fusion,2005,45(6):417
    [8]胡希伟.等离子体理论基础.北京:北京大学出版社,2006
    [9] White, R. B. The theory of toroidally confined plasmas. Imperial College Press,2006
    [10] Doyle, E. J.,Houlberg, W. A.,Kamada, Y., et al. Chapter2: Plasma confinement andtransport. Nuclear Fusion,2007,47(6): S18
    [11] Ida, K.,Ohyabu, N.,Morisaki, T., et al. Observation of Plasma Flow at the MagneticIsland in the Large Helical Device. Physical review letters,2001,88(1):015002
    [12] Wolf, R. Internal transport barriers in tokamak plasmas. Plasma Physics andControlled Fusion,2003,45(1): R1
    [13] Connor, J.,Fukuda, T.,Garbet, X., et al. A review of internal transport barrierphysics for steady-state operation of tokamaks. Nuclear fusion,2004,44(4): R1
    [14] Hender, T. C.,Wesley, J. C.,Bialek, J., et al. Chapter3: MHD stability, operationallimits and disruptions. Nuclear Fusion,2007,47(6): S128
    [15] Gormezano, C.,Sips, A. C. C.,Luce, T. C., et al. Chapter6: Steady state operation.Nuclear Fusion,2007,47(6): S285
    [16] Katsuro-Hopkins, O.,Sabbagh, S. A.,Bialek, J. M., et al. Equilibrium and globalMHD stability study of KSTAR high beta plasmas under passive and active modecontrol. Nuclear Fusion,2010,50(2):025019
    [17] Sabbagh, S. A.,Berkery, J. W.,Bell, R. E., et al. Advances in global MHD modestabilization research on NSTX. Nuclear Fusion,2010,50(2):025020
    [18]徐强. EAST远红外激光诊断研究:[博士学位论文].中国科学院合肥物质研究院,2009
    [19] Jobes, F. Heavy ion beam probing. In Course on Plasma Diagnostics and DataAcquisition Systems,1975;158-177
    [20] Tonetti, G.,Conner, K. The direct sensitivity of particle probes to magnetic fields ofhot, dense plasmas. Plasma Physics,1980,22(4):361
    [21] Boileau, A.,von Hellerman, M.,Mandl, W., et al. Observations of motional Starkfeatures in the Balmer spectrum of deuterium in the JET plasma. Journal ofPhysics B: Atomic, Molecular and Optical Physics,1989,22(7): L145
    [22] Chernyshev, F.,Shakhovets, K. Local measurements of poloidal magnetic field andsafety factor q near discharge axis by active particle diagnostic method in theTuman-3tokamak. JETP Lett,1989,50(11):11-12
    [23] Levinton, F.,Fonck, R.,Gammel, G., et al. Magnetic field pitch-angle measurmentsin the PBX-M tokamak using the motional Stark effect. Physical review letters,1989,63(19):2060-2063
    [24] Wroblewski, D.,Burrell, K.,Lao, L., et al. Motional Stark effect polarimetry for acurrent profile diagnostic in DIII‐D. Review of scientific instruments,1990,61(11):3552-3556
    [25] Schwelberger, J.,Crowley, T.,Connor, K., et al. Current density profilemeasurement on the Texas Experimental Tokamak using a heavy ion beam probe.Review of scientific instruments,1998,69(11):3828-3834
    [26] Karelse, F.,De Bruijne, M.,Barth, C., et al. Measurements of the current densityprofile with tangential Thomson scattering in RTP. Plasma physics and controlledfusion,2001,43(4):443
    [27] Donné, A. Diagnostics for current density and radial electric field measurements:overview and recent trends. Plasma physics and controlled fusion,2002,44(12B):B137
    [28] Deng, B.,Brower, D.,Cima, G., et al. Imaging of core electron temperaturefluctuations of tokamak plasmas. Plasma Science, IEEE Transactions on,2002,30(1):72-73
    [29] Donné, A. J. H.,Costley, A. E.,Barnsley, R., et al. Chapter7: Diagnostics. NuclearFusion,2007,47(6): S337
    [30] Bass, M.,DeCusatis, C.,Enoch, J., et al. Handbook of Optics, Third Edition VolumeI: Geometrical and Physical Optics, Polarized Light, Components andInstruments(set). McGraw-Hill Education,2009
    [31] Shmoys, J. Proposed diagnostic method for cylindrical plasmas. Journal of AppliedPhysics,1961,32(4):689-695
    [32] Wolfe, S. M.,Button, K.,Waldman, J., et al. Modulated submillimeter laserinterferometer system for plasma density measurements. Applied Optics,1976,15(11):2645-2648
    [33] Efthimion, P.,Taylor, G.,Ernst, W., et al.1‐millimeter wave interferometer for themeasurement of line integral electron density on TFTR. Review of ScientificInstruments,1985,56(5):908-910
    [34] Kawahata, K.,Haba, K.,Fujita, J., et al. Multichannel HCN laser interferometer forelectron density measurements of the JIPP T‐IIU tokamak. Review of ScientificInstruments,1989,60(12):3734-3738
    [35] Hallock, G.,Gartman, M.,Castles, R., et al. TEXT upgrade far‐infraredinterferometer system. Review of Scientific Instruments,1990,61(10):2893-2895
    [36] Hallock, G.,Gartman, M.,Li, W., et al. The TEXT upgrade vertical interferometer.Review of scientific instruments,1992,63(10):4987-4989
    [37] Brower, D.,Jiang, Y.,Peebles, W., et al. Application of high‐resolutioninterferometry to plasma density measurements on TEXT‐Upgrade. Review ofscientific instruments,1992,63(10):4990-4992
    [38] Qiang, X.,Xiang, G.,Yinxian, J., et al. HCN laser interferometer on the EASTsuperconducting tokamak. Plasma Science and Technology,2008,10(4):519
    [39] Yan, Z.,Zhongchao, D.,Jiang, Y., et al. Recent progress of the HL-2A laserinterferometer. Plasma Science and Technology,2009,11(4):413
    [40] Segre, S. E. A review of plasma polarimetry-theory and methods. Plasma physicsand controlled fusion,1999,41(2): R57
    [41] Segre, S. E.,Zanza, V. Determination of the full Mueller matrix in hightime-resolution plasma polarimetry using only phase measurements. PlasmaPhysics and Controlled Fusion,2007,49(12):2045
    [42] Fuchs, C.,Hartfuss, H. Cotton-Mouton effect measurement in a plasma at theW7-AS stellarator. Physical review letters,1998,81(8):1626-1629
    [43] Marco, F. D.,Segre, S. E. The polarization of an e.m. wave propagating in a plasmawith magnetic shear. The measurement of poloidal magnetic field in a Tokamak.Plasma Physics,1972,14(3):245
    [44] Donné, A. High spatial resolution interferometry and polarimetry in hot plasmas.Review of scientific instruments,1995,66(6):3407-3423
    [45] Dodel, G.,Kunz, W. A far-infrared polari-interferometer‘for simultaneous electrondensity and magnetic field measurements in plasmas. Infrared Physics,12//,1978,18(5–6):773-776
    [46] Kunz, W.,Dodd, G. On the measurement of poloidal field distributions inTokamaks by far-infrared polarimetry. Plasma Physics,1978,20(2):171
    [47] Rommers, J.,Howard, J. A new scheme for heterodyne polarimetry with hightemporal resolution. Plasma physics and controlled fusion,1996,38(10):1805
    [48] Craig, A. D. The measurement of electron density and poloidal magnetic field in aTokamak by polarization changes in an EM wave. Plasma Physics,1976,18(10):777
    [49] Kunz, W.,Equipe, T. F. R. First measurement of poloidal-field-induced Faradayrotation in a tokamak plasma. Nuclear Fusion,1978,18(12):1729
    [50] Segre, S. On the use of polarization modulation in combined interferometry andpolarimetry. Plasma physics and controlled fusion,1998,40(1):153
    [51] Segre, S. E.,Zanza, V. High-frequency polarimetric measurement of both electrondensity and poloidal magnetic field in Tokamaks. Plasma Physics and ControlledFusion,2004,46(7):1087
    [52] Segre, S. E.,Zanza, V. Derivation of the pure Faraday and Cotton–Mouton effectswhen polarimetric effects in a tokamak are large. Plasma Physics and ControlledFusion,2007,49(7):1107
    [53] Segre, S. E.,Zanza, V. Finite electron temperature effects in plasma polarimetryand interferometry. Physics of Plasmas,07/00/,2002,9(7):2919-2925
    [54] Mirnov, V. V.,Ding, W. X.,Brower, D. L., et al. Finite electron temperature effectson interferometric and polarimetric measurements in fusion plasmas. Physics ofPlasmas,10/00/,2007,14(10):102105-12
    [55] Liu, J.,Qin, H. Geometric phases of the Faraday rotation of electromagnetic wavesin magnetized plasmas. Physics of Plasmas,10/00/,2012,19(10):102107-6
    [56] Soltwisch, H. Current distribution measurement in a tokamak by FIR polarimetry.Review of Scientific Instruments,1986,57(8):1939-1944
    [57] Soltwisch, H. Measurement of current‐density changes during sawtooth activityin a tokamak by far‐infrared polarimetry. Review of Scientific Instruments,1988,59(8):1599-1604
    [58] Soltwisch, H. Current density measurements in Tokamak devices. Plasma physicsand controlled fusion,1992,34(12):1669
    [59] Soltwisch, H.,Koslowski, H. Observation of magnetic field perturbations duringsawtooth activity in tokamak plasmas. Plasma Physics and Controlled Fusion,1997,39(5A): A341
    [60] Van Lammeren, A.,Kim, S.,Donné, A. Multichannel interferometer/polarimetersystem for the RTP tokamak. Review of Scientific Instruments,1990,61(10):2882-2884
    [61] Ma, C.,Hutchinson, D.,Richards, R., et al. CO2laser polarimeter for measurementof plasma current profile in Alcator C‐Mod. Review of scientific instruments,1995,66(1):376-378
    [62] Rommers, J.,Donné, A.,Karelse, F., et al. The multichannel triple-laserinterferometer/polarimeter system at RTP. Review of scientific instruments,1997,68(2):1217-1226
    [63] Brower, D.,Zeng, L.,Jiang, Y. Multichannel far-infrared polarimeter system onTEXT-Upgrade. Review of scientific instruments,1997,68(1):419-421
    [64] Kawano, Y.,Chiba, S.-i.,Shirai, H., et al. Dual CO laser polarimeter for Faradayrotation measurement in tokamak plasmas. Review of scientific instruments,1999,70714
    [65] Lanier, N.,Anderson, J.,Forest, C., et al. First results from the far-infraredpolarimeter system on the Madison Symmetric Torus reversed field pinch. Reviewof scientific instruments,1999,70(1):718-721
    [66] Brower, D.,Jiang, Y.,Ding, W., et al. Multichannel far-infraredpolarimeter-interferometer system on the MST reversed field pinch. Review ofScientific Instruments,2001,72(1):1077-1080
    [67] OGorman, M.,Zilli, E.,Giudicotti, L., et al. The multichord far infrared polarimeterof the RFX experiment. Review of Scientific Instruments,2001,72(1):1063-1066
    [68] Cheon, M.,Nam, Y.,Ha, J., et al. Design of a far-infrared interferometer/polarimetersystem for Korea Superconducting Tokamak Advanced Research. Review ofscientific instruments,2004,75(10):3402-3404
    [69] Deng, B.,Brower, D.,Ding, W., et al. High-speed three-wavepolarimeter-interferometer diagnostic for Madison symmetric torus. Review ofscientific instruments,2006,77(10):10F108-10F108-4
    [70] Blanchard, P.,Behn, R.,Weisen, H., et al.10-channel far-infrared polarimeter forthe tokamak à configuration variable. Review of scientific instruments,2006,77(10):10F101-10F101-3
    [71] Mazzotta, C.,Orsitto, F.,Boboc, A., et al. Models comparison for JET polarimeterdata. In AIP Conference Proceedings,2008;140
    [72] Ford, O. P.,Svensson, J.,Boboc, A., et al. Experimental verification of relativisticfinite temperature polarimetry effects at JET. Plasma Physics and ControlledFusion,2009,51(6):065004
    [73] Xu, P.,Irby, J. H.,Bergerson, W. F., et al. Preliminary results from the AlcatorC-Mod polarimeter. Review of Scientific Instruments,10/00/,2010,81(10):10D507-4
    [74] Orsitto, F. P.,Boboc, A.,Gaudio, P., et al. Mutual interaction of Faraday rotation andCotton--Mouton phase shift in JET polarimetric measurements. Review ofScientific Instruments,10/00/,2010,81(10):10D533-4
    [75] Guenther, K.,Contributors, J.-E. Approximate method to extract the pure Faradayand Cotton–Mouton effects from polarimetry measurements in a tokamak. PlasmaPhysics and Controlled Fusion,2004,46(9):1423
    [76] Boboc, A.,Zabeo, L.,Murari, A., et al. Simultaneous Cotton-Mouton and Faradayrotation angle measurements on JET. Review of Scientific Instruments,10/00/,2006,77(10):10F324-4
    [77] Lin, L.,Ding, W. X.,Brower, D. L., et al. Differential interferometry formeasurement of density fluctuations and fluctuation-induced transport(invited).Review of Scientific Instruments,10/00/,2010,81(10):10D509-7
    [78] Ding, W. X.,Lin, L.,Duff, J. R., et al. Density fluctuation measurements byfar-forward collective scattering in the MST reversed-field pinch. Review ofScientific Instruments,10/00/,2012,83(10):10E302-3
    [79] Ding, W.,Brower, D.,Craig, D., et al. Measurement of the Hall dynamo effectduring magnetic reconnection in a high-temperature plasma. Physical reviewletters,2004,93(4):045002
    [80] Ding, W.,Brower, D.,Deng, B., et al. The Hall dynamo effect and nonlinear modecoupling during sawtooth magnetic reconnection. Physics of plasmas,2006,13112306
    [81] Ding, W.,Brower, D.,Craig, D., et al. Nonambipolar magnetic-fluctuation-inducedparticle transport and plasma flow in the MST reversed-field pinch. Physicalreview letters,2007,99(5):055004
    [82] Deng, B. H.,Ding, W. X.,Brower, D. L., et al. Internal magnetic field structure andparallel electric field profile evolution during the sawtooth cycle in MST. PlasmaPhysics and Controlled Fusion,2008,50(11):115013
    [83] Ding, W.,Brower, D.,Fiksel, G., et al. Magnetic-fluctuation-induced particletransport and density relaxation in a high-temperature plasma. Physical reviewletters,2009,103(2):025001
    [84] Lin, L.,Ding, W.,Brower, D., et al. Role of Nonlinear Coupling and DensityFluctuations in Magnetic-Fluctuation-Induced Particle Transport. Physical ReviewLetters,2012,108(17):175001
    [85] Ding, W.,Lin, L.,Brower, D., et al. Kinetic Stress and Intrinsic Flow in a ToroidalPlasma. Physical Review Letters,2013,110(6):065008
    [86] Bergerson, W. F.,Xu, P.,Irby, J. H., et al. Far-infrared polarimetry diagnostic formeasurement of internal magnetic field dynamics and fluctuations in the C-MODTokamak(invited). Review of Scientific Instruments,10/00/,2012,83(10):10E316-6
    [87] Zhang, J.,Crocker, N. A.,Carter, T. A., et al. Interaction between Faraday rotationand Cotton--Mouton effects in polarimetry modeling for NSTX. Review ofScientific Instruments,10/00/,2010,81(10):10D519-4
    [88]丁永华. J-TEXT托卡马克主机安装及磁测量系统的建立:[博士学位论文].武汉:华中科技大学图书馆,2009
    [89] Zhuang, G.,Pan, Y.,Hu, X. W., et al. The reconstruction and research progress ofthe TEXT-U tokamak in China. Nuclear Fusion,2011,51(9):094020
    [90] Zhuang, G.,Ding, Y.,Zhang, M., et al. Reconstruction of the TEXT-U Tokamak inChina. Plasma Science and Technology,2009,11(4):439
    [91]梁铨廷.物理光学(第三版).北京:电子工业出版社,2008
    [92] Born, M.,Wolf, E.,Bhatia, A. B. Principles of Optics: Electromagnetic Theory ofPropagation, Interference and Diffraction of Light. Cambridge University Press,1999
    [93] Hutchinson, I. H. Principles of Plasma Diagnostics. Cambridge University Press,2005
    [94]项志遴,俞昌旋.高温等离子体诊断.上海:上海科学技术出版社,1982
    [95] veron. Infrared and Millimeter Waves. New York: Academic Press,1979
    [96] Polarized Light in Nature and Technology. http://www.polarization.com/index-net/index.html
    [97]廖廷彪.偏振光学.北京:科学出版社,2003
    [98] Lee, K.,Domier, C.,Johnson, M., et al. Edge density fluctuation characterization inH-mode and polarimetry measurement via the FIReTIP system on NSTX. Reviewof scientific instruments,2004,75(10):3433-3435
    [99] Rice, B. Fifteen chord FIR polarimetry system on MTX. Review of scientificinstruments,1992,63(10):5002-5004
    [100] Yates, T. F.,Ding, W. X.,Carter, T. A., et al. Simultaneous density and magneticfield fluctuation measurements by far-infrared interferometry and polarimetry inMST. Review of Scientific Instruments,10/00/,2008,79(10):10E714-3
    [101]何国伟.误差分析方法.长沙:国防工业出版社,1978
    [102] Mouton, A. C. a. H. C. R. Acad. Sci.,1905,141:317-319
    [103] Ding, W. X.,Brower, D. L.,Bergerson, W. F., et al. Upgrade of far-infraredlaser-based Faraday rotation measurement on MST. Review of ScientificInstruments,10/00/,2010,81(10):10D508-5
    [104] Chen, J.,Gao, L.,Zhuang, G., et al. Design of far-infrared three-wavepolarimeter-interferometer system for the J-TEXT tokamak. Review of ScientificInstruments,10/00/,2010,81(10):10D502-3
    [105]光学. http://zh.wikipedia.org/wiki/光学
    [106]周炳琨.激光原理.国防工业出版社,2007
    [107]高丽. J-TEXT等离子体电子密度诊断系统的建立:[博士学位论文].武汉:华中科技大学图书馆,2009
    [108] Crenn, J. P. A study of waveguides for far infrared interferometers measuringelectron density of Tokamak plasmas. Microwave Theory and Techniques, IEEETransactions on,1979,27(6):573-577
    [109]揭银先. HT—7托卡马克等离子体密度行为研究:[博士学位论文].北京:中国科学院等离子体所,2008
    [110] Jiang, Y.,Brower, D.,Zeng, L., et al. Application of a digital phase comparatortechnique to interferometer data. Review of scientific instruments,1997,68(1):902-905
    [111] Chen, J.,Zhuang, G.,Wang, Z. J., et al. Progress of the in-building J-TEXT FIRthree-wave polarimeter. Journal of Instrumentation,2012,7(1): C01064
    [112]陈杰. J-TEXT远红外激光干涉仪的建立. In中国核学会学术年会,北京,2009
    [113] Chen, W.,Gao, L.,Chen, J., et al. The7-channel FIR HCN interferometer onJ-TEXT tokamak. Journal of Instrumentation,2012,7(1): C01109
    [114] Lao, L.,John, H. S.,Stambaugh, R., et al. Reconstruction of current profileparameters and plasma shapes in tokamaks. Nuclear fusion,1985,25(11):1611
    [115]周艳.等离子体电子密度和电流分布测量技术及其在HL-IM上的应用:[博士学位论文].核工业西南物理研究院,1999
    [116]张静. J-TEXT托卡马克欧姆放电条件下热辐射功率的测量与分析:[博士学位论文].武汉:华中科技大学图书馆,2012
    [117] Barr, W. L. Method for Computing the Radial Distribution of Emitters in aCylindrical Source. J. Opt. Soc. Am.,08/01,1962,52(8):885-885
    [118] Gottardi, N. Evaluation of electron density profiles in plasmas from integratedmeasurements. Journal of Applied Physics,04/00/,1979,50(4):2647-2651
    [119] Yasutomo, Y.,Miyata, K.,Himeno, S.-I., et al. A New Numerical Method forAsymmetrical Abel Inversion. Plasma Science, IEEE Transactions on,1981,9(1):18-21
    [120] Park, H. K. A new asymmetric Abel-inversion method for plasma interferometry intokamaks. Plasma Physics and Controlled Fusion,1989,31(13):2035
    [121] Chen, J.,Zhuang, G.,Wang, Z. J., et al. First results from the J-TEXThigh-resolution three-wave polarimeter-interferometer. Review of ScientificInstruments,10/00/,2012,83(10):10E306-3
    [122] Li, Q.,Chen, J.,Zhuang, G., et al. Vibration mitigation in J-TEXT far-infrareddiagnostic systems. Review of Scientific Instruments,10/00/,2012,83(10):10E314-3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700