粗糙面及其与目标复合电磁散射的FDTD方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用时域有限差分方法(Finite Difference Time Domain, FDTD)深入系统地研究了粗糙面及其与目标的复合电磁散射问题。首先研究了时谐场源激励下粗糙面及其与目标的复合电磁散射特性;随后从时域角度出发,分析了脉冲波源激励下均匀介质、色散粗糙面以及它们与目标的复合散射特性;最后研究了各向异性媒质的散射特性,并精确求解了无耗半空间中目标的远区散射场。论文的主要工作如下:
     1、基于二维空间中FDTD方法的基本原理,系统地分析了时谐场源激励下一维粗糙面及其与二维目标的复合散射特性,包括一维单层粗糙面的散射、一维分层粗糙面的散射、一维单层粗糙面与二维目标以及一维分层粗糙面与二维目标的复合散射问题。并将FDTD的计算结果与MOM的结果进行了比较,结果表明具有很好的一致性。
     2、采用三维空间中并行FDTD方法的基本原理并结合二维粗糙面散射基本理论,详细地研究了时谐场源激励下二维单层粗糙面的散射、二维分层粗糙面的散射以及二维单层粗糙面与三维目标的复合电磁散射。并将二维单层粗糙面的散射结果与基尔霍夫近似方法的结果进行了比较,结果表明两者在中小散射角范围内吻合得很好。
     3、推导了二维和三维FDTD空间中瞬态场的外推公式,从时域角度出发,分别研究了脉冲波源激励下一维粗糙面的散射、一维粗糙面与二维目标的复合散射、二维粗糙面的散射、二维粗糙面与三维目标的复合散射特性,并与时谐场源激励下的结果进行了比较和验证。
     4、推导了Debye媒质、Lorentz媒质以及Drude媒质的ADE-FDTD公式,为了能更好的吸收外向行波,引入CPML来截断色散媒质。从时域角度出发,数值计算了脉冲波源激励下一维半空间Debye、Lorentz以及Drude媒质的反射和透射系数,并与解析法的结果进行了比较。另外以单极和双极Debye模型为例,分析了一维色散海水、土壤及其与二维目标的复合电磁散射特性,并与时谐场源激励下的结果进行了验证。
     5、根据Yee元胞理论,采用均值及插值技术,详细推导了二维和三维空间中电、磁各向异性媒质的FDTD公式,研究了二维和三维各向异性目标的电磁散射特性,并与文献中的结果进行了比较和验证。同时采用MIPML来截断各向异性媒质,以TM波模式为例,数值计算了一维各向异性粗糙面的散射系数角分布。
     6、从麦克斯韦方程出发,利用无耗半空间中平面波的混合方式引入法,得到了精确的近场结果,同时运用半空间中近—远场的外推公式,获得了无耗半空间中目标的远区散射场,并与文献中三波法的结果进行了比较和验证。
This dissertation presents a systematic and deep investigation on the electromagnetic (EM) scattering from rough surface and composite scattering from rough surface and target by the finite-difference time-domain (FDTD) method. Firstly, the EM scattering of rough surface and the composite scattering of rough surface and target are investigated with the time-harmonic wave excitations. Then, from the point of time domain, the composite scattering characteristic of uniform dielectric and dispersive rough surface with and without a target are analyzed with the pulsed wave illuminations. Finally, the scattering characteristic of anisotropic medium is studied, and the far-zone scattered field of a target in a lossless half space is also exactly calculated. The main contributions of the dissertation are as following:
     1. Based on the fundamental principle of FDTD method in two-dimensional (2-D) space, the characteristic of composite scattering from one-dimensional (1-D) rough surface with and without a target are systematically analyzed with the time-harmonic wave incidence, which includes the scattering from 1-D single-layered and layered rough surface, and the composite scattering from 1-D single-layered and layered rough surface with a target. And the numerical results by the FDTD method are also compared with those by the method of moment, which shows a good agreement.
     2. Using the basic theories of the three-dimensional (3-D) parallel FDTD method and the basic principle of scattering from 2-D rough surface, the EM scattering from a 2-D single-layered and layered rough surface, and the composite scattering from the 2-D single-layered rough surface and a 3-D target are examined with the time-harmonic wave excitation in detail. The scattering of 2-D single-layered rough surface is compared with the result by the Kirchhoff Approximation, which shows an excellent consistency over the middle and small scattered angular range.
     3. The extrapolation formulas of the transient field in 2-D and 3-D FDTD space are derived. From the point of time domain, the scattering characteristic of 1-D and 2-D rough surface, the composite scattering from 1-D rough surface and 2-D target, and the composite scattering from 2-D rough surface and 3-D target are studied with the pulsed wave illumination, respectively. And the results by the pulsed FDTD method are compared and verified with those of the time-harmonic wave excitations.
     4. The ADE-FDTD formulas are derived for the Debye medium, the Lorentz medium, and the Drude medium. In order to absorb the outward-propagating wave well, the CPML is employed to truncate the dispersive medium. From the point of time domain, the reflection and transmission coefficients of 1-D half-space Debye, Lorentz and Drude medium are calculated with the pulsed wave excitations, which are also compared with the results by the analytic method. In addition, taking the single-pole and two-pole Debye model for example, the composite EM scattering from 1-D dispersive sea water and soil with and without a target are analyzed, and the results are also verified by those of the time-harmonic wave incidence.
     5. According to the theory of Yee cell, averaging value method and interpolation method, the FDTD formulas of electric- and magnetic-anisotropic medium are derived in 2-D and 3-D space in detail. The EM scattering characteristic of 2-D and 3-D anisotropic target are investigated and validated by the results in the literature. Meanwhile, the MIPML is used to truncate the anisotropic medium, and the angular distribution of scattered coefficient from an anisotropic rough surface is calculated for the TM polarization.
     6. In light of Maxwell’s equations, the hybrid scheme of the injection of plane wave in lossless half space is presented to obtain the exact near fields. And the near-field to far-field extrapolation formulas in half space are adopt to aquire the far-zone scattered field of the target, which is verified by that of the three-wave method presented in the literature.
引文
[1]P. Beckman and A.Spizzichino. The Scattering of Electromagnetic Waves from Rough Surfaces.London: Oxford: Pergamon, 1963.
    [2]F. T. Ulaby, R. K. Moore, and A. K. Fung. Microwave Remote Sensing (Vol. II).London: Addision-Wesbey Publishing,1982.
    [3]A. Ishimaru. Wave Propagation and Scattering in Random Medium. New York: Academic Press, 1978.
    [4]A. K. Fung. Microwave Scattering and Emission Models and Their Applications. London: Artech House, 1994.
    [5]J. A. Ogilvy. Theory of Wave Scattering from Random Rough Surface.Bristol: Institute of Physics Publishing, 1991.
    [6]F. G. Bass and I. M. Fuks. Wave Scattering from Statistically Rough Surfaces. Oxford: Pergamon, 1979.
    [7]陈向东.微波被动遥感在海况监测中的应用.北京:测绘出版社,1992.
    [8]金亚秋,刘鹏,叶红霞.随机粗糙面与目标复合散射数值模拟理论与方法.北京:科学出版社, 2008.
    [9]郭立新,王蕊,吴振森.随机粗糙面散射的基本理论与方法.北京:科学出版社, 2010.
    [10]F. G. Bass. Wave Seattering from Statistcally Rough Surfaces.Oxford: Pergamon, 1979.
    [11]A. K. Fung and M. F. Chen. Numerical simulation of scattering from simple and composite random surfaces. J. Opt. Soc. Am.A, 1985, 2(12): 2274-2284.
    [12]A. K. Fung, Z. Li, and K. S. Chen. Backscattering from a randomly rough dielectric surface. IEEE Trans. Geosci. Remote Sensing, 1992, 30(2): 356-369.
    [13]A. Ishimaru and J. S. Chen. Scattering from very rough surfaces based on the modified second-order Kirchhoff Approximation with angular and propagation shadowing. J. Acoust. Soc. Am., 1990, 88: 1877-1883.
    [14]R.L.Wagner, J. Song, and W. C. Chew. Monte Carlo simulation of electromarrnetic scattering from two-dimensional random rough surfaces. IEEE Trans. Antennas and Propagat., 1997, 45(2): 235-245.
    [15]V. Jandhyala, et al. A combined steepest descent-fast multipole algorithm for the fast analysis of three-dimensional scattering by rough surfaces. IEEE Trans. Geosci. Remote Sensing, 1998, 36(3): 738-748.
    [16]C. H. Chan, L. Tsang, and Q. Li. Monte carlo simulations of large-scale one-dimensional random rough-surface scattering at near-grazing incidence: penetrable case. IEEE Trans. Antennas and Propagat., 1998, 46(1): 142-149.
    [17]D. Torrungrueng, H. T. Chou, and J. T. Johnson. A novel acceleration algorithm for the computation of scattering from two-dimensional large-scale perfectly conducting random rough surfaces with the forward-backward method. IEEE Trans. Geosci. and Remote Sensing, 2000, 38(4): 1656-1668.
    [18]C. D. Moss, et al. Forward-backward method with spectral acceleration for scattering from layered rough surfaces. IEEE Trans. Antennas and Propagat., 2006, 54(3): 1006-1016.
    [19]P. Spiga, G. Soriano, and M.Saillard. Scattering of electromagnetic waves from rough surfaces: a boundary integral method for low-grazing angles. IEEE Trans. Antennas and Propagat., 2008, 56(7): 2043-2050.
    [20]H. Wiebe, G. Heygster, and T. Markus. Comparison of the ASI ice concentration algorithm with landsat-7 ETM+ and SAR imagery. IEEE Trans. Geosci. Remote Sensing, 2009, 47(9): 3008-3015.
    [21]金亚秋,黄兴忠,殷杰羿.具有泡沫白帽的粗糙海面的后向散射.海洋学报, 1994,16(4): 63-72.
    [22]金亚秋.电磁散射和热辐射的遥感理论.北京:科学出版社,1993.
    [23]金亚秋,李中新.下视雷达对海杂波中船目标监测的散射回波数值模拟.科学通报, 2002, 47(16): 1211-1216.
    [24]Y. Q. Jin and Z. Li. Bistatic scattering and transmission through fractal rough dielectric surface using FBM-SAA method. J. Electrom. Waves and Appl., 2002, 16(4): 551-572.
    [25]M. Y. Xia, et al. An efficient algorithm for electromagnetic scattering from rough surfaces using a single integral equation and multilevel sparse-matrix canonical-grid method. IEEE Trans. Antennas Propag., 2003, 51(6): 1142-1149.
    [26]M. Y. Xia and C. H. Chan. Parallel analysis of electromagnetic scattering from random rough surfaces. Electronics Letters, 2003, 39(9): 710-712.
    [27]夏明耀,伍振兴.基于单积分方程矩量法的海洋表面微波散射模拟.电子学报, 2005, 33(3): 385-388.
    [28]Z. X. Li. Bistatic scattering from threedimensional conducting rough surface with UV multilevel partitioning method. Progress In Electromagnetics Research, PIER, 2007, 76: 381-395.
    [29]薛谦忠,吴振森.粗糙介质面对高斯波束的散射.电子与信息学报, 2000,22(5): 875-880.
    [30]Z. S. Wu, S. Kun, and Q. Liyan. Experimental study of laser bistatic scattering from random deeply rough surface and backscattering enhancement. Int. J. IR and Mill. Waves, 2000, 21(2): 247-254.
    [31]郭立新,吴振森.二维导体粗糙面电磁散射的分形特征研究.物理学报, 2000,49(6): 1064-1069.
    [32]郭立新,王运华,吴振森.双尺度动态分形粗糙海面的电磁散射及多普勒谱研究.物理学报, 2005, 54(1): 96-101.
    [33]D. Holliday. Resolution of a controversy surrounding the Kirchhoff approach and the small perturbation method in rough surface scattering theory. IEEE Trans. Antennas Propagat., 1987, 35(1): 120-122.
    [34]E. I. Thorsos. The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum. J. Opt. Soc. Am.A, 1988, 83(1): 78-92.
    [35]J. M. Soto-Crespo, M. Nieto-Vesperinas, and A. T. Friberg. Scattering from slightly rough random surfaces: a detailed study on the validity of the small perturbation method. J. Opt. Soc. Am. A., 1990, 7(7): 1185-1201.
    [36]A. G. Voronovich. Small-slope approximation for electromagnetic wave scattering at a rough interface of two dielectric half-spaces. Waves in Random Media, 1994, 4(3): 337-367.
    [37]J. T. Johnson and R.T.Shin. A numerical study of the composite surface model for ocean backscattering. IEEE Trans. Geosci. Remote Sensing, 1998, 36(1): 72-83.
    [38]M. Nieto-Veperinas. Depolarization of electromagnetic waves scattered from slightly rough random surfaces: a study by means of the extinction theorem. J. Opt. Soc. Am. A., 1982, 72(5): 539-547.
    [39]E. Bahar. B. S. Lee. Radar scatter cross sections for two-dimensional random rough surfaces-Full wave solutions and comparisons with experiments. Waves in Random Media, 1996, 6(1): 1-23
    [40]D. Winebrenner and A. Ishimaru. Application of the phase perturbation technique to randomly rough surfaces. J. Opt. Soc. Am. A., 1985, 2(12): 2285-2294.
    [41]A. K. Fung and G. Pan. An integral equation method for rough surface scattering. in Proc. Int. Symp. on Multiple Scattering of Waves in Random Media and Random Surface. 1986: 701-714.
    [42]J. M. Jin. The Finite Element Method in Electromagnetics. New York: John Wiley, 1993.
    [43]A. Taflove and S. C. Hagness. Computational Electrodynamics: The Finite- Difference Time- Domain Method. Boston: Artech House, 2005.
    [44]葛德彪,闫玉波.电磁波时域有限差分方法.西安:西安电子科技大学出版社, 2005.
    [45]K. S. Yee. Numerical solution of initial boundary value problems involving equations in isotropic media Maxwell's equations in isotropic media. IEEE Trans. Antennas Propagat., 1966, 14(3): 302-307.
    [46]R. F. Harrigton. Field Computation by Moment Method. New York: Macmillan Company, 1968.
    [47]D.C.olak, R. J. Burkholder, and E. H. Newman. Multiple sweep method of moments analysis of electromagnetic scattering from 3D targets on ocean-like rough surfaces. Microwave and Opt. Tech. Lett., 2007, 49(1): 241-247.
    [48]M. R. Pino, et al. Application of the fast multipole method to the generalized forward–backward iterative algorithm. Microwave and Opt. Tech. Lett., 2000, 26(2): 78-83.
    [49]M. R. Pino, et al. The generalized forward-backward method for analyzing the scattering from targets on ocean-like rough surfaces. IEEE Trans. Antennas and Propagat., 1999, 47(6): 961-969.
    [50]J. T. Johnson. A study of the four-path model for scattering from an object above a half space. Microwave and Opt. Tech. Lett., 2001, 30(2): 130-134.
    [51]M. E. Shenawee, et al. Three-dimensional subsurface analysis of electromagnetic scattering from penetrable/PEC objects buried under rough surfaces: use of the steepest descent fast multipole method. IEEE Trans. Geosci. Remote Sensing, 2001, 39(6): 1174-1182.
    [52]M. El-Shenawee. Polarimetric scattering from two-layered two-dimensional random rough surfaces with and without buried objects. IEEE Trans. Geosci. Remote Sensing, 2004, 42(1): 67-76.
    [53]L. Li, et al. MLFMA analysis of scattering from multiple targets in the presence of a half-space. IEEE Trans. Antennas Propagat., 2003, 51(4): 810-819.
    [54]李中新,金亚秋.双网格前后向迭代与谱积分法计算分形粗糙面的双站散射与透射.物理学报, 2002, 51(7): 1403-1411.
    [55]H. X. Ye and Y. Q. Jin. Fast iterative approach to electromagnetic scattering from the target above a rough surface. IEEE Trans. Geosci. Remote Sensing, 2006, 44(1): 108-115.
    [56]P. Liu and Y. Q. Jin. Numerical simulation of bistatic scattering from a target atlow altitude above rough sea surface under an EM-Wave incidence at low grazing angle by using the finite element method. IEEE Trans Geosci Remote Sensing, 2004, 52(5): 1205-1220.
    [57]刘鹏,金亚秋.动态起伏海面上低飞目标电磁散射Doppler频谱的有限元-区域分解法数值模拟.中国科学(G辑物理学,力学天文学), 2004, 34(3): 265-278.
    [58]向长青,朱国强,杨河林.平板与正弦型组合粗糙面的电磁波复合散射.电波科学学报, 1998, 13(3): 256-260.
    [59]S. Y. He and G. Q. Zhu. A hybrid MM-PO method combining UV technique for scattering from two-dimensional target above a rough surface. Microwave and Opt. Tech. Lett., 2007, 49(12): 2957-2960.
    [60]逯贵祯,冯.峰,宁曰民.小波变换与高斯粗糙表面的电磁散射研究.北京广播学院学报(自然科学版), 2004,11(3): 1-5.
    [61]郭立新,王运华,吴振森.二维导体微粗糙面与其上方金属平板的复合电磁射研究.物理学报, 2005, 54(11): 5130-5139.
    [62]R. Wang and L. X. Guo. Study on electromagnetic scattering from the time-varying lossy dielectric ocean and a moving conducting plate above it. J. Opt. Soc. Am. A, 2009, 26(3): 517-529.
    [63]C. D.Taylor, D.H.Lam, and T.H.Shumpert. EM pulse scatering in time varying inhomogeneous media. IEEE Trans. Antennas and Propagat., 1969, AP-17(5): 585-589.
    [64]A. Taflove and M. E. Brodwin. Numerical solution of steady-state EM scattering problems using the time-dependent Maxwell's equations. IEEE Trans.Microwave Theory Tech., 1975, MTT-23: 623-630.
    [65]G. Mur. Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations. IEEE Trans Electromagn. Compat., 1981, EMC-23(4): 377-382.
    [66]K. R. Umashankar and A. Taflove. A novel method of analyzing clectromagnetic scattering of complex objects. IEEE Trans. Electromagn. Compat., 1982, EMC-24(4): 397-405.
    [67]J. C. Kasher and K. S. Yee. A numerical example of a two dimensional scattering problem using a subgrid. Applied Computational Electromagnetic Society Journal and Newsletter, 1987, 2(2): 75-102.
    [68]K. K. Mei, A. Cangellaris, and D. J. Angelakos. Conformal time domain finite difference method. Radio Science, 1984, 19(5): 1145-1147.
    [69]C. L.Britt. Solution of EM scattering problems using time domain techniques. IEEE Trans. Antennas and Propagat., 1989,AP-37(9): 1181-1192.
    [70]K. S. Yee, D.Ingham, and D. Shlager. Time-domain extrapolation to the far field based on FDTD calculations. IEEE Trans. Antennas and Propagat., 1991, AP-39(3): 410-413.
    [71]R. J. Luebbers, et al. A Finite-Difference Time-Domain near zone to far zone transformation. IEEE Trans. Antennas Propagat., 1991, AP-39(4): 429-433.
    [72]R. Luebbers, D. Ryan, and J.Beggs. A two-dimensional time-domain near-zone to far-zone transformation. IEEE Trans. Antennas Propagat., 1992, 40(7): 848-851.
    [73]R.J.Luebbers, et al. A frequency dependent finite difference time domain formulation for dispersive materials. IEEE Trans. Electromagn. Compat., 1990, EMC-32(3): 222-227.
    [74]J. P. Berenger. A Perfectly Matched Layer for the Absorption of Electromagnetic Waves. Journal of Comput. Phys., 1994, 114(2): 185-200.
    [75]J. P. Berenger. Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves. Journal of Comput. Phys., 1996, 127(2): 363-379.
    [76]Z. S. Sacks, et al. A perfectly matched anisotropic absorber for use as an absorbing boundary condition. IEEE Trans. Antennas and Propagat., 1995, AP-43(12): 1460-1463.
    [77]S. D. Gedney. An anisotropic perfectly matched layer absorbing boundary condition. IEEE Trans. Antennas Propagat., 1996, AP-44(12): 1630-1639.
    [78]T. Hirono, et al. A three-dimensional fourth-order finite-difference time-domain scheme using a symplectic integrator propagator. IEEE Trans. Microwave Theory Tech., 2001, 49(9): 1640-1648.
    [79]M. Krumpholz and L. P. Katehi. MRTD: new time-domain schemes based on multiresolution analysis. IIEEE Trans. Microwave Theory Tech., 1996, 44(4): 555-571.
    [80]S. V. Georgakopoulos, et al. A hybrid fourth-order FDTD utilizing a second-order FDTD subgrid. IEEE Microw. Wireless Compon. Lett . 2001, 11(11): 462-464.
    [81]S. Benkler, N.Chavannes, and N. Kuster. A new 3-D conformal PEC FDTD scheme with user-defined geometric precision and derived stability criterion. IEEE Trans. Antennas Propag., 2006, 54(6): 1843-1849.
    [82]J. L. Young, D. Gaitonde, and J. S. Shang. Toward the construction of a fourth-order difference scheme for transient EM wave simulation: Staggered grid approach. IEEE Trans. Antennas Propag., 1997, 45(11): 1573-1580.
    [83]C. H. Yuan and Z. Z. Chen. A three-dimensional unconditionally stable ADI-FDTD method in the cylindrical coordinate system. IEEE Trans. Microwave Theory Tech., 2002, 50(10): 2401-2405.
    [84]Y. F. Mao, et al. Unconditionally stable SFDTD algorithm for solving oblique incident wave on periodic structures. IEEE Microw. Wireless Compon. Lett., 2009, 19(5): 257-259.
    [85]C. H. Chan, et al. Electromagnetic scattering of waves by rough surfaces: a finite-difference time-domain approach. Microwave Opt. Technol. Lett., 1991, 4(9): 355-359.
    [86]A. K. Fung, M. R. Shah, and S. Tjuatja. Numerical simulation of scattering from three- dimensional randomly rough surfaces. IEEE Trans. Geosci. Remote Sensing, 1994, 32(5): 986-994.
    [87]F. D. Hastings, J. B. Schneider, and S. L. Broschat. A Monte-Carlo FDTD technique for rough surface scattering. IEEE Trans. Antennas Propag., 1995,43(11): 1183-1191.
    [88]F. D. Hastings, et al. An FDTD method for analysis of scattering from rough fluid-fluid interfaces. IEEE Journal of Oceanic Engineering, 2001, 26(1): 94-101.
    [89]P. K. V. Galdi, C. M. Rappaport, L. B. Felsen and D. A. Castaon. Short-pulse three-dimensional scattering from moderately rough surfaces: a comparison between narrow-waisted Gaussian beam algorithms and FDTD. IEEE Trans. Antennas and Propagat., 2006, 54(1): 157-167.
    [90]T. Dogaru and L. Carin. Time-domain sensing of targets buried under a Gaussian, exponential, or fractal rough interface. IEEE Trans. Geosci. Remote Sensing, 2001, 39(8): 1807-1819.
    [91]K. Demarest, R. Plumb, and Z. B. Huang. FDTD modeling of scattering in stratified media. IEEE Trans. Antennas Propag., 1995, 43(10): 1164-1168.
    [92]K. Demarest, Z. B. Huang, and R. Plumb. An FDTD near-to far-zone transformation for scatterers buried in stratified media. IEEE Trans. Antennas Propag., 1996, 44(8): 1150-1157.
    [93]P. B. Wong, et al. A three-wave FDTD approach to surface scattering with applications to remote sensing of geophysical surfaces. IEEE Trans. Antennas Propagat., 1996, 44(4): 504-514.
    [94]C. D. Moss, et al. Finite-Different Time-Domain simulation of scattering from objects in continuous random media. IEEE Trans. Geosci. Remote Sensing, 2002, 40(1): 178-186.
    [95]李清亮,葛德彪,石守元. FDTD方法在柱面波及半空间有耗介质散射问题中的应用.西安电子科技大学学报, 1998, 25(1): 5-9.
    [96]Y. N. Jiang, D.B.Ge, and S. J. Ding. Analysis of TF/SF boundary for 2D-FDTD with plane P-wave propagation in layered dispersive and lossy media. Progress In Electromagnetics Research, PIER, 2008, 83: 157-172.
    [97]刘培国,孙华,刘克成.地表复合散射的强迫激励法分析.国防科技大学学报, 2002, 24(1): 67-70.
    [98]汤炜,李清亮,吴振森.有耗平面和三维目标复合散射的FDTD分析.电波科学学报, 2004, 19(4): 438-443.
    [99]张晓燕,盛新庆.地下目标散射的FDTD计算.电子与信息学报, 2007,29(8): 1997-2000.
    [100]张晓燕,盛新庆.地下目标散射的并行FDTD计算.电波科学学报, 2007, 22(6): 952-957.
    [101]Y. Yi, et al. A new 2-D FDTD method applied to scattering by infinite objects with oblique incidence. IEEE Trans. Electromagn. Compat., 2005, 47(4): 756-762.
    [102]易韵,陈彬.基于Split-Field FDTD法的近埋地无限长散射体二维算法.电波科学学报, 2007, 22(3): 491-496.
    [103]L. Kuang and Y. Q. Jin. Bistatic scattering from a three-dimensional object over a randomly rough surface using the FDTD algorithm. IEEE Trans. Antennas Propag., 2007, 55(8): 2302-2312.
    [104]S. Y. Dai and Z. S. Wu. Wavelet-Galerkin of time domain method to analyze the scattering problems of randomly rough surface. Microwave and Opt. Tech. Lett., 2007, 49(4): 928-931.
    [105]E. I. Thorsos. The validity of the perturbation approximation for rough surface scattering using a Gaussian roughness spectrum. J. Acoust. Soc. Am., 1989, 86(1): 261-277.
    [106]A. G. Voronovich. Wave Scattering from Rough Surfaces.Berlin: Springer -Verlag, 1994.
    [107]杨超,郭立新.高斯介质粗糙面电磁散射的小斜率近似方法.电波科学学报, 2009,24(1): 77-82.
    [108]S. L. Durden and J. F. Vesecky. A numerical study of the separation wavenumber in sthe two scale scattering approximation. IEEE Trans. Geosci. Remote Sensing, 1990, 28(2): 271-272.
    [109]M. El-Shenawee and C. Rappaport. Electromagnetic scattering interferencebetween two shallow objects buried under 2-D random rough surfaces. IEEE Microwave and Wireless Components Letters, 2003, 13(6): 223-225.
    [110]王长清,祝西里.电磁场计算中的时域有限差分方法.北京:北京大学出版社,1994.
    [111]L. Tsang, et al. Scattering of Electromagnetic Waves: Numerical Simulations.New York: Wiley Interscience, 2001.
    [112]E. I. Thorsos. Acoustic scattering from "Pierson-Moskowitz" sea surface. J. Acoust. Soc. Am., 1990, 88(1): 335-349.
    [113]A. K. Fung and K. K.Lee. A Semi-empirical sea-spectrum model for scattering coefficient estimation. IEEE Journal of Oceanic Engineering, 1982, 7(4): 166-176.
    [114]G. Mur. Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations. IEEE Trans .Electromagn. Compat., 1981, EMC-23(4): 377-382.
    [115]S. D.Gedney. An anisotropic PML absorbing media for the FDTD simulation for fields in lossy and dispersive media. Electromagnetics, 1996, 16(4): 425-449.
    [116]J. S. Juntunen and T. D. Tsiboukis. Reduction of numerical dispersion in FDTD method through artificial anisotropy. IEEE Trans. Microwave Theory Tech., 2000, MTT-48(4): 582-588.
    [117]J. Li, et al. Message-passing-interface-based parallel FDTD investigation on the EM scattering from a 1-D rough sea surface using uniaxial perfectly matched layer absorbing boundary. J. Opt. Soc. Am. A, 2009, 26(6): 1494-1502.
    [118]焦培南,张忠治.雷达环境与电波传播特性.北京:电子工业出版社, 2007.
    [119]L. A. Klein and C. T. Swift. An Improved model for the dielectric constant of sea water at microwave frequencies. IEEE Journal of Oceanic Engineering, 1977, 2(1): 104-111.
    [120]J. Li, L. X. Guo, and H. Zeng. FDTD investigation on electromagnetic scattering from two-layered rough surfaces under UPML absorbing condition. Chin. Phys. Lett., 2009, 26(3): 034101-034104.
    [121]J. Li, L. X.Guo, and H.Zeng. FDTD investigation on the electromagnetic scattering from a target above a randomly rough sea surface. Waves in Random and Complex Media, 2008, 18(4): 641-650.
    [122]J. Li, et al. Investigation of composite electromagnetic scattering from ship-like target on the randomly rough sea surface using FDTD method. Chinese Physics B, 2009, 18(7): 1674-1056.
    [123]J. Li, L. X. Guo, and H. Zeng. FDTD investigation on bistatic scattering from a target above two-layered rough surfaces using upml absorbing condition. Progress In Electromagnetics Research, PIER, 2008, 88: 197-211.
    [124]J. T. Johnson and R. J. Burkholder. Coupled canonical grid/discrete dipole approach for computing scattering from objects above or below a rough interface. IEEE Trans. Geosci. Remote Sensing, 2001, 39(6): 1214-1220.
    [125]N. Geng, A. Sullivan, and L. Carin. Fast multipole method for scattering from 3-d PEC targets situated in a half-space environment. Microwave and Opt. Tech. Lett., 1999, 21(6): 399-405.
    [126]B. Hu and W. C. Chew. Fast inhomogeneous plane wave algorithm for scattering from objects above the multilayered medium. IEEE Trans. Geosci. Remote Sensing, 2001, 39(5): 1028-1038.
    [127]X. Millard and Q. H. Liu. A fast volume integral equation solver for electromagnetic scattering from large inhomogeneous objects in planarly layered media. IEEE Trans. Antennas and Propagat., 2003, 51(9): 2393-2401.
    [128]X. Millard and Q. H. Liu. Simulation of near-surface detection of objects in layered media by the BCGS–FFT method. IEEE Trans. Geosci. Remote Sensing, 2004, 42(2): 327-334.
    [129]F. Xu and Y. Q.Jin. Bidirectional analytic ray tracing for fast computation of composite scattering from electric-large target over a randomly rough surface. IEEE Trans. Antennas and Propagat., 2009, 57(5): 1495-1505.
    [130]C. Guiffaut and K. Mahdjoubi. A parallel FDTD algorithm using the MPI library. IEEE Antennas and Propagation Magazine, 2001, 43(2): 94-103.
    [131]Y. Kuga and P. Phu. Experimental studies of millimeter wave scattering in discrete random media and from rough surfaces. Progress In Electromagnetics Research, PIER, 1996, 4: 37-88.
    [132]孙家昶,张林波,迟学斌等.网络并行计算与分布式编程环.北京科学出版社,1996.
    [133]杨丽霞.复杂介质电磁散射的FDTD算法及其相关技术研究.西安电子科技大学博士论文, 2006,
    [134]都志辉.高性能计算并行编程技术—MPI并行程序设计北京:清华大学出版社,2001.
    [135]W. H. Yu, et al. A robust parallel conformal finite-difference time-domain processing package using the MPI library. IEEE Antennas and Propagation Magazine, 2005, 47(3): 39-59.
    [136]姜彦南. FDTD并行算法及层状半空间散射问题研究.西安电子科技大学博士论文, 2008.
    [137]J. Li, L.X.Guo, and H.Zeng. FDTD investigation on bistatic scattering from two-dimensional rough surface with UPML absorbing condition. Waves in Random and Complex Media, 2009, 19(3): 418-429.
    [138]L. X. Guo, J. Li, and H. Zeng. Bistatic scattering from a three-dimensional object above a two-dimensional randomly rough surface modeled with the parallel FDTD approach. J. Opt. Soc. Am. A, 2009, 26(11): 2383-2392.
    [139]J. A.Ogivy. Theory of Wave Scattering from Random Rough Surface.Bristol: Adam Hilger, 1991.
    [140]杨利霞.复杂介质电磁散射的FDTD算法及其相关技术研究.西安电子科技大学博士论文, 2006.
    [141]S. Vitebskiy, et al. Ultra-wideband short-pulse ground-penetrating radar: simulation and measurement. IEEE Trans. Geosci. Remote Sensing, 1997, 35(3): 762-772.
    [142]L. Carin, et al. Ultrawideband synthetic-aperture radar for mine-field detection. IEEE Trans. Antennas Propagat., 1999, 41(1): 18-33.
    [143]S. Vitebskiy and L. Carin. Moment-Method modeling of short-pulse scattering from and the resonances of a wire buried inside a lossy, dispersive half-space. IEEE Trans. Antennas Propagat., 1995, 43(11): 1303-1312.
    [144]F. Frezza, et al. Short-pulse electromagnetic scattering by buried perfectly conducting cylinders. IEEE Geoscience and Remote Sensing Letters, 2007, 4(4): 611-615.
    [145]J. Li, L. X. Guo, and H. Zeng. FDTD method investigation on the polarimetric scattering from 2-D rough surface. Progress In Electromagnetics Research, PIER, 2010, 101: 173-188.
    [146]R. J. Luebbers, F. Hunsberger, and K. S. Kunz. A frequency-dependent finite-difference time-domain formulation for transient propagation in plasma. IEEE Trans. Antennas Propag., 1991, 39(1): 29-34.
    [147]R. Pontalti, et al. A multi-relaxation (FD)2-TD method for modeling dispersion in biological tissues. IEEE Trans Microwave Theory Tech., 1994, 42(3): 526-528.
    [148]F. Hunsberger, R. J. Lubbers, and K. S.Kunz. Finite-difference time-domain analysis of gyrotropic media. I: Magnetized plasma. IEEE Trans. Antennas Propag., 1992, 40(12): 1489 -1495.
    [149]D. F. Kelley and R. J. Luebbers. Piecewise linear recursive convolution fordisperisve media using FDTD. IEEE Trans. Antennas Propag., 1996, 44(6): 792-797.
    [150]D. M. Sullivan. Z-transform theory and the FDTD method. IEEE Trans. Antennas Propag., 1996,44(1): 28-34
    [151]Q. Chen, M. Katsurai, and P. H.Aoyagi. An FDTD formulation for dispersive media using a current density. IEEE Trans. Antennas Propagat., 1998, 46(11): 1739-1746
    [152]J. L.Young. A higher order FDTD method for EM propagation in a collisionless cold plasma. IEEE Trans. Antennas Propagat., 1996, 44(9): 1283-1289
    [153]S. B. Liu, J. J. Mo, and N. C.Yuan. A novel FDTD formulation for dispersive media. IEEE Microwave and Wireless Components Letters, 2003, 13(5): 187-189.
    [154]魏兵,葛德彪,王飞.一种处理色散介质问题的通用时域有限差分方法.物理学报, 2008, 57(10): 6290-6297.
    [155]L. J. Nickisch and P.M.Franke. Finite-difference time-domain solution of Maxwell's equations for the dispersive ionosphere. IEEE Antennas Propagat. Mag., 1992, 34(5): 33-39.
    [156]O. P. Gandhi, B. Q. Gao, and T. Y. Chen. A frequency-dependent finite-difference time-domain formulation for general dispersive media. IEEE Trans Microwave Theory Tech., 1993, 41(4): 658-665.
    [157]Y. Takayama and W. Klaus. Reinterpretation of the auxiliary differential equation method for FDTD. IEEE Microw. Wireless Compon. Lett . 1994, 12(3): 102-104.
    [158]M. Kuzuoglu and R. Mittra. Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers. IEEE Microwave Guided Wave Lett., 1996, 6: 447-449.
    [159]J.A. Roden and S. D. Gedney. Convolution PML(CPML): an efficient fdtd implementation of the CFS-PML for arbitrary media. Microwave and Opt. Tech. Lett., 2000, 27(5): 334-339.
    [160]I. Ahmed and E. P. Li. Convolutional perfectly matched layer for weakly conditionally stable hybrid implicit and explicit-FDTD method. Microwave and Opt. Tech. Lett., 2007, 49(12): 3106-3109.
    [161]I. Ahmed, E. Li, and K. Krohne. Convolutional perfectly matched layer for an unconditionally stable LOD-FDTD method. IEEE Microwave and Wireless Components Letters, 2007, 17(12): 816-818.
    [162]J. G. Wang, Y. Wang, and D. H. Zhang. Truncation of open boundaries ofcylindrical waveguides in 2.5-dimensional problems by using the convolutional perfectly matched layer. IEEE Transactions on Plasma Science, 2006, 34(3): 681-690.
    [163]J. A. Kong. Electromagnetic wave theory.Beijing: Higher Education Press, 2002.
    [164]L. A. Klein and C. T. Swift. An improved model for the dielectric constant of sea water at microwave frequencies. IEEE Journal of Oceanic Engineering, 1977, OE-2(1): 104-111.
    [165]T. Meissner and F. J. Wentz. The complex dielectric constant of pure and sea water from microwave satellite observations. IEEE Trans. Geosci. Remote Sensing, 2004, 42(9): 1836-1849.
    [166]V. L. Mironov, et al. Generalized refractive mixing dielectric model for moist soils. IEEE Trans. Geosci. Remote Sensing, 2004, 42(4): 773-785.
    [167]J. E. Hipp. Soil electromagnetic parameters as functions of frequency, soil density, and soil moisture. Proceedings of the IEEE, 1974, 62(1): 98-103.
    [168]Y. Das. Effects of soil electromagnetic properties on metal detectors. IEEE Trans. Geosci. Remote Sensing, 2006, 44(6): 1444-1453.
    [169]F. L. Teixeira, et al. Finite-difference time-domain simulation of ground penetrating radar on dispersive, inhomogeneous, and conductive soils. IEEE Trans. Geosci. Remote Sensing, 1998, 36(6): 1928-1937.
    [170]C. N. Chiu and C.H.Chen. Plane-wave shielding properties of anisotropic laminated composite cylindrical shells. IEEE Trans. Electromagn. Compat., 1995,37(1): 109-113.
    [171]H. C.Yin, Z. M.Chao, and Y. P. Xu. A new free pace method for measurement of electromagnetic parameters of biaxial materials at micowace frequencies. Microwave and Opt. Tech. Lett., 2005, 46(1): 72-78.
    [172]R. Graglia and P. Uslenghi. Electromagnetic scattering form anisotropic materials. IEEE Trans.Antennas Propag., 1987, AP-35(2): 225-232.
    [173]J.C.Monzon. Three-dimensional scattering by an infinite homogeneous anisotropic circular cylinder:a spectral approach. IEEE Trans.Antennas Propag., 1987, AP-35(6): 670-682.
    [174]J. C. Monzon. Three-dimensional field expansion in the most general rotationally symmetric anisotropic material: application to scattering by a sphere. IEEE Trans.Antennas Propag., 1989, AP-37(6): 728-735.
    [175]A. Taflove and K.R.Umashankar. Radar cross section of general three- dimensional scatterers. IEEE Trans. Electromagn. Compat., 1983, EMC-25(4): 433-440.
    [176]K. K. Mei, et al. Measured equation of invariance:A new concept in field computations. IEEE Trans.Antennas Propag., 1994, 42(3): 320-328.
    [177]葛德彪,吴跃丽,朱湘琴.等离子体散射FDTD分析的移位算子方法.电波科学学报, 2003, 18(4): 359-362.
    [178]V. V. Varadan, A. Lakhtakia, and V. K. Varadan. Scattering by three-dimensional anisotropic scatterers. IEEE Trans.Antennas Propag., 1989, 37(6): 800-802.
    [179]Y. L. Geng, X.B.Wu, and L.W.LI. Characterization of electromagnetic scattering by a plasma anisotropic spherical shell. IEEE Antennas and Wireless Propagation Letters, 2004, 3: 100-103.
    [180]J. C. Monzon and N. J.Damaskos. Two-dimensional scattering by a homogeneous anisotropic rod. IEEE Trans.Antennas Propag., 1986, AP-34(10): 1243-1249.
    [181]A. P. Zhao, J. Juntunen, and A. V. Raisanen. Material independent PML absorbers for arbitrary anisotropic dielectric media. Electronics Letters, 1997, 33(18): 1535-1536.
    [182]A. P. Zhao. Generalized-material-independent PML absorbers used for the FDTD simulation of electromagnetic waves in 3-D arbitrary anisotropic dielectric and magnetic media. IEEE Trans.Microwave Theory Tech., 1998, 46(10): 1511-1513.
    [183]S. C. Winton, P. Kosmas, and C. M. Rappaport. FDTD simulation of TE and TM plane waves at nonzero incidence in arbitrary layered media. IEEE Trans.Antennas Propag., 2005, 53(5): 1727-1728.
    [184]I. R. Capoglu and G. S. Smith. A total-field/scattered-field plane-wave source for the FDTD analysis of layered media. IEEE Trans. Antennas Propag., 2008, 56(1): 158-169.
    [185]姜彦南,葛德彪,魏兵.分层背景2维FDTD中斜入射平面波的引入.强激光与粒子束, 2008, 20(4): 633-636.
    [186]冯恩信.电磁场与波.西安:西安交通大学出版社, 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700