静水压力环境下混凝土裂缝扩展与双K断裂参数试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水工混凝土中各种各样裂缝的存在造成的失事和溃坝问题使得研究静水压力下混凝土裂缝扩展的研究称为一重要课题。目前对于水工混凝土断裂问题的研究主要包括数值模拟和试验分析两大部分。对于试验确定水工混凝土断裂情况,由于试验的难度和复杂性,开展大型水工混凝土结构研究的较少。对于大型混凝土试件在施工和运行期不可避免的裂缝的存在,首先降低了大坝的安全性,随着水压增加,水力劈裂的出现,导致最终的失稳破坏。这些都说明混凝土坝分析的首要问题是确定已有裂缝是否会扩展,预测在各种可能条件下的扩展路径以及危险程度,以便在它们进一步扩展前采取控制措施。因此,我们借助混凝土断裂力学研究水压下混凝土坝的安全稳定性,及时捕捉、检测裂缝,准确测定起裂、扩展后的裂纹路径,以及扩展中混凝土坝结构的承载特性等就具有重要的理论意义和参考价值。针对以上问题开展了如下工作:
     1.采用1150mm×1104mm×200mm的40个楔入式紧凑拉伸试件进行了实验,并对成功的22个试件结果分别进行了分析。实验分为两大组,包括无加载水压试件和四种水压加载试件。无水压试件共10个,根据约束情况分三组进行实验分析。水压加载试件共12个,分别为0.1MPa—0.4MPa下四种不同水压下的实验情况。对水压的密封装置和加载装置进行了详细介绍,并对试验中采取的加载方式进行了说明。
     2.由于密封装置与普通混凝土试验的区别,在水压力实验开始之前对无水压试件情况进行了分析,将试件的橡胶板和钢板的附加约束作为一整体混凝土进行研究,为此对混凝土固有的材料特性参数,如抗拉强度、抗压强度、弹性模量等进行了重新计算,采用非线性软化曲线计算粘聚韧度,其相应参数进行重新推算。采用新参数下的双K断裂理论对起裂韧度、失稳韧度和粘聚韧度进行了计算,并将计算起裂韧度与实测起裂韧度进行了比较,发现二者误差较小,完全满足工程需要。
     3.对不同阶段裂缝扩展长度进行了计算,并与全桥应变片测定的值进行了比较。由于应变片测定裂缝扩展的简便易行,便于操作的特点,一直被广泛应用。采用全桥的方法可以根据回弯点的位置容易确定裂缝扩展的具体长度,克服了半桥连接法中根据线性非线性的拐点确定的弊端。实测值与计算值的比较发现,实测的结果大于计算值,这是由于裂缝内部先出现裂缝的原因,二者的平均误差不超过6%。由于计算方法的限制,在水压混凝土计算中我们采用实测的方法确定裂缝的扩展长度。
     4.采用侧面安装扩散硅压力传感器的方法测定了扩展裂缝中水压分布变化规律,并对实验结果进行了二次曲线拟合。其实验测定结果与多数学者的结论一致,水前锋的扩展速度滞后于裂缝扩展长度,呈楔形水压递减分布。通过拟合结果反算了水压零点的位置,确定了水压扩展过程的完全曲线。
     5.采用双K断裂理论对水压下的混凝土构件进行了分析,并与无水压下相同约束进行了比较,发现最大荷载的减小随着水压的增加逐渐明显,在水压增加到0.4MPa时,其值已小于无水压的一半,可见水压的不容忽视作用。为此,将水压力对试件的影响计入水压的劈裂力计算其对裂缝尖端的应力强度因子,与机械荷载对应的裂缝尖端的应力强度因子进行叠加,将得到的总体实测起裂韧度与计算起裂韧度进行了比较,二者的最大误差小于10%,满足工程需要,因此也证明双K断裂理论用于分析水工混凝土结构的可行性。
It is important to study the crack propagation under hydrostatic pressure because of the dam collapse by plenty of cracks in hydraulic concrete. At present the study of hydraulic concrete fracture includes two parts: one is the numerical simulation and the other is the experiment. And it is little work for the latter due to the difficulty and complexity in the test. Furthermore micro crack during either the construction period or the running period of concrete impacted on the dam safety and hydraulic fracture resulted in the unstable fracture with the increasing water pressure. Hence, it can be said that the most important problem is to test crack propagation and to predict its path, so that some methods can be deal with at time. As a result, the concrete fracture mechanics is a good facility to monitor the crack propagation, determinate the initial point and the unstable fracture stage. In order to solve the above problems, the following aspects are carried out in this thesis:
     1. Forty specimens, 1150mm×1104mm×200mm,are experimented using Wedge-splitting test on compact tension, in which twenty-two ones are studies successfully. The test included two parts: one is the no water pressure load numbered 10 , which are divided three group by restraint; the other is the water pressure load number 12, which loaded four different pressure, 0.1MPa,0.2MPa,0.3MPa and 0.4MPa respectively. In this thesis the sealing device and load method are demonstrated in detail.
     2. In order to simplify the calculation against reducing accuracy, the membrane, steel plate and concrete are considered a total specimen. Hence, the corresponding parameters such as compressive strength, tensile strength and Young's modulus, are recalculated in nonlinear softening model. Based on the above results, the initial toughness, unstable toughness and cohesive toughness are studies by Double-K fracture model. As a result, the evaluation initial fracture toughness is approximately similar to the test initial fracture toughness, which can approximately meet the requirement in the engineering practice.
     3. The length of crack propagation is compared to the experimental value by full-bridge strain gauges, which are widely used for the simplicity and facility. Moreover it is easy to determinate the exact location of crack propagation by strain back point, which can make up for the shorting of identify the turning point between the linear stage and the nonlinear stage. It is concluded that the experimental results are larger than the calculation because the crack in the interior is ahead of the surface. However the average error is less than 6%, and the experimental methods can be used in the water pressure for the limitation of calculation.
     4. The changes of water pressure are tested by silicon pressure transducers adopting on the side of specimen. Moreover the results is fitting by secondary curves, which is accordance with most scholar's conclusion, that is. the water front decreasing to zero by wedge shape, is behind of the crack propagation. Hence, the zero water pressure can be calculated by fitting results and the complete curve of propagation is determined according to the above result.
     5. The maximum load decreased with the increasing water pressure by the comparison of the specimens loaded different pressure using double-K model, and even at the 0.4MPa hydraulic pressure the value is less 50% than the one at 0MPa pressure. Therefore the water pressure is an important component of the maximum load. The results show that initial toughness from the test is the approximately similar to the one from the formula calculation, which indicated that the possibility of double-K fracture criterion is to study the hydraulic concrete. However the total load including water pressure is less the force on no water pressure because of the water softening.
引文
[1]王德厚.大坝安全与监测.水利电力科技,2006,32(1):1-9.
    [2]周建平,杨泽艳,陈观福.我国高坝建设的现状和面临的挑战.水利学报,2006,37(12):1433-1438
    [3]朱伯芳.重力坝的劈头裂缝.水力发电学报,1997(7):85-97.
    [4]吴忠如.典型拱坝的严重事故及解析.工程力学,2001,增刊
    [5]刑林生.我国水电站大坝事故分析与安全对策.水力水电科技进展,2001,21(2):26-32.
    [6]刑林生,聂广明.我国水电站混凝土建筑物耐久性分析.水力发电,2003,29(2):27-32.
    [7]曹红.混凝土衬砌隧洞在内水压力作用下的渗流、应力应变分析.岩石力学理论与工程实践论文集.郑州:黄河水力出版社,1997:98-104.
    [8]Griffth A A.The phenomena of rupture and flow in solids.Phil.Trans.Roy.Soc.series A221,1921,163-168.
    [9]Orowan E O.In Fatigue and fracture of metals.Murray,W.M.Ed.,Wilcy,New York,1950,139-167.
    [10]Irwin G R.Analysis of stresses and strains near the end of a crack traversing a plate.Journal of Applied Mechanics,1957,24:361-364.
    [11]Rice J R.A path independent integral and the approximate analysis of strain concentration by notches and cracks.Journal of Applied Mechanics.1968,35:379-386.
    [12]Hutchinson J W.Singular behavior at the end of a tensile crack in a hardening material.Journal of Mechanics and Physics of solids,1968,1:13-31.
    [13]Rice J R,Rosengren G R.Plane strain deformation near a crack tip in a power-hardening material,Journal of Mechanics and Physics of solids,1968,1:1-12.
    [14]Dugdule D S.Journal of Mechanics and Physics of solids,1960,8:100-104.
    [15]Kaplan M F.Crack propagation and the fracture of concrete.Journal of the American Concrete Institute,1961,58(5):591-610.
    [16]徐世娘.混凝土断裂韧性的试验及分析.水利学报,1982,6:61-66.
    [17]徐世娘.混凝土脆性破坏的断裂统计理论.冶金建筑,1982,11:22-29.
    [18]徐世娘.混凝土断裂韧度的概率统计分析.水利学报,1984,10:51-58.
    [19]赵国藩,徐世娘.混凝土损伤和断裂的机理,国家自然科学基金资助项目总结报告.大连理工大学,1987:1-99.
    [20]徐世娘,赵国藩.混凝土断裂韧度的概率模型研究.土木工程学报,1988,21(4):9-23.
    [21]徐世娘.混凝土断裂机理:(博士学位论文).辽宁:大连理工大学,1988.
    [22]赵国藩,徐世娘,王凤翼,高泉.混凝土裂缝的评定技术,七五国重点科技攻关17-2-1 FLCL,2项目总结报告.大连理工大学,1989:1-295.
    [23]徐世娘,赵国藩.混凝土断裂韧度的尺寸效应,水利水电科学基金资助项目总结报告.大连理工大学,1990:1-105.
    [24]徐世娘,赵国藩.混凝土断裂力学研究.大连:大连理工大学出版社,1991.
    [25]徐世娘,赵国藩.混凝土巨型试件断裂韧度和高混凝土坝裂缝评定的断裂韧度准则.土木工程学报,1991,24(2):1-9.
    [26]徐世娘,赵国藩.混凝土裂缝的稳定扩展过程与临界裂缝尖端张开位移.水利学报,1989,4:33-44.
    [27]徐世娘,赵国藩.光弹性贴片法研究混凝土裂缝扩展过程.水力发电学报,1991,3:8-18.
    [28]徐世娘,赵国藩,黄承逵,刘毅,王凤翼,靳国礼.混凝土大型试件断裂能和缝端应变场.水利学报,1991,1:17-25.
    [29]于骁中主编.岩石和混凝土断裂力学.长沙:中南工业大学出版社,1991.
    [30]徐世娘,赵国藩.混凝土结构裂缝扩展的双K断裂准则.土木工程学报,1992,25(2):32-38.
    [31]赵国藩,徐世娘,王凤翼.大骨料全级配混凝土断裂韧度和断裂能研究.工程力学,1996年增刊.
    [32]吴智敏,赵国藩.骨料粒径对混凝土断裂参数的影响.大连理工大学学报,1994,34(5):583-588.
    [33]吴智敏,黄承逵,赵国藩.大尺寸混凝土试件的断裂能.大连理工大学学报,1996,36(6):782-784
    [34]吴智敏,赵国藩,徐世娘.大尺寸混凝土试件的断裂韧度.水利学报,1997;6:67-76
    [35]吴智敏,徐世娘,王金来.基于虚拟裂缝模型的混凝土双K断裂参数.水利学报,1999,7:12-16
    [36]吴智敏,徐世娘,刘红艳,刘毅.骨料最大粒径对混凝土双K断裂参数的影响.大连理工大学学报,2000,40(3):359-361
    [37]吴智敏,徐世娘,丁一宁,卢喜经,刘佳毅,丁生根.混凝土非标准三点弯曲梁试件双K断裂参数
    [38]吴智敏,徐世娘,刘佳毅.光弹贴片法研究混凝土裂缝扩展过程及双K断裂参数的尺寸效应.水利学报,2001,4:34-39
    [39]吴智敏,徐世娘,王金来.混凝土断裂韧度及临界裂缝尖端张开位移.三峡大学学报,2002,24(1):29-34
    [40]王凤翼.骨料对混凝土断裂机理的影响和混凝土复合断裂判据的试验研究:(博士学位论文).辽宁:大连理工大学,1990
    [41]高泉,赵国藩,赵顺波.龄期及粗骨料级配对高坝混凝土断裂能G_F和断裂韧度K_(IC)的影响规律.建筑科学,1994,3:19-23
    [42]Hillerborg A.A Analysis of Crack Formation and Crack Growth in Concrete by means of Fracture Mechanics and Finite Elements.Cement and Concrete Research,1976,6:773-782.
    [43]Hillerborg A.The theoretical basis of method to determine the fracture energy G_F of concrete.Materials and Structures,1985,18(106):291-296
    [44]Bazant Z P.Crack band theory for fracture of concrete.RILEM.Materials and Structures,1983,16(93):155-177.
    [45]Bazant Z P.Size effect in blunt fracture:concrete,rock,metal.Journal of Engineering Mechanics,ASCE,1984,110(4):518-535.
    [46]Jenq Y S,Shah S P.Two parameter fracture model for concrete.Journal of Engineering Mechanics,ASCE,1985,111(10):1227-1241.
    [47]Jenq Y S,Shah S P.A fracture toughness criterion for concrete.Engineering Fracture Mechanics,1985,21(5):1055-1069.
    [48]Bazant Z P,Kazemi M T.Size dependence of concrete fracture energy determined by Rilem work-of-fracture method.International Journal of Fracture,1991,51:121-138.
    [49]Bazant Z P,Kazemi M T.Determination of fracture energy,process zone length and brittleness number from size effect,with application to rock and concrete.International Journal of Fracture,1990,44:111-131.
    [50]Bazant Z P.Fracture energy of heterogeneous materials and similitude,in Fracture of Concrete and Rock,edited by Shah SP,Swartz S E.Springer-Verlag,New York,1986,121-150.
    [51]Xu Shilang,Reinhardt H W.Determination of double-K criterion for crack propagation in quasi-brittle fracture.Part Ⅰ:Experimental investigation of crack propagation.International Journal of Fracture,1999,98:111-149.
    [52]Xu Shilang,Reinhardt H W.Determination of double-K criterion for crack propagation in quasi-brittle fracture.Part Ⅱ:Analytical evaluating and practical measuring methods for three-point bending notched beams.International Journal of Fracture,1999,98:151-177.
    [53]Xu Shilang,Reinhardt H W.Determination of double-K criterion for crack propagation in quasi-brittle fracture Part Ⅲ:Compact tension specimens and wedge splitting specimens.International Journal of Fracture,1999,98:179-193.
    [54]Xu Shilang,Reinhardt H W.A simplified method for determining double-K fracture parameters for three-point bending tests.International Journal of Fracture,2000,104:181-208.
    [55]Xu Shilang,Reinhardt H W.Determination of double-K facture parameters in standard three-point bending notched beams.Fracture Mechanics of Concrete Structures,Proceedings FRAMCOS-3,Aedificatio Publishers,Germany,1998,1:431-440.
    [56]Reinhardt H W,Shilang Xu.Crack extension resistance based on the cohesive force in concrete.Engineering Fracture Mecjanics 1999,64,563-587.
    [57]Shilang Xu,Reinhardt,H W.Crack extension resistance and fracture properties of quasi-brittle softening material like concrete based on the complete process of fracture.International Journal of Fracture,1998,92(1):71-99.
    [58]Karihaloo,B.L.and Nallathambi,P..Effective Crack Model for the Determination of Fracture Toughness KIcs of Concrete.Engineering Fracture Mechanics,1990,35(4/5):637-645.
    [59]Refai,T.M.E.and Swartz,S.E..Fracture Behavior of Concrete Beams in Three-Point Bending Considering the Influence of Size Effects.Kansas State University,Engineering Experiments Station,Report,1987:190.
    [60]Bazant,Z.P.,Kim,J.K.and Pfeiffer,P.A..Determination of Fracture Properties from Size Effect Tests.Journal of Structural Engineering,1986,112(2):289-307.
    [61]王国庆.岩体水力劈裂实验及裂缝扩展的无单元法计算:(硕士学位论文).南京:河海大学,2004.
    [62]陈彭年.世界地应力资料汇编.地震出版社,1990.
    [63]刘允芳,刘元坤.水压致裂法三维地应力测量方法的研究.地壳变形与地震,1999,19(3):64-71.
    [64]王媛,徐志英,速宝玉.裂隙岩体渗流计算模型综述.水科学进展,1995,4:276-282.
    [65]盛金昌.三维裂隙岩体渗流应力祸合数值分析及工程应用:(博士学位论文).南京:河海大学,2000.
    [66]郑少河,朱维申,王书法.承压水上采煤的固流祸合问题研究.岩石力学与工程学报,2000,19(4):421-424.
    [67]柴军瑞,仵彦卿.岩体渗流场与应力场祸合分析的多重裂隙网络模型.岩石力学与工程学报,2000,19(6):712-717.
    [68]郑少河,朱维申.裂隙岩体渗流损伤祸合模型的理论分析.岩石力学与工程学报,2003,20(5):156-159
    [69]杨延毅,周维垣.裂隙岩体的渗流-损伤祸合分析模型及其工程应用.水利学报,1991,5:19-27
    [70]Bai M,MengF,Elsworth D,Roegiers J C.Analysis of stress-dependent Permeability in nonorthogonal flow and deformation fields.Rock Mechanics and Rock Engineering,1999,32(3):195-219.
    [71]张有天,张武功.隧洞水荷载的静力计算.水利学报,1980,3:52-62.
    [72]王建秀,杨立中,何静.深埋隧洞外水压力计算的解析-数值法.水文地质工程地质,2002,3:17-19.
    [73]朱珍德,胡定.裂隙水压对岩体强度的影响.岩土力学,2000,21(1):64-67.
    [74]Tsang Y W,Tsang C F.Channel model of flow through fractured media.Water Resources Research,1987,23(3):467-479.
    [75]Vaughan P.R,Kluth D.J.,Leonard M.W..Cracking and Erosion of the Rolled clay Core of Balderhead Dam and the Remedial works Adopted for its Repair Proc.10~(th).International Congress on large Dams,1970:73-93.
    [76]Br(u|¨)hwiler E,Saouma V.Water Fracture interaction in concrete-Part Ⅰ:Facture properties.ACI Materials Journal,1995,92(3):296-303.
    [77]Br(u|¨)hwiler E,Saouma V.Water fracture interaction in concrete-PartⅡ:Hydrostatic pressure in cracks.ACI Materials Journal,1995,92(3):383-390.
    [78]Slowik V,Saouma V.Water pressure in propagation concrete cracks.Journal of Structural Engineering,2000,126(2):235-242.
    [79]Rene Vinwai,Lotfi Guizani.Formulation of hydrodynamic Pressure in cracks due to earthquakes in concrete dams.Earthquake Engineering and Structural Dynamics,1994,23(7):699-715.
    [80]阳友奎,肖长富,邱贤德,吴刚.水力压裂裂缝形态与缝内压力分布.重庆大学学报(自然科学版),1995,18(3):20-26.
    [81]唐红侠.水力劈裂条件下裂隙介质水力特性研究:(博士学位论文).南京:河海大学,2005.
    [82]秦飞,李英.水压作用下裂纹的边界元分析.工程力学,2003增刊:304-307.
    [83]黄云,金峰,王光纶,张楚汉.高拱坝上游坝踵裂缝稳定性及其扩展.清华大学学报(自然科学 版),2002,vol42(4):555-559
    [84]徐世娘,周厚贵,高洪波,赵守阳.各种级配大坝混凝土双K断裂参数试验研究.土木工程学报,2006,39(11):50-62
    [85]Tada.H.,Paris.P.C,Irwin.G.R..The Stress Analysis of Cracks Handbook.Paris:Paris Productions Incorporated(and Del Research Corporation),2nd Edition,1985
    [86]B.Hillemeier,H.K.Hilsdorf.Fracture Mechanics Studies on Concrete Compounds.Cement and Concrete Research,1977,7:523-536.
    [87]焦辉.混凝土Ⅰ型裂缝断裂性能试验研究:(硕士学位论文).辽宁:大连理工大学,1990.
    [88]RILEM Technical Committee 50-FMC.Determination of the Fracture Energy of Mortar and Concrete by Means of Three-point Bend Tests of Notched Beams,Proposed RILEM Draft recommendations.RILEM,Materials and Structures 18(106):285-296.
    [89]Wittmann F H.Size Effect of Fracture Energy of Concrete.Engineering Fracture Mechanics,1990,35(1/2/3):107-115.
    [90]DL/T 5332-2005《水工混凝土断裂试验规程》.中国:中国电力出版社,2006.
    [91]郑爽.多种试件几何混凝土裂缝静应力强度因子的研究:(硕士学位论文).辽宁:大连理工大学,2005.
    [92]Murakami.Stress Intensity Factors Handbooks.London:Pergamon Press,1987.
    [93]Zhang Jun,Liu Qian,Lin Wang.Effect of coarse aggregate size on relationship between stress and crack opening in normal and high strength concretes.Journal of Materials Science and Technology,2005,5(21).
    [94]张君,王林,孙明,刘骞.粗细骨料比例和水泥石强度对混凝土断裂参数的影响.工程力学,2004,21(1):136-142.
    [95]Petersson P E.Crack Growth and Development of Fracture Zones in Plain Concrete and Similar Materials.Division of Building Materials,Lurid Institute of Technology,Report TVBM-1006,1981.
    [96]CEB-Comite Euro-International du Beton-EB-FIP Model Code 1990,Bulletin D' Information No.213/214,Lausanne.
    [97]Xu S L,Reinhardt H W.Analytical Solution of the Fictitious Crack and Evaluation of the Crack Extension Resistance for a Griffith Crack.Fracture Mechanics of Concrete Structures,Proceedings FRAMCOS-3,aedificaio Publishers,Germany,1:409-420.
    [98]Xu S L.Determination of Parameters in the Bilinear,Reinhardt's and Exponentially Nonlinear Softening Curves and Their Physical Meanings.Werkstoffe und Werkstoffpruefung im bauwesen,Hamburg,Libri BOD,1999:410-424.
    [99]Liaw B M,Jeang F L,Du J J,Hawkins N M,Kobayashi A S.Improved Nonlinear Model for Concrete Fracture.Journal of Engineering Mechanics,ASCE,1990,116(2):429-445.
    [100]Reinhardt H W,Cornelissen H A W,Hordijik Dirk A.Tensile tests and failure analysis of concrete.Journal of Structure Engineering,ASCE,1986,112,2462-2477.
    [101]SHILANG XU,Determination of parameters in the bilinear,Reinhardt's nonlinear and exponentially nonlinear softening curves and their physical meanings.Werkstoffe und Werkstoffpr(u|¨)fung in bauwesen,Hamburg,Libri BOD,1999:410-424.
    [102]余志武,丁发兴.混凝土受压力学性能统一计算方法.建筑结构学报,2003,8(24):41-46
    [103]谭周玲,余瑜,傅剑平,白绍良.非抗震梁受拉钢筋最小配筋率取值分析与建议.重庆建筑大学学报,2003,25(2):37-42
    [104]赵艳华.混凝土断裂过程中的能量分析研究:(博士学位论文).辽宁:大连理工大学,2002.
    [105]吴智敏,赵国藩.混凝土裂缝扩展的CTODc准则.大连理工大学学报,1995,35(5):699-702
    [106]卜丹.楔入式紧凑拉伸断裂试验研究:(硕士学位论文).辽宁:大连理工大学,2006.
    [107]张秀芳.混凝土裂缝扩展全过程的新G_R阻力曲线理论和能量转化分析:(博士学位论文).辽宁:大连理工大学,2006
    [108]D.S.Dugdale,Yielding of Steel Sheets Containing Slites.J.Mech.Phys.Sol.,1960,8:100-108.
    [109]G.I.Barenblatt,The Mathematical Theory of Equilibrium of Cracks in Brittle Fracture.Advances in Appl.Mech.,1962,7:55-129
    [110]Wecharatana M,shah S.P..Fracture mechanics of Concrete.Elsevier Science Research,1976,6(6).
    [111]高淑玲.PVA纤维增强水泥基复合材料假应变硬化及断裂特性研究:(博士学位论文).辽宁:大连理工大学,2006.
    [112]杨秀夫,陈勉,刘希圣.水压裂缝缝内流场理论研究.西南石油学院,2002,24(1):87-90.
    [113]谢兴华.岩体水力劈裂机理试验及数值模拟研究:(博士学位论文).南京:河海大学,2004.
    [114]刘令瑶,崔亦昊,张文广.宽级配砾石土水力劈裂特性研究.岩土土程学报,1998,20(3):10-13.
    [115]曹洪.混凝土衬砌隧洞在内水压力作用下的渗流、应力应变分析A.岩石力学理论与工程实践论文集,1997:98-104.
    [116]李宗利.岩体水力劈裂机理研究及其在地下洞室围岩稳定分析中应用:(博士学位论文).南京:河海大学,2005
    [117]陈胜宏,汪卫明,徐明毅,邹丽春.小湾高拱坝坝踵开裂的有限元法分析.水利学报,2003,1:66-71
    [118]柴军瑞,仵彦卿.作用在岩体裂隙网络中的渗透力分析.工程地质学,2001,9(1):24-27.
    [119]章梓雄,董曾南.粘性流体力学.北京:清华大学出版社,1998.
    [120]李宗利,任青文,王亚红.岩石与混凝土水力劈裂缝内水压分布的计算.水利学报,2005,36(6):656-661
    [121]黄润秋,王贤能,陈龙生.深埋隧道涌水过程的水力劈裂作用分析.岩石力学与工程学报,2000,19(5):573-576
    [122]Haimson B C,Fairhust C.In-situ stress determination at great depth by means of hydraulic fracturing Rock mechanics-theory and Practice:Proceedings Of the 11th symposium on rock mechanics,NewYork:The Ameriean Institute of Mining,Metallurgical and petroleum Engineers,1970:559-584
    [123]Serafim,J.L.The uplift area in plain concrete in the elastic range.Proc.Int.Comm.On large Dams,8~(th) Congr.,Edinburgh,U.K.1964:599-622.
    [124]Terzaghi,R.,Guizani,L..Simple tests to determination uplift.Engrg.and Struct.Dyn,1936,23(7):619-716.
    [125]赵中极.重力坝坝面和坝踵水平裂缝的断裂力学分析,水利学报,1982,6.
    [126]Bazant,Z.P..Pore pressure,uplift and failure analysis of dams.Proc.Symp.on Criteria and Assumptions for Numer.Analysis of Dams,Brit.Nat.Committee on Large Dams,Swansea,Wales,1975:781-808.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700