用户名: 密码: 验证码:
环保型热稳定剂的制备及其在PVC中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
PVC是世界三大通用树脂之一,由于其具有良好的理化性能以及低廉的价格,在塑料制品中有着广泛的应用。但是PVC的热稳定性能较差,在加工过程中易发生降解,释放出HCl,导致PVC制品变色以及力学性能降低。因此在PVC的加工中必须加入热稳定剂来改善其加工性能。传统的热稳定剂一般含有铅、铬等重金属元素,会对环境造成污染。在环境问题日益突出的今天,研究新型的环保型热稳定剂已成为必然趋势。
     本文首先以油酸、甲酸和双氧水为原料,合成出环氧油酸钙锌盐。将合成得到的环氧油酸钙锌盐以不同比例复配作为热稳定剂加入PVC中,通过刚果红法、电导率法、热烘箱试验法、热失重测试、红外测试以及力学性能测试等方法研究其热稳定性能和作用机理。结果表明环氧油酸锌是一种初期热稳定剂,有较好的初期着色性,它能够吸收PVC降解释放出的HCl,取代PVC上不稳定的氯原子,防止共轭烯烃链段的生成,但在这过程中会生成ZnCl2,从而产生“锌烧”现象。而环氧油酸钙是一种长期热稳定剂,可以吸收HCl,但是单独使用初期着色性不佳。而当环氧油酸钙锌盐复配使用时,环氧油酸钙会与ZnCl2反应,使其重新生成环氧油酸锌,延长稳定时间,同时改善初期着色性和延长黑化时间。两者复配使用,且环氧油酸锌/环氧油酸钙的质量份数比为1/3时,稳定时间达到了120min左右,为单独加入环氧油酸锌时的6倍;体系的初期着色性较好,同时黑化时间长达120min,说明在此比例下环氧油酸钙锌盐复配的热稳定效果最好。
     进而将大豆分离蛋白(SPI)分别与硬脂酸锌(ZnSt2)、硬脂酸钙(CaSt2)、钙锌复合热稳定剂(Ca-Zn)以及环氧油酸钙锌盐以不同比例复配作为环保型热稳定剂加入PVC中。通过刚果红法,电导率法、热烘箱试验法、热失重测试,红外测试以及力学性能测试等方法研究其热稳定性能和作用机理。结果表明,SPI是一种性能优良的辅助热稳定剂,在有一定量主稳定剂Ca-Zn或者复配环氧油酸钙锌盐存在的条件下,能够与主稳定剂之间产生协同效应,显著提高热稳定效果,延长稳定时间和黑化时间。其中,以邻苯二甲酸二辛脂(DOP)为增塑剂,且Ca-Zn/SPI质量份数比为4/10时,稳定时间为172min,是只加入Ca-Zn时的2倍;黑化时间为180min,比只加入Ca-Zn时提高了60min;以环氧大豆油(ESO)为增塑剂,且环氧油酸锌/环氧油酸钙/SPI的质量份数比为1/3/10时,稳定时间达到了392.5min,是未加入SPI时的1.7倍;黑化时间长达400min,比未加入SPI时延长了160min。另外,SPI能够吸收PVC降解过程中释放出的HCl,属于长期热稳定剂。推测其热稳定机理在于SPI与HCl发生作用的过程中,分子链中的酰胺键(CONH)可能断开,生成部分酰氯键(COCl),起到热稳定的作用。
Poly(vinyl chloride) (PVC) is the world’s three general-purpose resin which is widely used due to its good performance in respect of mechanical behaviour as well as low price. However, PVC suffers from poor thermal stability, it undergoes extensive dehydrochlorination which results in severe discoloration and loss of mechanical properties. Therefore it is necessary to add thermal stabilizers in order to improve its thermal stability. However, the conventional thermal stabilizers generally contain lead, chromium and other toxic metals which will be environmental pollution. In recent years, the developments of environmentally friendly thermal stabilizers have become a necessity because environmental issues have become increasingly prominent.
     First of all, oleic acid, formic acid and peroxide were used to synthesize epoxidized oleic acid. Afterward, epoxidized calcium (zinc) oleate was synthesized by double decomposition reaction. Investigation of thermal stability of epoxidized calcium (zinc) oleate was investigated by means of congo red test, conductivity test, visual color comparison, thermo gravimetric analysis (TGA) test, FTIR analysis and mechanical analysis. The results showed that epoxidized zinc oleic acid ester was an initial-term thermal stabilizer, which can absorb the released HCl, react with the labile chlorine atoms in PVC chain and prevent further dehydrochlorination. However, an undesirable effect of the stabilizing action of epoxidized zinc oleic acid ester was the production of ZnCl2, which can promote the sudden dehydrochlorination of PVC. There was a fast exchange reaction between ZnCl2 and epoxidized calcium oleic acid ester, where the active epoxidized zinc oleic acid ester was regenerated and the undesir able ZnCl2 was consumed. This effect can prolong stability time and blacking time. When the ratio of epoxidized zinc oleic acid ester/ epoxidized calcium oleic acid ester was 1/3, stability time reached to 120min. The stability time was incresed 5 times than the zinc oleic acid ester was added separately. At the same time, blacking time came to 120 min, indicating that in this ratio thermal stability was the best.
     Moreover, soybean protein isolate (SPI) and its individual complex with zinc stearates (ZnSt2), calcium stearates (CaSt2), calcium/zinc compound thermal stabilizers (Ca-Zn), epoxidized calcium (zinc) oleate of various ratios as environmental friendly thermal stabilizer on the processing thermal stability of PVC were investgated by means of congo red test, conductivity test, visual color comparison, TGA test, FTIR analysis and mechanical analysis. The results showed that SPI was an auxiliary stabilizer. In the condition of a certain amount of primary Ca-Zn or epoxidized calcium (zinc) oleate, there was a synergistic effect between SPI and Ca-Zn stabilizers. When Dioctyl phthalate (DOP) was used as plasticizer, and Ca-Zn/SPI reached to 4/10, the stability time was 172min, twice as Ca-Zn was added separately, the blacking increased from 120min to 180min. When epoxidized soybean oil (ESO) was used as plasticizer, and epoxidized zinc oleic acid ester/epoxidized calcium oleic acid ester/SPI was 1/3/10, the stability time was 392.5min, 1.7 times as SPI was not added, the blacking increased from 240min to 400min. SPI was a long-term thermal stabilizer, which could reduce the release of HCl, the increase of the acid chloride carbonyl (COCl) stretching band in FTIR spectra suggested that amide(CONH)band may break and chloride carbonyl (COCl) band partly generated at the latter stages of degradation.
引文
[1]曹文鑫.聚氯乙烯工业技术进展概述[J].聚氯乙烯, 2004, (1): 7—10.
    [2]陈潇.中国PVC行业现状与企业发展对策[J].江苏科技信息(学术研究), 2010, (9): 26—27.
    [3]王友印. PVC树脂应用与发展现状[J].合成树脂及塑料, 2005, 22 (1): 80—83.
    [4]金标义.环保型聚氯乙烯电缆料的发展[J].电线电缆, 2003, (3): 33—35.
    [5]桂祖桐.聚氯乙烯材料在电线电缆中的低位[J].电线电缆, 2006, (3): 4—8.
    [6]杨建军,吴庆云,张建安等.我国聚氯乙烯塑料门窗的现状与发展战略[J].现代化工, 2002, 22(6): 4—8.
    [7] Hjertberg T, Soervik E. Formation of anomalous structures in PVC and their influence on the thermal stability: 2. Branch structures and tertiary chlorine[J]. Polym, 1983, 24(6): 673—684.
    [8] Hjertberg T, Soervik E. Formation of anomalous structures in PVC and their influence on the thermal stability: 3. Internal chloroallylic groups[J]. Polym, 1983, 24(6): 685—692.
    [9] Hjertberg T, Martinsson E, Soervik E. Influence of the dehydrochlorination rate on the degradation mechanism of poly(vinyl chloride)[J]. Macromol, 1988, 21(3): 603–609
    [10] Rogestedt M, Hjertberg T. Degradation of poly(vinyl chloride) with increased thermal stability [J]. Macromol, 1992, 25(23):6332–6340
    [11] Rogestedt M, Hjertberg T. Structure and degradation of commercial poly(vinyl chloride) obtained at different temperatures[J]. Macromol, 1993, 26(1):60–64
    [12] Purmova J, Zoelen W, Vorenkamp E J, Schouten A J. New Insight into the Formation of Structural Defects in Poly(Vinyl Chloride)[J]. Macromol, 2005, 38(15):6352–6366
    [13]朱新生,石小丽,周正华等. PVC化学改性研究进展[J].聚氯乙烯, 2008, 36(6):1—9.
    [14]郝子明,余灯华,易志伟等. PVC结构的不稳定缺陷及其稳定化改性[J].塑料助剂, 2003, (6):36—39.
    [15]孙庆雷,时新刚,林云良等.聚氯乙烯的热解特性和热解动力学研究[J].燃料化学学报, 2007, 35(4):497—500.
    [16]金余其,严建华,池涌等. PVC热解动力学的研究[J].燃料化学学报, 2001, 29(4):81—84.
    [17]吴茂英.塑料降解与稳定化(Ⅰ):一般原理[J].塑料助剂, 2009, (2): 51—55.
    [18]吴茂英.塑料降解与稳定化(Ⅱ):热降解与热稳定(上)[J].塑料助剂, 2009, (3): 48—53.
    [19]康永,柴秀娟,王超.聚氯乙烯热稳定剂及其发展动向[J].中国氯碱, 2011, (1): 12—14.
    [20]翟朝甲,贾润礼.聚氯乙烯热稳定剂的研究进展[J].绝缘材料, 2007, 40(2): 41—43.
    [21]王建军,胡中文,雷金林. PVC热稳定剂及国内发展现状[J].塑料助剂, 2005, (5): 5—12.
    [22]刘志新.热稳定剂生产现状及需求预测[J].现代化工, 2002, 22(2): 49—51.
    [23]谷亚新,杨玉敏,刘运学等.四种铅盐类热稳定剂在聚氯乙烯中的应用比较[J].塑料科技, 2009, 37(12): 46—49.
    [24]吕宏初.复合铅盐稳定剂在PVC电缆料中的应用[J].聚氯乙烯, 2002, (5): 41—42.
    [25]刘伯元,朱文忠. PVC制品"禁铅"后的对策[J].上海塑料, 2004, (4): 35—38.
    [26]张兆兰.铅盐热稳定剂仍有发展前途[J].精细与专用化学品, 2001, 9(9): 28—29.
    [27]刘波,李东平,车成彬.纳米级亚磷酸铅及纳米二盐基亚磷酸铅的制备与表征[J].稀有金属材料与工程, 2003, 32(10): 862—865.
    [28]胡文玺,刘连声,蒋马小等. XDW高效多功能有机铅盐复合稳定剂的研制[J].泰州职业技术学院学报, 2006, 6(1): 54—56.
    [29]马廷春,姜义文,李荣勋等. PVC用新型有机低铅稳定剂及其并用体系[J].现代塑料加工应用, 2008, 20(2): 36—40.
    [30]王玉春. PVC热稳定剂—包核三盐基硫酸铅的合成[d]:[硕士学位论文].天津:天津大学,2003
    [31]程肖飞,王礼,于静.有机锡稳定剂在PVC加工中的应用[J].聚氯乙烯, 2011, 39(4): 33—34.
    [32]张连春.有机锡热稳定剂在PVC加工中的应用[J].塑料助剂, 2003, (5): 41—43.
    [33]胡中文,王建军,张露露.有机锡热稳定剂及其发展现状和趋势[J].塑料助剂, 2004, (2): 1—3.
    [34]钱庆荣,陈庆华,章文贡.有机锡热稳定剂的研究进展[J].塑料科技, 2002, (1): 34—36.
    [35]吴亮.三种有机锡化合物的合成[J].塑料助剂, 2008, (4):23—26.
    [36]胡振锟,狄超.单烷基有机锡稳定剂的现状及发展[J].塑料助剂, 2003, (3): 4—7.
    [37]王建军,王道全,王斌忠等.硫醇甲基锡热稳定剂及其应用[J].塑料助剂, 2003, (1): 19—24.
    [38]齐明,钟理.新型有机锡热稳定剂—二丁基锡双(异辛酸巯基乙酯)的合成与表征[J].精细化工, 2007,24 (4): 404—408.
    [39]申梓皓,戴险峰,黄君涛.一种新型有机锡类PVC热稳定剂的合成研究[J].广东化工, 2007, 34(11): 30-33
    [40]田玉华.新型有机锡热稳定剂的研究[D] :[硕士学位论文].哈尔滨:哈尔滨理工大学,2008
    [41]高尔金,唐伟,孟建新等.有机锡热稳定剂的毒性及其控制与防护[J].塑料助剂, 2011, (2): 46—49.
    [42]于立红,王孟雪,张有利.有机锡化合物对环境的污染及其毒性[J].黑龙江农业科学, 2008, (2): 91—93.
    [43]吴茂英.金属皂的晶体结构[J].化学研究与应用, 2003, 15(3): 368—370.
    [44]张祖华,刘荫奎.硬脂酸锌合成工艺研究现状及其新进展[J].塑料助剂, 2006, (5): 13—15.
    [45]沈刚,刘静敏.直接法合成硬脂酸盐工艺[J].辽宁化工, 2009, 38(12): 850—851.
    [46]张军,石巍.金属皂类热稳定剂对软质PVC脱氯化氢反应的影响[J].合成材料老化与应用, 2005, 34(4): 27—31.
    [47]林美娟,章文贡.锌皂与其它金属皂的协同效应[J].化工科技, 2001, 9(1): 19—22.
    [48]赵劲松,赵川.复合金属皂热稳定剂对聚氯乙烯热稳定性的影响[J].聚氯乙烯, 2006, (8): 22—32.
    [49]吴茂英. PVC用热稳定剂金属皂的特性研究[J].现代塑料加工应用, 2003, 15(1): 27—29.
    [50]徐会志,谭莉莉. PVC用环保Ca/Zn复合热稳定剂的研究进展[J].塑料助剂, 2008, (4): 11—15.
    [51]郑宁来.我国Ca/Zn复合稳定剂的发展[J].现代塑料加工应用, 2008, 20(6): 51—54.
    [52]周春华,刘威,李绪山等.液体Ca/Zn复合稳定剂在聚氯乙烯加工应用中的研究[J].济南大学学报(自然科学版), 2003, 17(1): 73—75.
    [53]林美娟,章文贡.高效钙锌复合热稳定剂在硬质PVC中的应用[J].化工科技, 2004, 12(6): 18—20.
    [54]白景美,李辉,薛长生等.高效复合型稳定剂在PVC塑料加工中的应用[J].塑料, 2000, 29(5): 15—20.
    [55]许鹏.钙/锌复合稳定剂对PVC热稳定性能与耐候性能影响的研究[J].聚氯乙烯, 2006, (10): 21—24.
    [56]郑国雄,林淑慧,温秀珍等.非对称结构新型钙锌复合稳定剂合成及应用研究[J].塑料助剂, 2006, (5): 32—34.
    [57]许家友,郭少云,吴炜来.硬脂酸钙-硬脂酸锌复合物的形成及对聚氯乙烯的稳定[J].塑料助剂, 2005, 21(2): 241—244.
    [58]周春华,刘威,李绪山等.液体Ca/Zn复合稳定剂在聚氯乙烯加工应用中的研究[J].济南大学学报(自然科学版), 2003, 17(1): 73—75.
    [59] Liu Y B, Liu W Q, Hou M H. Metal dicarboxylates as thermal stabilizers for PVC [J]. Polym Degrad Stab, 2007, (92): 1565—1571.
    [60] Li S M, Yao Y W. Effect of thermal stabiliz ers composed of zinc barbiturate and calcium stearate for rigid poly(vinyl chloride ) [J]. Polym Degrad Stab, 2011, (96): 637—641.
    [61]庞爱红,郑波,曹阳等.有机热稳定剂三(十二硫醇)锑的合成[J].化学研究, 2005, 16(1): 26—28.
    [62]郭爱花,刘家斌,曹引梅等.新型高效有机热稳定剂[J].化工学报, 2008, 59(12): 3172—3177.
    [63]刘海军.硫脲衍生物类新型有机热稳定剂[J].塑料助剂, 2010, (3): 1—5.
    [64]刘鹏,陈德宏,张怀平等. 2,4-二(正十二烷基硫亚甲基)-6-甲酚对PVC的热稳定作用[J].化学建材, 2006, 22(6): 15—17.
    [65] Mohamed N.A, Yassin A.A, Khalil Kh.D, etc. Organic thermal stabilizers for rigid poly(vinyl chloride) I. Barbituric and thiobarbituric acids[J]. Polym Degrad Stab, (70): 5—10.
    [66] Sabaa M.W, Mohamed N.A, Khalil Kh.D, etc. Organic thermal stabilizers for rigid poly(vinyl chloride) II. Benzal thiobarbituric acid and some of its derivatives[J]. Polym Degrad Stab, 2000, (70): 121—133.
    [67] Mohamed N.A, Sabaa M.W, Khalil Kh.D, etc. Organic thermal stabilizers for rigid poly(vinyl chloride) III. Crotonal and cinnamal thiobarbituric acids[J]. Polymer Polym Degrad Stab, 2001, (72): 53—61.
    [68] Mohamed N.A, Sabaa M.W, Oraby E.H, etc. Organic thermal stabilizers for rigid poly(vinyl chloride) IV. N-Arylphthalimides[J]. Polym Degrad Stab, 2002, (76): 355—365.
    [69] Sabaa M.W, Mohamed N.A, Oraby E.H, etc. Organic thermal stabilizers for rigid poly(vinyl chloride) V. Benzimidazolylacetonitrile and some of its derivatives[J]. Polym Degrad Stab, 2002, (76): 367—380.
    [70] Sabaa M.W, Mohamed N.A, Oraby E.H, etc. Organic thermal stabilizers for rigidpoly(vinylchloride) VI.Effectofmixing p-chloro- N–phenylphthalimidewithsomecommercialstabilizers[J]. Polym Degrad Stab, 2003, (79): 487—493.
    [71] Mohamed N.A, Sabaa M.W, Oraby E.H, etc. Organic thermal stabilizers for rigid poly(vinyl chloride) VII. Effect of mixing 2-benzimidazolyl-ω- phenylpropenylidineacetonitrile with some commercial stabilizers[J]. Polym Degrad Stab, 2003, (79): 495—501.
    [72] Sabaa M.W, Mohamed R.R, Yassin A.A. Organic thermal stabilizers for rigid poly(vinyl chloride) VIII. Phenylurea and phenylthiourea derivatives[J]. Polym Degrad Stab, 2003, (81): 37—45.
    [73] Sabaa M.W, Mohamed R.R, Yassin A.A. Organic thermal stabilizers for rigid poly(vinyl chloride) IX. N-Benzoyl-N’-p-substituted phenylthiourea derivatives[J]. Polym Degrad Stab, 2003, (81): 431—440.
    [74] Sabaa M.W, Mohamed R.R, Yassin A.A. Organic thermal stabilizers for rigid poly(vinyl chloride). Part X:N-acryloyl-N’-p-substituted phenylthiourea derivatives[J]. Polym Degrad Stab, 2003, (82): 387—393.
    [75]吴茂英. N-环己基马来酰亚胺对PVC的热稳定作用[J].塑料助剂, 2009, (2): 17—20.
    [76]季成官,宫涛,薄宪明.环氧脂肪酸钙锌稳定剂的研制[J].化工中间体, 2008, (4): 13—15.
    [77]郭立新,万庆红,崔艳艳.环氧脂肪酸钙的直接法合成及其对PVC热稳定作用的研究[J].中国氯碱, 2005, (11): 15—17.
    [78]罗筑,宫耀华,鲁圣军等.多元醇对钙/锌稳定剂稳定性能的影响[C].第8届全国PVC塑料与树脂技术年会论文集, 2009
    [79]宋诗文.多元醇辅助热稳定剂的研究[J].聚氯乙烯, 2003, (2): 38—41.
    [80]吴茂英,罗勇新. PVC热稳定剂的发展趋势与锌基无毒热稳定剂技术进展[J].聚氯乙烯, 2006, (10): 1—6.
    [81]苏旭,彭学成. PVC无毒热稳定剂的研究开发新概况[J].聚氯乙烯, 2008, 36(7): 6—10.
    [82]刘媛. PVC无毒热稳定剂研究进展[J].塑料科技, 2007, 35(12): 78—80.
    [83]田萍. PVC无毒热稳定剂现状及发展趋势[J].科学之友, 2009, (33): 64—65.
    [84]陈慧.浅谈大豆分离蛋白的生产实践[J].中国油脂, 2008, 33(6): 26—27.
    [85]王丽,张英华.大豆分离蛋白的凝胶性及其应用的研究进展[J].中国粮油学报, 2010, 25(4): 96—99.
    [86]李海萍,易菊珍.大豆分离蛋白改性的研究进展[J].高分子通报, 2009, (2): 58—62.
    [87]田琨,管娟,邵正中等.大豆分离蛋白结构与性能[J].化学进展, 2008, 20(4): 565—573.
    [88]江艳,武培怡.大豆蛋白的中红外和近红外光谱研究[J].化学进展, 2009, (21): 705—713.
    [89]鲁凤兰.无毒增塑剂的生产与应用[J].精细石油化工进展, 2006, 7(9): 40—45.
    [90]刘彦坤,王小萍,罗远芳等.聚氯乙烯环保型增塑剂的研究进展[J].化工进展, 2008, 27(1): 74—77.
    [91]雍奎刚,刘忠科,刘宝钊. PVC无毒增塑剂的应用和发展[J].塑料科技, 2007, 35(6): 88—91.
    [92]刘海军. PVC增塑机理及PVC-增塑剂的相互作用[J].山西化工, 2011, 31(2): 56—59.
    [93]王龙江,于元章,王志刚等. PVC增塑剂环氧大豆油生产新技术研究[J].广东化工, 2009, 36(8): 41—43.
    [94]吴广铎,王萍,宋向前.优质环氧大豆油制备研究[J].精细石油化工进展, 2008, 9(5): 42—45.
    [95]聂颖.无毒增塑剂环氧大豆油的开发和利用[J].精细化工原料及中间体, 2008, (1): 12—14.
    [96]陈浩乾,张颖,许馨予等.绿色增塑剂环氧大豆油的开发与应用[J].广州化工, 2008, 36(4): 6—8.
    [97]张琴文,黄成伟.提高环氧大豆油环氧值的研究[J].杭州化工, 2003, 33(1): 6—7.
    [98]蒋平平,卢云,费柳月.环氧大豆油的生产技术及其在PVC中的应用[J].塑料助剂, 2006, (1): 28—32.
    [99]李德记,徐国财,黄磊等.合成环氧大豆油若干影响因素的研究[J].矿业科学技术, 2006, (4): 19—23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700